使用高度反射的试剂的量子产率的提高的制作方法与工艺

文档序号:12662735阅读:257来源:国知局
使用高度反射的试剂的量子产率的提高的制作方法与工艺
使用高度反射的试剂的量子产率的提高相关申请本申请是2012年5月22日提交的临时申请No61/650,238的非临时版本并且要求其优先权,该临时申请的全部内容通过引用结合于此。发明领域本发明一般地涉及高度发光材料的组合物。本发明更具体地涉及具有增强的发光性能的纳米粒子组合物。背景在经常被称为量子点(QD)、纳米粒子或纳米晶体的处于具有2-50纳米(nm)的级别的尺寸的粒子的形式的化合物半导体的制备和表征方面,已经存在相当大的兴趣。兴趣的产生主要是由于这些材料的尺寸相关的电子性能,这些性能可以用于许多商业用途如光学和电子器件、生物标记、太阳能电池、催化、生物成像、发光二极管、一般空间照明、以及电致发光和光致发光显示器。特别相关的感兴趣的领域是在用于液晶显示器(LCD)的背光照明中使用基于QD的发射器。常规的背光单元由冷阴极荧光灯(CCFL)和漫射体片组成,以提供大面积的均匀白光。由于能量和尺寸限制,最近,RGB-LED已经代替了CCFL光源。进一步的发展是使用与含有常规磷光体如YAG的片材组合的蓝色LED激发源,在此处“磷光体层”或“磷光体片”位于漫射体层的顶部附近或其上并且远离光/激发源。当前在降频变换(downconverting)应用中使用的发磷光材料吸收UV或者主要吸收蓝光并将它变换成更长的波长,并且大部分磷光体目前使用三价稀土掺杂的氧化物或卤代磷酸盐。通过将在蓝光区、绿光区和红光区中发射的磷光体与发射蓝光或UV的固态器件的磷光体混合,获得白色发射,即蓝光发射LED加绿色磷光体如SrGa2S4:Eu2+和红色磷光体如SrSiEu2+,或者UV光发射LED加黄色磷光体如Sr2P2O7:Eu2+;Mu2+和蓝色-绿色磷光体。目前,白色LED通过将蓝色LED与黄色磷光体组合而制造,然而,当使用这种方法时,由于缺乏LED和磷光体的可调节性,颜色控制和显色性差。此外,由于缺乏可用的磷光体颜色,常规LED磷光体技术使用具有差的显色性(即显色性指数(CRI)<75)的降频变换材料。在使用作为在LED用途如LCD中的降频变换材料的QD的性能方面,已经存在相当大的兴趣。由于它们的可以用于许多商业用途的可尺寸调节的电子性能,这些材料是令人感兴趣的。两个基本因素是形成它们的独特性能的原因,这两个因素都涉及单个半导体纳米粒子的尺寸。第一个因素是大的表面与体积的比率;随着粒子变得更小,表面原子的数目与内部原子的数目的比率增加。这导致表面性能在材料的总体性能中起着重要的作用。影响包括半导体纳米粒子在内的许多材料的第二个因素是材料的电子性能随尺寸的改变;因为量子限制作用,随着粒子的尺寸减小带隙逐渐变大。这种作用是“箱中电子”的限制的结果,“箱中电子”产生离散能级,类似于在原子和分子中观察到的那些,而不是如在相应的大块半导体材料中观察到的连续带。因此,对于半导体纳米粒子来说,因为这些物理参数,通过具有比第一激子跃迁大的能量的电磁辐射即光子的吸收而产生的“电子和空穴”比在相应的粗晶材料中更靠近在一起;此外,不能忽略库仑相互作用。这导致依赖于纳米粒子材料的粒径和组成的窄带宽发射。因此,QD具有比相应的粗晶材料更高的动能,并且因此,第一激子跃迁(带隙)的能量随着粒径减小而增大。归因于在位于纳米粒子表面上可以导致非辐射电子-空穴复合的缺陷和悬挂键处发生的电子-空穴复合,由单一半导体材料连同外部有机钝化层一起组成的核半导体纳米粒子倾向于具有比较低的量子效率。消除QD的无机表面上的缺陷和悬挂键的一个方法是用均匀的第二半导体壳覆盖纳米粒子。这种半导体材料通常具有比核的带隙宽得多的带隙,以抑制载流子从核向壳的新形成的表面原子的隧穿。壳材料必须还具有与核材料的晶格失配小的晶格。晶格失配主要因为在核中和壳中的原子之间的键长的差异而出现。尽管核和壳材料之间的晶格失配的差异可能仅为百分之几,但其足以改变壳沉积的动力学和粒子形态二者以及得到的粒子的量子产率(QY)。QY单纯是由样品发射的光子的数量与被样品吸收的光子的数量的比率,即(#发射的光子)/(#吸收的光子),并且可以被认为是基于QD的材料的相对“亮度”的量度。对于确保壳在核粒子的表面上的外延生长以制备没有或具有最少的可能引入降低粒子的光致发光量子产率(PLQY)的非辐射复合途径的在界面处的缺陷的“核-壳”粒子,小的晶格失配是必需的。一个实例是生长在CdSe或InP核的表面上的ZnS壳。一些最常用的壳材料相对于CdSe的晶格失配,对于CdS来说是3.86%,对于ZnSe来说是6.98%,并且对于ZnS来说是11.2%。另一种方法是制备核-多壳结构,其中将“电子-空穴”对完全限制到由一种特定材料的几个单层组成的单一壳层,如QD-量子阱结构。在这里,核是宽带隙材料的,接着是一个较窄带隙材料的薄壳,并且用另一个宽带隙层封端,如按以下方式生长的CdS/HgS/CdS:在核纳米晶体的表面上使用Hg取代Cd,以沉积刚好数个HgS单层,之后在其上生长CdS的单层。所得到的结构展现出光激发的载流子在HgS层中的明显限制,这产生了高的PLQY和提高的光化学稳定性。为了进一步增加QD的稳定性并且有助于限制电子-空穴对,最常用的方法之一是在核周围生长厚且鲁棒的壳层。然而,因为核和壳材料之间的晶格失配,界面应变随着增加壳厚度而显著地积累,并且最终可以通过不匹配的位错的形成而释放,降低了QD的光学性能。可以通过在核上外延生长组成上呈梯度的合金层来避免这种问题,因为这能够有助于缓解在核-壳界面处的应变。例如,为了提高CdSe核的结构稳定性和量子产率,可以使用Cd1-xZnxSe1-ySy的梯度合金层代替直接在核上的ZnS的壳。因为壳组成和晶格参数的梯度变化,所得到的梯度多壳QD被非常充分地在电子学上钝化,具有在70-80%的范围内的PLQY值,并且与简单核-壳QD相比显示出提高的光化学和胶体稳定性。用原子杂质掺杂QD也是操控纳米粒子的发射和吸收性能的有效方式。已经开发了用锰和铜掺杂宽带隙材料如硒化锌和硫化锌(ZnSe:Mn或ZnS:Cu)的工序。在半导体纳米晶体中用不同的发光激活剂掺杂可以将光致发光和电致发光调节在甚至低于大块材料带隙的能量,而量子尺寸效应可以用QD的尺寸调节激发能量,而不具有在与激活剂相关的发射的能量方面的明显变化。掺杂剂包含主族元素或稀土元素,通常为过渡金属或稀土元素,如Mn+或Cu2+。任何核、核-壳或核-多壳、掺杂或梯度纳米粒子的表面上的原子周围的配位是不完全的,并且不完全配位的原子具有使它们成为高度反应性的并且可以导致粒子团聚的悬挂键。这种问题通过用保护有机基团将“裸露的”表面原子钝化(封端)而克服。如果QD是单分散的,在发光器件中使用QD与使用更常规的磷光体相比具有一些明显的优点,如调节发射波长的能力、强的吸收性质和低的散射。然而,由于QD的外部有机表面与在其中负载QD的主体材料的类型之间的化学不相容性,迄今所使用的方法是遭遇挑战的。当配制成为这些材料时,QD可能会遭遇团聚,并且一旦结合,作为氧经由主体材料向QD的表面迁移的结果,可能会遭遇光致氧化,这最终可能会导致量子产率的下降。尽管可以在实验室条件下做出合理的装置,在大规模的商业条件下将此重复仍存在明显的挑战性。例如,在混合阶段,QD需要对空气稳定。已经描述了结合有其中使用半导体QD代替常规磷光体的发光层的装置,然而,由于涉及含有QD的材料在层制造期间和之后的可加工性和稳定性的问题,已经成功结合至这样的层的仅有的QD材料类型是比较常规的II-VI或IV-VIQD材料,例如CdSe、CdS和PbSe。在常规QD中使用的镉和其他受限的重金属是高毒性元素并且在商业用途中表现出严重的担忧。含镉的QD的固有毒性妨碍了它们在涉及动物或人的任何用途中使用。例如,近期研究显示,除非受到保护,由镉硫属化物半导体材料制成的QD在生物环境中可能是细胞毒性的。具体地,通过多种途径的氧化或化学侵蚀可能会导致可以被释放至周围环境中的在QD表面上的镉离子的形成。尽管表面涂层如ZnS可以明显地降低毒性,它可能不会将其完全消除,因为QD可以长时间在细胞中停留或在身体中积累,在此期间,它们的涂层可能会经历将富镉核暴露的某类降解。毒性不仅影响生物用途的发展,而且还影响包括光电子和通讯在内的其他用途,因为重金属系材料在包括家用电器如IT&电信设备、照明设备、电气&电子工具、玩具、休闲&运动设备在内的许多商业产品中是广泛的。在世界的许多区域已经实施了在商业产品中限制或禁止某些重金属的法规。例如,从2006年7月1日起,被称为“在电子设备中限制使用有害物质”(或RoHS)的欧盟指令2002/95/EC禁止了新的含有大于协议水平的铅、镉、汞、六价铬以及多溴联苯(PBB)和多溴二苯醚(PBDE)阻燃剂的电气和电子设备的销售。这项法律要求制造商寻找备选材料并且开发新的制造工艺以制造常见的电子设备。此外,在2007年6月1日,关于化学品及其安全使用的欧共体法规开始生效(EC1907/2006)。该法规涉及化学物质的注册、评估、授权和限制,并且被称为“REACH”。REACH法规赋予企业更多的责任,以管控来自化学品的风险并且提供关于物质的安全性信息。预计类似的法规将会扩大到世界范围,包括中国、韩国、日本和美国。如上所述,QD、并且尤其是无镉QD倾向于对氧引起的氧化敏感,这导致它们的QY随时间降低。存在着对于增加无镉QD的稳定性和发光性能即QY以提高这些材料的发光用途的效率和寿命的需求。用于增加基于QD的照明系统的稳定性的方法包括将QD结合至阻氧(oxygen-repelling)材料,如聚合物。此类聚合物可以是许多形式的,例如,珠或片。此外,可以将QD结合至珠中,珠本身结合至其他形式中,如片或层。尽管需要此类保护措施以保护QD免于氧的影响,无镉QD倾向于对处理敏感,并且通常是这样的情况:将QD结合至阻氧材料所需的处理本身引起QD的QY降低。因此,对于实现基于无镉QD的商业产品来说,任何使最终基于QD的体系的QY最大化的因素都是潜在重要的。概述本公开涉及具有改善的发光性能,即具有改善的光发射的多组分材料。多组分材料包含悬浮或嵌入在基体材料中的磷光体材料如QD以及反射材料如硫酸钡。基体材料通常是聚合物材料。多组分材料可以是,例如,珠、片、和/或珠的片的形式。首先,在本文中所描述的多组分材料在用于LCD的背光照明中使用,但是它们也可以在其他用途,如环境照明的颜色调节中使用。多组分材料内的磷光体吸收来自一次光源(例如,发蓝光的或发UV的LED)的一次光。光激发的磷光体发射波长比所吸收的光的波长更长的光。换句话说,磷光体将吸收的光降频变换。在某些构造中,多组分材料吸收一部分一次光并且也透射一部分一次光。因此,从多组分材料发出的总的光是一次光(短波长)和发射光(较长波长)的混合物。使用作为一次光源的蓝色LED以及含有发绿光和发红光的磷光体的多组分材料产生了白光,即蓝色、绿色和红色的组合。附图简述为了更充分地理解本发明,包括特征和优点,现参照本发明的详细描述连同附图:图1说明了用于光发射光的装置。图2说明了用于发射光的装置的备选实施方案。图3说明了BaSO4对InP/ZnSQD的膜的量子产率的影响。图4说明了BaSO4对InP/ZnSQD的膜的量子产率的影响。图5说明了BaSO4对InP/ZnSQD的膜的量子产率的影响。图6说明了BaSO4对InP/ZnSQD的膜的外部量子效率的影响。图7说明了BaSO4对InP/ZnSQD的膜的量子产率和外部量子效率的影响。详细描述图1说明了发光器件的实施方案100,其使用磷光体材料101以使来自固态LED芯片102的一次光降频变换。换句话说,来自LED芯片102的光激发磷光体材料101发光。磷光体和固态LED芯片二者均包含在标准LED封装103内,其还可以含有LED密封剂材料104,其对本领域技术人员来说是已知的。图2说明了发光器件的备选实施方案200,其也包括磷光体材料201以使来自固态LED芯片202的一次光降频变换。在图2中说明的实施方案包括LED封装203,其也可以含有LED密封剂204。图2的实施方案与图1的实施方案不同在于:将磷光体材料201安置为远端层,例如在漫射体205上,而不是直接设置在LED芯片202上。用于在本文中所描述的多组分材料的特别适合的磷光体是QD,如共同拥有的美国专利号2009年9月15日公开的7,588,828、2010年9月28日公开的7,803,423、2011年7月26日公开的7,985,446、2011年1月11日公开的7,867,556、以及2011年1月11日公开的7,867,557中描述的那些。这些共同拥有的专利中的每一个的全部内容通过引用以他们的全部结合于此。可以用去除了滤光器的需要的激发QD的UV光源实现高发光效率,由此降低了光强度的损失。器件中可获得的颜色范围得到提高并且可以通过改变QD的尺寸或组成逐渐调节,例如,可以通过改变CdSe或InPQD的尺寸获得从蓝色至深红色的颜色范围以横跨整个可见光谱。可以将InAs和PbSeQD的尺寸调节为覆盖近红外区和中红外区中的大多数。QD显示器产生比其他类型显示器技术更好的颜色纯度,因为QD展现出非常窄的发射带宽并且可以产生纯的蓝色、绿色、和红色以生成所有其他颜色,得到了对于最终用户的改善的观察体验。通过调整它们的合成,可以将QD容易地分散至能够实现利用标准印刷或其他可溶液加工技术的快速和经济的器件制造的水性或有机介质中;这也提供了制造可印刷的和柔性装置的机会。QD可以含有选自周期表第11、12、13、14、15和/或16族的离子,和/或可以含有一种或多种类型的过渡金属离子或d区金属离子。QD可以含有选自由下列各项组成的组的一种或多种半导体材料:CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、InP、InAs、InSb、AIP、AIS、AIAs、AISb、GaN、GaP、GaAs、GaSb、PbS、PbSe、Si、Ge、MgS、MgSe、MgTe,以及它们的组合。/ZnS/ZnO。反射材料的实例是与基体材料和QD磷光体二者相容的颗粒材料。反射材料的实例包括硫酸钡、二氧化钛、聚四氟乙烯(PTFE)、硅酸铝和钇铝石榴石(YAG)。已经发现硫酸钡是特别适合的。硫酸钡是光反射材料并且在溶剂中不溶。此外,它是惰性的并且不与QD或其他磷光体反应。因此,当与高度浓缩的QD溶液混合在一起时,它起镜子的作用。在此类溶液中,硫酸钡粒子降低了从QD发射的光的重吸收,从而增加了从溶液中的光提取。该溶液因此具有比单独QD的溶液更高的有效的QY。在不受理论或任何活性的物理模式约束的情况下,还据信硫酸钡通过产生表面等离激元和从荧光材料发射的光之间的光耦合增加了光提取。基体材料的实例包括如共同拥有的美国专利号2009年6月9日公开的7,544,725、2010年3月9日公开的7,674,844、以及美国申请公开公开号2011年3月24日公开的2011/0068321、和2011年3月24日公开的2011/0068322中描述的聚合物基体,其内容通过引用结合在本文中。聚合物介质优选为光学透明介质,其包含选自由下列各项组成的组的材料:聚合物、树脂、独石、玻璃、溶胶凝胶、环氧树脂、硅树脂和(甲基)丙烯酸酯。聚合物介质可以包含选自由下列各项组成的组的材料:聚((甲基)丙烯酸甲酯)、聚(二甲基丙烯酸乙二醇酯)、聚乙酸乙烯酯)、聚(二乙烯基苯)、聚(硫醚)、二氧化硅、聚环氧化物,以及它们的组合。基体材料可以选自各种各样的聚合物,无论是有机的或无机的、玻璃、水溶性或有机溶剂可溶性、生物的或合成的。例如,可以使用以下简单直链聚合物:聚丙烯酸酯、聚碳酸酯、聚苯乙烯、聚乙烯、聚丙烯、聚酮、聚醚醚酮、聚酯、聚酰胺、聚酰亚胺、聚丙烯酰胺、聚烯烃、聚乙炔、聚异戊二烯、聚丁二烯、PVDF、PVC、EVA、PET、聚氨酯、纤维素聚合物(例如,乙基纤维素、邻苯二甲酸异丙基甲基纤维素、硝基纤维素)。其他的实例包括交联聚合物和/或共聚物、三嵌段共聚物和UV固化和热固化环氧树脂。适合的聚合物可以选自由下列各项组成的组:聚苯乙烯/甲苯基体、三羟甲基丙烷三甲基丙烯酸酯/甲基丙烯酸月桂酯基体、三羟甲基丙烷三甲基丙烯酸酯/甲基丙烯酸月桂酯/聚异丁烯基体、三羟甲基丙烷三甲基丙烯酸酯/甲基丙烯酸月桂酯/PIPS基体、丙烯酸异冰片酯/二丙烯酸二丙二醇酯基体、丙烯酸-聚苯乙烯/甲苯基体、和聚碳酸酯。可以使用粘土材料如膨润土、高岭土、蒸汽沉积(fumed)二氧化硅(例如Cab-O-SilTM)、蒸汽沉积氧化铝、蒸汽沉积氧化锌、无机聚合物单独作为主体基体介质或者作为向有机聚合物中的添加剂以便提高最终材料的性能。根据本公开的方法可以单独采用以上指定的聚合物和材料中的任何一种,或者与一种或多种其他适合的聚合物和材料组合。可以将在本文中所描述的QD/反射材料组合物配制为墨水。墨水是通过将透明的基础墨水与各种类型的荧光颜料混合制造的。尽管这些颜料可以提供所需的发光度,在许多情况下,由于它们使光散射的能力,它们可以使墨水变得不透明,这通常是不希望的副作用。当需要高负载量的颜料以实现所需的亮度时或者当使用该墨水作为通过套印(overprinting)产生二级和三级颜色组合的一级墨水时,不透明性成为一个问题。例如,套印在黄色透明墨水顶部上的透明蓝色墨水将会产生绿色墨水。相反,套印在另一种墨水顶部上的不透明蓝色墨水将会掩盖在下面的墨水,无论其颜色如何,并且最终的墨水将会因为其不透明性继续对观察者表现出蓝色。将QD和反射材料引入至固态基体如“珠材料”中是非常有利的。通过将所需量的QD-珠材料分散在所需量的适合的聚合物中,可以将QD-珠结合至聚合物基体或介质中以形成QD-珠墨水。将所得到的复合材料彻底混合,以提供可以根据针对所使用的特定聚合物的具体固化工序固化的均匀墨水,并且提供简单且直接的制造发光QD-珠墨水的方式。基于珠的墨水可以提供与游离的“裸露的”QD-墨水相比其他优点。通过将QD和反射材料结合至稳定的珠中,可以保护否则为反应性的QD免受周围化学环境的潜在破坏。此外,通过将许多QD置于单个珠中,随后的QD-珠对发光产品制造期间QD-墨水通常必须经历的机械和热处理比裸露的QD更稳定。含QD的珠与裸露的QD相比额外的优点包括对空气、水分和光致氧化的更高的稳定性,这可以开启在空气中处理QD-墨水的可能性并且去除需要惰性气氛的昂贵处理工艺的需要,因此明显地降低了制造成本。按照调整的封装规程,可以调节珠的尺寸并且其通常直径为50nm至0.5mm,提供了控制墨水粘度的方式。这是非常重要的,因为粘度指征墨水是如何流经网的,它是如何干燥的,以及它是多么充分地粘附至基板。如果可以通过珠的尺寸控制粘度,则可以消除加入大量的稀释剂以改变粘度的实践,使得过程更简单并且更廉价。因为封装过程的性质,不仅QD聚集得以防止,产生了均匀层,而且还不使QD表面破裂或明显改变,并且QD保持其初始电子性能,从而可以严格地控制QD-珠墨水的规格。QD-珠允许墨水中量子点的有效颜色混合,因为混合可以是在含QD的珠内,即每个珠含有许多不同尺寸/发射颜色的QD,或者是在特定珠内的所有QD具有相同尺寸/颜色的不同颜色的珠的混合物,即一些珠含有全部是蓝色的量子点,一些含有全部是绿色的量子点并且一些含有全部是红色的量子点。可以将疏水涂层的QD封装至由亲水性聚合物组成的珠中以赋予新的表面性能(例如水溶性)。这对制造具有许多正面性质并且尤其是环保的水系QD墨水是特别重要的。存在许多法规,它们已经将通常用作印刷墨水中的载体的有机溶剂确定为有害的。对与所有与来自这些墨水的通常性质上是有机物的并且高度可燃的溶剂(例如,甲苯、乙醇、异丙醇)混合的废物,有害废物法规限制了处理选择。来源于这些废物的降解的化学物质还是有毒的,并且在印刷工业中需要采用特殊的措施(例如,特殊的过滤器)以捕获这些化学物质并且避免它们的在环境中的释放。水系墨水提供了这些有机溶剂的有吸引力的备选方案,并且提供了消除污染和许多对印刷过程的法规限制这两者的手段。在特定的实验条件下,可以在墨水制备的某些阶段期间/之前选择性地改变或移除珠涂层,意味着可以将墨水解释为运送QD和反射材料的介质。因此,QD-珠代表QD的受控释放和运送的方式,这对例如在印刷过程的某些阶段期间保护QD并且将它们从不相容物质中分离或者增加在特定墨水溶剂中的QD的亲和性是重要。QD-珠墨水可以包含在聚苯乙烯/甲苯基体中的发绿光的QD-二氧化硅珠。首先形成聚苯乙烯/甲苯混合物,之后向其在加入适量的QD-珠,在这种情况下是InP/ZnS核/壳QD-珠。之后处理(例如加热、混合等)所得到的混合物,以确保QD-珠粒子在聚苯乙烯/甲苯混合物中的令人满意的分散,从而得到透明绿色QD-珠墨水。备选地,QD-珠墨水可以包含在LED丙烯酸酯基体中的法红光的丙烯酸酯珠。首先形成含有引发剂、Irgacure819、三羟甲基丙烷三甲基丙烯酸酯(TMPTM)和甲基丙烯酸月桂酯的混合物。之后将InP/ZnS核/壳QD-丙烯酸酯珠分散在丙烯酸酯混合物中以得到红色QD-珠墨水。QD-珠墨水可以包含在包含三羟甲基丙烷三甲基丙烯酸酯(TMPTM)和聚异丁烯(PIB)的柔性丙烯酸酯基体中的红光发射丙烯酸酯珠。在备选的实施方案中,可以用PIPS代替PIB。形成含有引发剂、Irgacure819、和TMPTM的混合物。还形成PIB和甲基丙烯酸月桂酯的单独的混合物。在该实施方案中使用的TMPTM的量比在第二优选实施方案中使用的量相对较小,以确保丙烯酸酯基体较少地交联并且因此比在第二优选实施方案中制备的丙烯酸酯基体更柔性。之后组合两种混合物以得到浅黄色墨水基体。之后将InP/ZnS核/壳QD-丙烯酸酯珠分散在浅黄色基体中以得到红色QD-珠墨水。可以用于构建含QD/反射材料的珠的聚合方法的实例包括,但不限于,悬浮、分散、乳液、活性、阴离子、阳离子、RAFT、ATRP、本体、闭环复分解(metathesis)和开环复分解。可以通过引起单体相互反应的任何适合的方法如使用自由基、光、超声波、阳离子、阴离子或热,引起聚合反应的引发。优选的方法是包括将要形成光学透明介质的一种或多种可聚合单体的热固化的悬浮聚合。所述可聚合单体可以优选包括(甲基)丙烯酸甲酯、二甲基丙烯酸乙二醇酯和/或乙酸乙烯酯。已经证实,这种单体的组合展现出与现有可商购的LED密封剂的优异的相容性,并且其已经用于制造与基本上使用现有技术方法制备的器件相比展现出明显改善的性能的发光器件。其他优选的可聚合单体是环氧树脂或聚环氧化物单体,其可以使用任何适合的机制(如用紫外线照射固化)聚合。可以通过下列方式制备含QD/反射材料的微珠:将已知的QD群和反射材料分散在聚合物基体内,将聚合物固化并且之后将所得到的固化材料磨碎。这特别适合于与固化后变得相对硬和脆的聚合物,如许多常见的环氧树脂或聚环氧化物聚合物(例如来自ElectronicMaterials,Inc.,USA的OptocastTM3553)一起使用。可以单纯通过将QD和反射材料加入至用于构建珠的试剂的混合物中来产生珠。在一些实例中,QD(初生QD)当从用于合成它们的反应中分离时使用,并且因此通常覆盖有惰性外部有机配体层。在备选的工序中,可以在珠形成反应之前进行配体交换过程。在这里,将一种或多种化学反应性配体(例如这可以是还含有可聚合部分的用于QD的配体)过量加入至被覆盖在惰性外部有机层中的初生QD的溶液。在适当的温育时间之后,将QD例如通过沉淀和随后的离心而分离,洗涤并且之后结合至在珠形成反应/过程中所使用的试剂的混合物中。两种QD/反射材料结合策略都将造成QD和反射材料统计上随机地结合至珠中,并且因此聚合反应将产生含有统计类似量的QD的珠。对本领域技术人员来说显而易见的是,可以通过用于构建珠的聚合反应的选择来控制珠的尺寸,并且另外,一旦已经选择了聚合方法,则还可以通过选择适合的反应条件来控制珠的尺寸,例如在悬浮聚合反应中,通过更迅速地搅拌反应混合物以产生较小的珠。此外,通过选择工序连同是否在模具中进行反应,可以容易地控制珠的形状。可以通过改变构建珠的单体混合物的组成来改变珠的组成。类似地,珠还可以与不同量的一种或多种交联剂(例如二乙烯基苯)交联。如果用高交联度例如大于5摩尔%的交联剂来构建珠,则适宜的是在用于构建珠的反应期间结合致孔剂(例如甲苯或环己烷)。以这种方式使用致孔剂在构成每个珠的基体内留下了永久孔隙。这些孔隙可以是足够大的,以允许QD进入珠中。还可以使用基于反相乳液的技术将QD和反射材料结合在珠中。可以将QD/反射材料与一种或多种对于光学透明涂层材料来说的前体混合,并且之后引入至含有例如有机溶剂和适合的盐的稳定反相乳液中。在搅拌后,前体形成包含QD的微珠,其之后可以使用任何适合的方法如离心来收集。如果需要,在将含QD的珠的分离之前,可以通过加入额外量的一种或多种必需的壳层前体材料,添加一个或多个额外的相同或不同光学透明材料的表面层或壳。就用于将QD和反射材料结合至珠中的第二选择而言,可以通过物理包埋将QD和反射材料固定在聚合物珠中。例如,可以将QD和反射材料在适合的溶剂(例如有机溶剂)中的溶液与聚合物珠的样品一起温育。使用任何适当的方法移除溶剂造成QD和反射材料变得固定在聚合物珠的基体内。QD和反射材料保持固定在珠中,除非将样品再悬浮在量子点可自由溶于其中的溶剂(例如有机溶剂)中。任选地,在这个阶段,可以将珠的外侧密封。另一个选择是将半导体纳米粒子的至少一部分物理附接至预制的聚合物珠。所述附接可以通过将该部分半导体纳米粒子固定在预制的聚合物珠的聚合物基体内,或者通过该部分半导体纳米粒子与预制的聚合物珠之间的化学、共价、离子或物理连接实现。预制的聚合物珠的实例包括聚苯乙烯、聚二乙烯基苯和聚硫醇。可以以与如上所述的用于在珠形成过程期间将QD和反射材料结合至珠中的方法相似的方式,形成预期结合QD和反射材料的光学透明介质即溶胶-凝胶和玻璃。例如,可以将单一类型的QD(例如一种颜色)和反射材料加入至用于制备溶胶-凝胶或玻璃的反应混合物。备选地,可以将两种以上类型的QD(例如两种以上颜色)和反射材料加入至用于制备溶胶-凝胶或玻璃的反应混合物。通过这些工序制备的溶胶-凝胶和玻璃可以具有任何形状、形态或3维结构。例如,粒子可以是球形的、盘状的、棒状的、卵形的、立方体的、长方形的或许多其他可能构造的任一种。通过在起提高稳定性的添加剂的作用的材料的存在下将QD和反射材料结合至珠中,并且任选地为珠提供保护性表面涂层,消除或至少降低了有害物种如水分、氧和/或自由基的迁移,结果是提高了半导体纳米粒子的物理、化学和/或光稳定性。可以在珠的制造过程的初始阶段将添加剂与“裸露的”半导体纳米粒子和前体结合。备选地,或者附加地,可以在已经将半导体纳米粒子包埋在珠内之后加入添加剂。可以在珠形成过程期间单独地或以任何所需组合加入的添加剂可以根据它们的预期功能分组如下:机械密封:蒸汽沉积二氧化硅(例如Cab-O-SilTM)、ZnO、TiO2、ZrO、硬脂酸镁、硬脂酸锌,全部用作填料以提供机械密封和/或减小孔隙率;封端剂:十四烷基膦酸(TDPA)、油酸、硬脂酸、多不饱和脂肪酸、山梨酸、甲基丙烯酸锌、硬脂酸镁、硬脂酸锌、肉豆蔻酸异丙酯。这些中的一些具有多个官能度并且可以起封端剂、自由基清除剂和/或还原剂的作用;还原剂:抗坏血酸棕榈酸酯、α-生育酚(维生素E)、辛硫醇、丁基化羟基苯甲醚(BHA)、丁基化羟基甲苯(BHT)、没食子酸酯(丙酯、月桂酯、辛酯等)、和焦亚硫酸盐(例如,钠盐或钾盐);自由基清除剂:二苯甲酮;以及氢化物反应性试剂:1,4-丁二醇、甲基丙烯酸2-羟乙酯、甲基丙烯酸烯丙酯、1,6庚二烯-4-醇、1,7辛二烯、和1,4丁二烯。实施例包括以下实施例,是为了使公开内容完整,并且用于说明制备本发明的组合物和复合材料的方法以及用于显示出组合物的某些特性。这些实施例绝不是意在限制本公开的范围或教导。实施例1:BaSO4在不具有增稠剂的甲苯或丙烯酸酯树脂中的影响。如在2009年9月15日公开的美国专利号7,588,828中描述的,制备量子点(InP/ZnS),其内容通过引用结合在本文中。使用Hamamatsu积分球测量在甲苯中的QD(0.5ml的6.6光密度(OpticalDensity)QD/ml)的量子产率,得到57%的QY。当将5mg的BaSO4加入至0.5ml的20ODQD/ml甲苯溶液并且搅拌时,通过借助Hamamatsu的涡流测量显示出63%的QY。因此,通过加入BaSO4将QD的QY提高了6%。这些测量的结果总结在以下表中。InP/ZnSQD(20OD)QY波长(nm)FWHM(nm)甲苯中的QD57%64282甲苯中的QD和BaSO4的混合物63%62977根据2009年9月15日公开的美国专利号7,588,828中描述的方法制备两批InP/ZnSQD。由在甲基丙烯酸月桂酯(LMA)/三羟甲基丙烷三甲基丙烯酸酯(TMPMA)中的每批QD的三个浓度(3.7、9.1和20OD)制备QD树脂。将聚(丁二烯)二丙烯酸酯助剂(SartomerSR307)和QD在甲苯中搅拌过夜。将甲苯移除并且将混合物与LMA和光引发剂(IrgacureIrg819)和TMPMA混合。在UV固化前后测量具有和不具有BaSO4(2%wt/wt)的每种树脂的QY。以下将结果制成表格。分别在图3和4中说明了第1批和第2批的QY测量。在图3和4二者中,线A对应于固化前树脂中的QD,线B对应于固化前树脂中的QD和BaSO4的混合物,线C对应于固化的树脂中的QD,并且线D对应于固化的树脂中的QD和BaSO4的混合物。BaSO4的加入提高了固化的和未固化的QD树脂二者的QY。实施例2:硫酸钡研究(浓度0-5%W/V)根据2009年9月15日公开的美国专利7,588,828中描述的方法制备InP/ZnSQD。用在甲基丙烯酸月桂酯(LMA)/三羟甲基丙烷三甲基丙烯酸酯(TMPMA)中的QD制备QD树脂(10、20、30和40OD)。将聚(丁二烯)二丙烯酸酯助剂(SartomerSR307)和QD在甲苯中搅拌过夜。将甲苯移除并且将混合物与LMA和光引发剂(IrgacureIrg819)和TMPMA混合。在UV固化之后测量结合0-5%w/vBaSO4的树脂的QY。以下将结果制成表格。[BaSO4](%w/v)00.512345QE(10OD/3mL)(%)54.154.154.754.755.355.856.8PL(nm)616614615613613612611FWHM(nm)61616059615960QE(20OD/3mL)(%)5251.251.653.253.353.755.5PL(nm)623622623621620618617FWHM(nm)62616160605959QE(30OD/3mL)(%)49.849.350.35151.851.953PL(nm)629628627625625624622FWHM(nm)63626159595858QE(40OD/3mL)(%)47.947.147.24848.649.851PL(nm)632630628625627624622FWHM(nm)63626262605960外部量子效率(EQE)随着丙烯酸酯树脂中硫酸钡的负载量而增加。硫酸钡的较高负载量提供了较高的EQE并且引起了光致发光(PL)波长的蓝移。观察到增加的蓝移,因为显然BaSO4降低了重吸收(重吸收引起红移),。BaSO4的较高的负载量还降低了发射峰的FWHM。对具有各种QD浓度的所有样品均观察到相同的硫酸钡的增强效果。这说明,样品中硫酸钡的存在减少了点聚集,限制了光散射,并且引导光更有效地向检测器移动。由于QD聚集,所以较高的QD浓度导致较低的EQE以及较高的PL和FWHM。对于具有5%负载量的硫酸钡的样品,发现了最大5-6%的EQE的增加。最好的结果(56.8%&55.5%)来自具有5%硫酸钡负载量的10OD/3ml&20OD/3mlQD浓度。在以上表中显示的所有数字是三次测量的平均值。图5说明了BaSO4浓度对各种QD树脂的影响。在图5中,线A对应于10OD/3ml的QD浓度,线B对应于20OD/3ml的QD浓度,线C对应于30OD/3ml的QD浓度,并且线D对应于40OD/3ml的QD浓度。使用Labsphere积分球测量具有0-5%的BaSO4负载量的QD/丙烯酸酯树脂的QY。结果在以下表中示出。EQE随着硫酸钡的负载量而增加。硫酸钡的较高负载量产生较高的EQE。参见图6,其中线A对应于10OD/3ml的QD浓度,线B对应于20OD/3ml的QD浓度,线C对应于30OD/3ml的QD浓度,并且线D对应于40OD/3ml的QD浓度。对具有各种QD浓度的所有样品均观察到硫酸钡的相同的提高效果。借助labsphere,对于具有5%负载量的硫酸钡的样品,发现了最大30-38%的EQE的增加。与Hamamatsu测量中的EQE的百分率增加相比,labsphere测量中更大的EQE的百分率增加暗示,比起表面反射,硫酸钡有效得多地发挥将引导光传播出内部系统的作用。在以上表中显示的所有数字是三次测量的平均值。实施例3:对10OD/3ML的硫酸钡研究(浓度0-20%W/V)以下表列出了如上所述制备的10OD/3ml的InP/ZnSQD的树脂Labshere测量。在表中显示的所有EQE数据是三次实验的平均值。以下表列出了如上所述制备的10OD/3ml的InP/ZnSQD的树脂Hamamatsu测量。在以上表中显示的所有EQE数据是三次实验的平均值。硫酸钡浓度(w/ml;BaSO4/树脂)QE(10OD/3ml)PL(nm)FWHM(nm)0%50%614612.5%52.4%612605%53.2%611607.5%53.9%6126010%54.7%6096015%55.3%6106020%56.0%61060图7说明了如通过Hamamatsu积分球(A)和Labsphere积分球(B)测量的BaSO4负载量对QD树脂的QE的影响。以下表中示出了在样品与激发光之间具有有机硅偶联的负载有BaSO4的20OD/3mlInP/ZnSQD的树脂的Labsphere测量。在QD膜下方加入有机硅树脂有助于波导来自LED(光源)的蓝色激发光。以这种方式,蓝光不通过具有不同折射率的空气相,并且不远离样品或在样品边缘周围散射或转向。以下表中示出了在样品与激发光之间不具有有机硅偶联的负载有BaSO4的20OD/3mlInP/ZnSQD的Labsphere测量。以下表中示出了负载有BaSO4的20OD/3mlInP/ZnSQD的Hamamatsu测量。在以上表中显示的所有QE、PL和FWHM数据是三次实验的平均值。实施例4:TiO2作为反射材料制备InP/ZnSQD并且将其与作为反射剂的氧化钛一起负载至如上所述的树脂中,同时氧化钛作为反射剂。以下表显示了作为TiO2负载量的函数的20OD膜的QY和EQE。TiO2(%)QY(%)EQE(%)05649.516040.826137.73592545821.655921.1实施例5:硅酸铝作为反射材料制备InP/ZnSQD并且将其与不同量的作为反射材料的硅酸铝一起负载至如上所述的树脂中。以下表示出了作为硅酸铝负载量的函数的20ODQD膜的QY和EQE。硅酸铝(%)QY(%)(Hamamatsu)EQE(%)(Labsphere)对照(无添加剂)51.946.30(除5%BaSO4外)54.542.7151.346.2249.641.1350.339.8449.728.8550.138.7747.231实施例6:PTFE作为反射材料以下表显示了如上所述制备的膜的QY和EQE测量,但是使用PTFE作为反射材料。PTFE(%,wt./v)QY(%)(Hamamatsu)EQE(%)(Labshpere)059.354.00.560.359.01.061.352.03.060.557.95.062.053.1就特别适合的实施方案而言,已经在本文描述了本发明。应理解的是,在不背离由以下权利要求限定的本发明的范围的情况下,可以存在修改和备选的实施方案。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1