具有高初始亮度的防潮电致发光磷光体及其制造方法

文档序号:3805139阅读:295来源:国知局

专利名称::具有高初始亮度的防潮电致发光磷光体及其制造方法
技术领域
:本发明涉及电致发光(electroluminescent)磷光体(phosphors),更特别涉及已经处理为防潮的电致发光磷光体。本发明再更特别涉及具有极大降低的潮湿引发劣化和高初始亮度的电致发光磷光体。
背景技术
:电致发光(EL)灯可以大致分成两类(1)通常通过气相沉积技薄膜而制成的;蓴膜E^灯;'和(2)^分散在树脂中并:交替层形式涂在塑料片上的微粒材料制成的厚膜EL灯。在后一情况下,厚膜电致发光灯可以构造成薄的挠性发光设备,从而使它们适于更广泛的用途。图1中显示了传统厚膜EL灯的截面示意图。灯2具有两个介电层20和22。涂在塑料膜12b上的第一导电材料4(如石墨)形成灯2的笫一电极(该电极还可以包含金属箔);而涂在第二塑料膜12a上的透明导电材料6(如氧化铟锡)的薄层形成第二电极。夹在两个导电电极4和6之间的是介电材料14的两层20和22,所述介电材料可以是例如氰乙基纤维素、氰乙基淀粉、聚-(甲基丙烯酸甲酯/丙烯酸乙酯)和/或氟烃聚合物。与第一电极4相邻的是其中嵌有铁电材料10(优选钛酸钡)颗粒的介电材料14的层。与第二电极6相邻的是其中嵌有电致发光磷光体8颗粒的介电材料14的层。当向电极施加交变电压时,由磷光体发出可见光。可用于厚膜EL灯的电致发光磷光体主要由已^皮各种活化剂,例如Cu、Au、Ag、Mn、Br、I和Cl掺杂的石克化锌构成。在美国专利Nos.5,009,808、5,702,643、6,090,311和5,643,496中描述了硫化锌基EL磷光体的实例。优选的EL磷光体包括可以净皮Cl和/或Mn共掺杂的ZnS:Cu磷光体。电致发光磷光体,特别是ZnS:Cu磷光体的亮度由于在电场施加过程中存在湿气而明显降低。已经报道,硫化锌基磷光体的亮度降低是由石危空位的增加造成的,所述碌u空位通过下列反应产生ZnS+2H20—>S02+Zn+2H2硫以S02形式从磷光体中逸出;结果,在磷光体中留下硫空位和锌。因此,重要的是加入防潮保护措施以延长EL灯的光发射。通常,耐受性。在美国专利Nos.5,220,243、5,244,750、6,309,700和6,064,150中描述了此类涂层的实例。在磷光体颗粒悬浮在气体流化床中的同时经化学气相沉积(CVD)反应形成这些无机涂层。通常,在磷光体颗粒表面上沉积薄而连续的涂层,由此保护它们免受大气湿度的影响。用于EL磷光体的优选涂层由三曱基铝(TMA)的水解产生。在经此引用并入本文的美国专利Nos.5,080,928和5,220,243中描述了水解的TMA涂层和CVD法。水解的TMA涂层的组成被认为主要为羟基氧化铝(A100H),但是在组成上可以随反应条件在氧化铝和氢氧化铝之间变化。为方便起见,水解的TMA涂层的组成在本文中被称作羟基氧化铝(AIOOH),但是要理解的是,这也包括从氧化铝(A1203)到氢氧化铝(Al(OH)3)的整个组成范围。TMA与水的反应可以如下描述A1(CH3)3+(3+n)/2H20—〉A10(3-n)/2(OH)n+3CH4(0Sn兰3)图2是对于在50。C,90。/。相对湿度下在EL灯中工作的传统A100HCVD涂覆的EL磷光体,随铝含量(涂层厚度)而变的IOO小时维持率(保持)的图。100小时维持率是指100小时光输出除以0小时光输出并乘以100%,(100小时/0小时)xl00%。与未涂覆的磷光体相比,CVD包封的EL磷光体总是由于涂覆过程而经受初始亮度的显著损失。据猜测,这种降低可能由外涂层的存在造成的磷光体颗粒内部的电场降低亏1起。发明概述本文所用的术语初始亮度(IB)是指在灯初次工作时在电致发光灯中的磷光体亮度。为了进行测量并使灯的光输出稳定化,可能经过数分钟的简短期间。这也被称作O小时亮度。由于潮湿引发的劣化造成的亮度迅速降低,优选将含有未涂覆磷光体的EL灯层压在防潮包装中以进行初始亮度测量。对于涂覆的EL磷光体,残留的初始亮度(RIB)表示为百分比并相对于相同EL磷光体在其未涂覆状态下在EL灯中在相同条件下工作时的初始亮度测定;RIB-(IB(涂覆的)/IB(未涂覆))xlO()Q/()。优选地,本发明的涂覆的EL磷光体的残留初始亮度为至少90%。已经发现,原子层沉积(ALD)能够在EL磷光体颗粒上提供比传统CVD法更薄的涂层,同时保持相当的防潮保护水平和更高的初始亮度水平。ALD是有吸引力的薄膜沉积技术,因为其允许对沉积法进行原子级控制。ALD涂层具有许多优异的特征,例如共形性(conformality)、均匀性、可再现性和精确的厚度控制。实际上,ALD是使用两种化学蒸气前体的特殊类型的CVD,这两种前体以两者不会同时以气相存在于反应器中的方式周期性注入沉积系统。这样做的目的是迫使前体在ALD沉积过程中在基底上而非在气相中反应。在经此引用并入本文的美国专利Nos.6,913,827和6,613,383中描述了ALD涂覆法的实例。在ALD沉积法中,一种前体作为单层吸附在表面上;随后吹扫该系统以除去过量前体;注入第二前体以便与吸附的材料反应;然后再吹扫该系统。在每一前体脉沖后使用载气流(通常N2)和真空泵送吹扫该系统。重复ALD沉积周期,每一前体的定量供料时间为大约10至20秒,直至获得所需薄膜厚度。这导致在非常复杂的表面,例如半导体器件上的高纵橫比形貌上的非常均匀的沉积。该反应是自限制的且生长速率通常为每周期大约0.1至1.5A,产生非常无缺陷的薄膜。由于基本每次一个单层地形成涂层,ALD比现有CVD法更可能获得更致密的涂层。对于ALD施加的羟基氧化铝涂层,已经证实,需要至少大约900A,更优选大约1200A的涂层厚度以有效保护EL磷光体免受潮湿引发的劣化。不幸地,要花费大约800个ALD沉积周期以获得1200A厚度。为了成本有效并促进大规模制造,在明显更少的ALD周期,优选100个或更少ALD沉积周期下实现相当的性能(高初始亮度和高防潮性)是理想的。否则,为了建立EL磷光体的强防潮层,ALD是耗时的并且不是非常成本有效的方法。尽管美国专利Nos.5,080,928和5,220,243中所述的CVD法造成比ALD更多的初始亮度损失,但CVD法已经在工业规才莫上成功地H证。由此,理想的是,提供利用CVD和ALD技术的益处同时使其缺点最小化的混合涂覆法并由此提供具有强防潮性和高的残留初始强度的EL磷光体。由此,在本发明的一个方面中,提供由硫化锌基电致发光磷光体的独立颗粒构成的电致发光磷光体,其中各个颗粒被包封在无机涂层中。在并入在50°C,90%相对湿度环境中在IOOV和400Hz下工作的电致发光灯中时,该涂覆的磷光体表现出至少90%的残留初始亮度和至少60%的100小时维持率。更优选地,在50。C和90。/。相对湿度下在EL灯中工作时,残留初始亮度为至少90%且100小时维持率为至少75%。在本发明的另一方面中,提供了混合的(hybrid)ALD/CVD涂覆法,其包括下列步骤(a)形成电致发光磷光体颗粒的流化床;(b)将第一气相前体引入流化床;(c)吹扫流化床;(d)将第二气相前体引入流化床以便与第一前体反应并在磷光体颗粒上形成无机涂层;(e)吹扫流化床;(f)重复步骤(a)至(e)直至达到所需涂层厚度;和(g)将第一和第二气相前体同时引入流化床以进一步提高涂层厚度。尽管A100H是优选涂层,预计可以通过本发明的方法以类似益处在电致发光磷光体上施加其它无机涂层。这类其它无机涂层包括但不限于,氮化铝、二氧化硅和二氧化钛。附图简述图1是传统厚膜EL灯的截面示意图。图2是对于在50°C,90%相对湿度下工作的传统CVD涂覆的EL磷光体,随铝含量而变的100小时维持率的图。图3是对于通过本发明的混合ALD/CVD法制成的涂覆的磷光体,100小时湿维持率相对于总铝涂覆重量的图。发明详述为了更好理解本发明以及本发明的其它和进一步目的、优点和能力一起,参考联系上述附图给出的下列公开内容和所附权利要求。本发明是电致发光磷光体,其中各个独立的磷光体颗粒被包封在无机涂层(优选羟基氧化铝)中。包封的磷光体对大气湿度表现出极端不敏感性并在灯中仅经受极小的初始亮度损失。本发明的方法将ALD为EL磷光体颗粒提供产生极少初始亮度损失的涂层的优点与作为公认大规模制造技术的CVD的已证实的优点相结合。特别地,本发明的方法是混合涂覆法,其包括首先在流化床中使用ALD法使EL磷光体颗粒被薄无机薄膜涂覆,随后通过CVD法施加另外的涂层。在优选方法中,通过向磷光体颗粒流化床中以ABAB....次序引入一系列交替剂量的气化三曱基铝(TMA)和水蒸汽,以便在磷光体颗粒表面上基本一次一个单层地沉积羟基氧化铝薄膜,形成ALD涂层。这两种前体相继在惰性载气中脉冲到涂覆反应器中,在脉冲之间进行吹扫以防止气相反应。流化床反应器保持在450K和1Torr压力下。由于每对前体脉沖(一个周期)产生几乎一个单层薄膜,可以通过沉积周期数精确控制所得薄膜的厚度。涂层厚度可以与沉积在磷光体上的铝的量相关联。例如,大约0.2重量%(wt.°/。)铝相当于大约IIOA的AIOOH涂层厚度。这也是通过100个ALD周期沉积的量,这是施加在EL磷光体上的ALD涂层的优选量。使用溅射中性质谱学(SNMS)测量法和作为参比材料的标准丁&205薄膜评估涂层厚度。然后使用CVD法在流化床反应器中进一步涂覆ALD涂覆的磷光体。通过将气化TMA和水蒸汽前体同时进料到保持在450K和1大气压下的流化床反应器中,进行CVD法。CVD法比ALD法迅速得多地形成A100H涂层,因为反应物同时引入并且不必反复吹扫反应器。为了满足在501790%相对湿度条件下对EL灯的100小时维持率要求,CVD法优选持续直到沉积的铝总量达到大约1重量%至大约2.5重量%,更优选至少大约2.2重量%。参照下列实施例更详细描述本发明。但是,应该理解的是,本发明无论如何不受这类具体实施例的限制。厚膜电致发光试验灯以下列通用方式构造。将磷光体与粘合剂(DuPontMicrocircuitMaterialsLuxprint8155粘合剂)〉'昆合。'液体粘合剂中磷光体的百分比为60重量%。将磷光体悬浮液筛网印刷到具有透明的导电氧化铟锡层的0.0065-0.0075英寸厚的PET薄膜,例如可获自CPFilms的OC-200上。聚酯筛网具有每英寸137或140根线。在干燥后,通过两次施加4太酸钡i真充的介电油墨(DuPontMicrocircuitMaterialsLuxprint8153电致发光介电绝缘体),形成介电层,其施加在磷光体层上并在施加之间干燥。在将介电层干燥后,在介电层上施加背面碳电极(DuPontMicrocircuitMaterialsLuxprint7144CarbonConductor)。在电致发光灯上施加层的优选方法是筛网印刷,也称作"丝网(silk-screening),,。但是,也可以成功地使用其它涂覆技术,例如拖拉(draw)刮刀涂覆和辊到辊(roll-to-roll)涂覆。在干燥后,该电致发光灯准备好进行亮度和维持率试验。在湿度箱中测试的灯要求背面碳电极被覆盖以防止液态水进入灯。在这种情况下,在碳电极上施加薄压敏胶带(3MScotch821带)。实施例1将大约2.0千克发绿光的ZnS:Cu电致发光磷光体(Type729,OSRAMSYLVANIAProductsInc.,Towanda,PA)装入用于ALD涂覆的振动流化床反应器。流化床反应器是具有金属盘作为气体分配器的不锈钢塔。高纯氮气是流化气体。整个反应器^皮蛤壳型炉围绕且反应器温度保持在450K。使用三曱基铝(TMA)和去离子水作为前体且反应^皮分成两个自限制的半反应以沉积羟基氧化铝涂层。一系列气动活化阀控制前体在涂覆周期中的自动和相继定量供料。这两种前体均经由其蒸气压输送并将该系统排空并始终保持在1.0Torr的压力下。在每一前体剂量后,用氮气吹扫该系统以去除未反应的物类以及在反应过程中形成的任何曱烷。该方法持续100个ALD涂覆周期以形成ALD涂覆的磷光体。实施例2在此实施例中,将实施例1中制成的600克ALD涂覆的EL磷光体装入总长度为60厘米的4.1厘米内径石英管。使含有TMA前体的氮气通过反应器底部的5微米孔径金属熔块,由此将反应器内的磷光体颗粒床流化。将夹带在氮气流中的水蒸汽通过中空搅拌器引入反应器并通过位于搅拌器中的多孔金属喷雾器注入颗粒流化床。使气化的TMA和水蒸汽同时和连续流入反应器直至涂覆过程结束。TMA和水鼓泡器分别保持在4rC和74°C。通过TMA和水鼓泡器的氮气载气的流速分别控制在1.5升/分钟和2.0升/分钟。此外,通过围绕反应器的炉元件将反应器温度保持在450K。流化床反应器始终在大气压下运行。在2小时涂覆过程中在不同时间从反应器中收集几个50克样品。这些样品包括CVD#1(1小时)、CVD#2(1,25小时)、CVD#3(1.5小时)、CVD#4(1.75小时)和CVD#5(2小时)。将样品送交灯试验并通过原子吸收光谱法分析铝浓度。实施例3如实施例2中那样制备此实施例中的磷光体,只是CVD涂覆时间延长到4.0小时。从此实施例中收集的样品包括CVD弁6(2.5小时)、CVD#7(3小时)、CVD#8(3.5小时)和CVD#9(4小时)。测试由实施例1中所用的相同未涂覆磷光体制成的传统CVD涂覆磷光体的对照试样以便与ALD/CVD涂覆实施例进行比较。通过将气化的TMA和水蒸汽前体同时引入在CVD涂覆过程中保持在大气压和450K下的流化床反应器,将此磷光体包封。涂覆过程持续直到沉积的铝量达到3.8重量。/q,这在传统cvd法的情况下代表产生残留初始亮度与高防潮性的最佳组合的涂层厚度(图2)。作为另一对照物,使用相同的未涂覆磷光体用800个ALD沉积周期制造ALD涂覆的磷光体。制造含有未涂覆磷光体以及包封的磷光体的厚膜电致发光试验灯。含有未涂覆磷光体的对照灯专门包装在ACLAR(HoneywellInc.供应的水不可透的透明薄膜)中,从而使未涂覆磷光体的湿度敏感性最小化。含有包封的磷光体的相同的灯在100V和400Hz下在两种环境中工作100小时。在灯试-睑#1中,条件为2rC和50%相对湿度。对于灯试马全#2,在湿度室中在50。C和90%相对湿度下进行加速环境测试。灯和磷光体测量概括在表1和2中。容易发生潮湿引发的劣化的磷光体在加速环境测试下表现出光输出的迅速降低并因此具有差的100小时维持率值。也测定ALD涂覆的和ALD/CVD涂覆的磷光体的铝含量,其以总涂覆磷光体重量的百分比表示。如表1和2中所示,ALD/CVD涂覆的灯的100小时湿维持率随着铝量的增加,即随着A100H涂层厚度的增加而增加。通过绘制磷光体的铝含量相对于IOO小时湿维持率(图3),据显示,在高于大约0.6重量。/。Al,100小时维持率与提高的涂覆重量呈线性关系改进,直至铝量达到1.1重量%,此后逐渐水平稳定。再参看所述表,可以看出,样品CVD弁7上的涂层(1.9重量。/。Al)仍然太薄以致不能提供具有与标准CVD涂覆的磷光体相当的防潮保护水平的磷光体,分别为74.3%相对于76.1%100小时维持率。在800周期下,ALD涂覆的磷光体(1.6重量%Al)与标准CVD涂覆的磷光体的IOO小时维持率相当,76.9%相对于76.1%。由此,较薄的800周期ALD涂覆的磷光体也具有比略厚的(1.9重量。/。Al)CVD存7样品更好的100小时维持率。为了获得与800周期ALD涂覆的对照物(76.9%)和CVD涂覆的对照物(76.1%)类似的IOO小时维持率性能,ALD/CVD涂覆的磷光体的涂覆重量需要为至少大约2.2重量Q/。A1,其比800周期ALD涂覆的对照物高0.6重量%Al,但仍然明显低于CVD涂覆的对照物的3.8重量%Al。通过ALD/CVD混合涂覆法制成的CVD#8和CVD#9样品与800周期ALD和CVD涂覆的对照物相比均具有相等或更好的100小时维持率结果。与未涂覆的基础磷光体相比,这两种ALD/CVD涂覆的磷光体仅经受8-9%的初始亮度损失,与此相比,CVD涂覆的对照物经受20%的损失。尽管800周期ALD涂覆的对照物在涂覆后仅损失大约4%初始亮度,制造涂层所必须的800ALD周期所需的时间明显长于样品CVD#8和CVD#9所用的总100ALD周期和CVD涂覆。结果,本发明的混合ALD/CVD涂覆法应该是比800周期ALD法更成本有效的方法,保持磷光体的至少90%初始亮度并仍然提供高的防潮水平。此外,由于涂层较薄(较低的Al重量%),与传统CVD包封方法相比减少了TMA前体消耗。<table>tableseeoriginaldocumentpage12</column></row><table>表2<table>tableseeoriginaldocumentpage13</column></row><table>尽管已经显示和描述了在本发明的优选实施方案中目前考虑的内容,但本领域技术人员显而易见的是,可以在不背离由所附权利要求确定的本发明的范围的情况下对其作出各种变动和修改。权利要求1.电致发光磷光体,包含硫化锌基电致发光磷光体的独立颗粒,其中各个颗粒被包封在无机涂层中,该磷光体在并入在50℃、90%相对湿度环境中在100V和400Hz下工作的电致发光灯中时表现出至少90%的残留初始亮度和至少60%的100小时维持率。2.权利要求1的磷光体,其中100小时维持率为至少75%。3.权利要求l的磷光体,其中电致发光磷光体为ZnS:Cu。4.权利要求l的磷光体,其中无机涂层为羟基氧化铝。5.权利要求4的磷光体,其中100小时维持率为至少75%。6.权利要求4的磷光体,其中电致发光磷光体为ZnS:Cu。7.包封电致发光磷光体的方法,包括(a)形成电致发光磷光体颗粒的流化床;(b)将第一气相前体引入流化床;(c)吹扫流化床;(d)将第二气相前体引入流化床以便与第一前体反应并在磷光体颗粒上形成无机涂层;(e)吹扫流4t床;(f)重复步骤(a)至(e)直至达到所需涂层厚度;和(g)将第一和第二气相前体同时引入流化床以进一步提高涂层厚度。8.权利要求7的方法,其中第一或第二气相前体是气化的三甲基铝或水蒸汽且涂层是羟基氧化铝。9.权利要求8的方法,其中在重复步骤(a)至(e)大约100个周期后达到步骤(f)中的所需涂层厚度。10.权利要求7的方法,其中步骤(g)持续直到磷光体在并入在50°C、90%相对湿度环境中在100V和400Hz下工作的电致发光灯中时表现出至少60%的100小时维持率。11.权利要求9的方法,其中步骤(g)持续直到涂覆的磷光体的铝含量为大约1重量%至大约2.5重量%。12.权利要求8的方法,其中步骤(f)中的所需涂层厚度为大约IIOA。13.权利要求12的方法,其中步骤(g)持续直到涂覆的磷光体的铝含量为大约2.2重量%。14.包封电致发光磷光体的方法,包括(a)形成电致发光磷光体颗粒的流化床;(b)将气化的三甲基铝引入流化床;(c)吹扫流4匕床;(d)将水蒸汽引入流化床以便与三甲基铝反应并在磷光体颗粒上形成羟基氧化铝涂层;(e)吹扫流^ft床;(f)重复步骤(a)至(e)直至达到所需涂层厚度;和(g)将气化的三甲基铝和水蒸汽同时引入流化床以进一步提高涂层厚度。15.权利要求14的方法,其中气化的三甲基铝在步骤(d)中引入,且水蒸汽在步骤(b)中引入。16.权利要求14的方法,其中在涂覆的磷光体的铝含量为大约0.2重量%时达到步骤(f)中的所需涂层厚度。17.权利要求16的方法,其中步骤(g)持续直到涂覆的磷光体的铝含量为大约2.2重量%。18.涂覆的电致发光磷光体,包含硫化锌基电致发光磷光体的独立颗粒,其中各个颗粒被包封在羟基氧化铝涂层中,该磷光体表现出至少90%的残留初始亮度并具有与CVD涂覆的具有羟基氧化铝涂层的磷光体相当的防潮性,其中CVD涂覆的磷光体的铝含量为3.8重量%。19.权利要求18的涂覆的磷光体,其中涂覆的电致发光磷光体的铝含量为大约2.2重量%。全文摘要描述了电致发光(EL)磷光体,其中各个独立的磷光体颗粒包封在无机涂层,优选羟基氧化铝中。包封的磷光体表现出对大气湿度的极端不敏感性并且在灯中仅经受极小的初始亮度损失。施加涂层的方法是混合方法,其包括首先在流化床中使用原子层沉积(ALD)法使EL磷光体颗粒被薄无机薄膜涂覆,其中前体在重复的周期中相继引入,随后通过化学气相沉积(CVD)法施加另一涂层,其中前体同时引入。文档编号C09K11/02GK101360804SQ200780001477公开日2009年2月4日申请日期2007年1月15日优先权日2006年1月26日发明者C·范,D·本杰明,D·谢佩克,F·施瓦布,J·科维列斯基,T·党申请人:奥斯兰姆施尔凡尼亚公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1