车辆的电力控制装置的制作方法

文档序号:11631091阅读:216来源:国知局
车辆的电力控制装置的制造方法

本发明涉及一种发电控制技术,该技术用于安装在由电动机驱动行驶的车辆上的发电单元。



背景技术:

在通过使用从车载蓄电池(on-vehiclebattery,车载电池)供应的电力驱动电动机而进行行驶的电动车辆中,已经开发了搭载用作发电单元的里程扩增器的车辆。里程扩增器由例如发电机和专用于发电的小型发动机组成。所生成的电力被供应给电动机并用于对车载蓄电池充电,从而使得能够增加电动车辆的里程。

顺便提及,近来燃料电池的发展已取得了进步,并且已经提出了搭载燃料电池的车辆。进一步地,已经提出了使用燃料电池而不是发动机作为电动车辆的里程扩增器的车辆。

例如,专利文献1公开了在搭载燃料电池的车辆中,将燃料电池和蓄电池用作电源,向电动机供电,从而可驱动驱动轮行驶。进一步地,专利文献1公开了一种技术,用于控制燃料电池的输出,以在使用蓄电池的电力之后将蓄电池的充电率(soc)保持在目标充电率,目标充电率被设定为接近下限的值。

现有技术文献

专利文献

专利文献1:日本专利第5101583号



技术实现要素:

本发明要解决的问题

在上述专利文献1中公开的车辆中,从蓄电池向电动机提供电力,直到蓄电池充电率到达目标充电率,并且当蓄电池充电率降低到低于目标充电率的值时,基于蓄电池的当前充电率与其目标充电率之间的差来控制来自燃料电池的输出,使得用于电动机等的电力被提供并且目标充电率被保持。

但是,一般来说,当燃料电池的输出增加时,输出的效率降低。即使当使用用于驱动发动机的发电机而不是燃料电池,发动机的有效转速的范围是限制的。因此,像专利文献1那样,当到达目标充电率后基于充电率和目标充电率来设定发电单元的发电输出时,发电单元需要输出足够的电力用于车辆电力消耗,并且当车辆的电力消耗高时,诸如在高速行驶期间,有必要增加燃料电池的输出。这可能降低发电单元的效率。由于安装在车辆上的发电单元的燃料受到限制,所以发电单元的效率的降低导致车辆的里程的减小。

做出本发明以解决上述问题,本发明的目的是提供一种车辆的电力控制装置,其控制诸如燃料电池的发电单元,以高效输出电力,并增加车辆的里程。

解决问题的手段

为了实现上述目的,根据本发明的车辆的电力控制装置是以下一种车辆的电力控制装置,在该车辆中,用于驱动车辆行驶的电动机利用来自蓄电池(battery)和发电单元的电力供电,所述发电单元被配置为消耗燃料以生成电力,所述电力控制装置包括:剩余燃料量检测单元,被配置为检测所述发电单元的剩余燃料量;发电开始判定单元,被配置为执行所述发电单元的发电开始判定;和发电控制单元,被配置为控制所述发电单元的发电输出。所述发电控制单元在所述发电开始判定被执行之后以所述蓄电池的目标充电率随着所述剩余燃料量减少而降低的方式来设定目标充电率,并基于所述目标充电率来控制所述发电输出。

优选地,发电开始判定单元基于从蓄电池供应的电力来计算车辆速度等效值,并且当车辆速度等效值超过预定阈值时执行发电开始判定。

优选地,发电开始判定单元通过平滑化(smoothing)从蓄电池供应的电力来计算车辆速度等效值。

优选地,电力控制装置进一步包括充电率检测单元,充电率检测单元被配置为检测蓄电池的当前充电率,并且发电控制单元基于目标充电率和当前充电率之间的差来控制发电输出。

优选地,发电单元是燃料电池。

本发明的有益效果

按照根据本发明的用于车辆的电力控制装置,目标充电率随着发电单元的剩余燃料量减少而降低。因此,根据发电单元的致动以目标充电率逐渐减小的方式来设定目标充电率。因此,在执行发电开始判定之后,燃料的消耗和蓄电池的充电率的降低同时进行,使得能够确保发电所需的时间,并能够抑制发电输出。因此,由于能够在抑制的发电输出的情况下生成电力,因此可以提高发电单元的发电效率,并且可提高在有限的燃料供应的情况下能够生成的电力的量。因此,可增加车辆的里程。

附图说明

[图1]是根据本发明的实施例的电动车辆的驱动系统的示意性框图。

[图2]是示出根据本实施例的车辆的行驶期间的蓄电池充电率、剩余燃料量和发电输出的转变的实例的曲线图。

具体实施方式

以下,将参照附图描述本发明的实施例。

图1是示出根据本发明的实施例的车辆1的驱动系统的示意性框图。

根据本发明的实施例的包含电力控制装置2的车辆1是包括由电动机3经由差动齿轮4驱动行驶的左右行车轮5的电动车辆。

车辆1包含蓄电池6和燃料电池8,作为用于向电动机3提供电力以驱动车辆行驶的供电装置。

燃料电池8使用存储在被安装在车辆上的燃料箱9中的氢作为燃料生成电力。由燃料电池8生成的电力被提供给dc-dc转换器10的初级侧并被升压,使得能够从dc-dc转换器10的次级侧经由逆变器11向电动机3提供电力。进一步地,能够通过蓄电池6经由逆变器11向电动机3提供电力。

燃料电池8和蓄电池6经由dc-dc转换器10并联连接,将从燃料电池8输出的电力中的剩余电力提供到蓄电池6,并且蓄电池6被该电力充电。进一步地,当从发电单元7输出的电力作为驱动电动机3所需的电力不足时,从蓄电池6提供电力。

充电器12安装在车辆1上。充电器12是ac-dc转换器,能够将从外部电源经由插头13提供的ac电压转换成dc电压,向蓄电池6提供电力,并且以所提供的电力对蓄电池6充电。

燃料箱9包括剩余燃料量检测器20(剩余燃料量检测单元),检测剩余燃料量(氢剩余量)。蓄电池6包括蓄电池监测单元21(充电率检测单元),监测蓄电池6的充电率。

控制单元22(发电开始判定单元,发电控制单元)包括cpu(中央处理单元)、存储装置(rom,ram)和输入/输出接口。控制单元22从剩余燃料量检测器20接收燃料箱9的剩余燃料量,从蓄电池监测单元21接收蓄电池6的充电率,以及接收包括车辆1的加速器操作量和关于车载设备(诸如空调器)的致动信息的其他车辆操作信息,经由逆变器11执行电动机3的致动控制,和经由dc-dc转换器10执行燃料电池8的输出控制。

控制单元22执行发电开始判定,以判定在车辆行驶期间车辆1的高输出/高速行驶状态(发电开始判定单元)。控制单元22通过将电动机3的电力消耗和其他车载设备的电力消耗相加(即从蓄电池提供的电力)来逐次计算车辆电力消耗,并且使用滤波器等使车辆电力消耗平滑化,从而计算车辆速度变化等效值(vehiclespeedchangeequivalentvalue)。进一步地,当车辆速度变化等效值连续超过预先设定的预定阈值va达预定时段ta或更长时,判定车辆1处于高输出/高速行驶状态,并且开始发电(发电开始判定)。注意,可根据需要将预定阈值va和预定时段ta设置为可利用其来判定其中来自燃料电池8的输出的效率降低的高输出/高速行驶状态的值。进一步地,即使车辆电力消耗不连续超过阈值va达预定的时段ta或更长,当蓄电池6的充电率达到后述的到达目标充电率socb时,也在那时执行发电开始判定。

在执行发电开始判定之后,控制单元22每隔预定的计算周期(例如数毫秒)进一步计算并控制燃料电池单元8的发电输出pf(发电控制单元)。发电输出pf由下面的表达式(1)计算。

pf=α×(soct-soc)……(1)

在表达式(1)中,soc表示从蓄电池监测单元21输入的蓄电池6的当前充电率,soct表示目标充电率。通过表达式(1)以及以下表达式(2)每隔预定的计算周期执行计算。α表示输出增益。例如,输出增益α以当充电率soc高于目标充电率soct时,α变为0,并且当充电率soc低于目标充电率soct时,输出增益α根据目标充电率soct与充电率soc之间的差的增加而增加的方式来设定。

soct=socb+(soca-socb)×{(qf-qfb)/(qfa-qfb)}……(2)

在表达式(2)中,soca表示开始充电率,并且存储并使用在执行发电开始判定时获得的蓄电池6的充电率。socb表示到达目标充电率。到达目标充电率socb是至少当车辆1的行驶结束时所需的蓄电池6的充电率。例如,将socb设定为接近0的正值。qf表示从剩余燃料量检测器20输入的当前剩余燃料量。qfa表示开始剩余燃料量。作为开始剩余燃料量qfa,存储并使用在执行发电开始判定时获得的剩余燃料量。qfb表示到达目标剩余燃料量。到达目标剩余燃料量qfb是至少当车辆1的行驶结束时所需的燃料的剩余量。到达目标剩余燃料量qfb设定为例如接近0的正值。

图2是示出根据本实施例的车辆行驶期间的蓄电池充电率soc、剩余燃料量qf和发电输出pf的转变的实例的曲线图。

在图2中,从蓄电池6的充电率soc为100%且剩余燃料量为接近100%的值qfa的状态起直到车辆1行进开始并且车辆尽可能远地行驶,(a)表示蓄电池6的充电率soc的转变;(b)表示剩余燃料量qf的转变;和(c)表示燃料电池8的发电输出pf的转变。在图2中,实线表示使用上述表达式(1)和(2)设定发电输出pf的本实施例,虚线表示比较例的转变。图2(a)中的交替的长加两短虚线表示本实施例中设定的目标充电率soct的转变。

在图2所示的比较例中,电动机3仅使用从蓄电池6提供的电力进行驱动,直到蓄电池6的充电率soc达到到达目标充电率socb,并且基于当前充电率soc与到达目标充电率socb之间的差从燃料电池8提供电力,使得在充电率达到到达目标充电率socb之后保持到达目标充电率socb。

另一方面,在本实施例中,如上所述,即使蓄电池6的充电率soc未降低到到达目标充电率socb,当车辆1进入高输出/高速行驶状态并且车辆电力消耗连续超过阈值va达预定的时段ta或更长时间时,执行发电开始判定并且燃料电池8的发电开始。因此,在高输出/高速行驶状态中,与比较例相比发电开始较早。因此,由于发电开始较早,所以可抑制燃料电池8的输出,并且用蓄电池6的输出补充车辆电力消耗不足的量。

在发电开始之后,目标充电率soct以目标充电率soct随着剩余燃料量qf的减少而降低的方式来设定,并且目标充电率soct以剩余燃料量qf达到到达目标剩余燃料量qfb,目标充电率soct同时达到到达目标充电率socb的方式来设定。进一步地,基于目标充电率soct和当前充电率soc之间的差来计算发电输出pf。因此,精确地执行反馈控制,使得充电率soc与目标充电率soct匹配。

目标充电率soct随着剩余燃料量qf减少而逐渐降低,并且以剩余燃料量qf达到到达目标剩余燃料量qfb的同时达到到达目标充电率socb的方式来执行控制。因此,实际上,蓄电池6的充电率soc根据目标充电率soct大致上在剩余燃料量qf达到到达目标剩余燃料量qfb的同时,达到到达目标充电率socb。因此,车辆1从蓄电池6的充电率为100%并且剩余燃料量为开始剩余燃料量qfa的状态起直到达到充电率soca和剩余燃料量qfb的行驶距离对应于可实现最大行驶的里程。进一步地,在本实施例中,从燃料电池8输出电力,直到剩余燃料量qf达到到达目标剩余燃料量qfb,并且目标充电率soct随着剩余燃料量qf的减少而逐渐降低。因此,可确保从发电开始到行驶结束的发电所需的时间,并且可抑制燃料电池8的输出。

在比较例中,在发电开始后,蓄电池6的充电率soc已经达到到达目标充电率socb,这使得难以增加蓄电池6的输出。因此,当车辆电力消耗大大增加时,有必要根据车辆电力消耗的增加大大增加燃料电池8的输出。另一方面,在本实施例中,在从发电开始到行驶结束的期间,充电率soc超过到达目标充电率socb。因此,即使当车辆电力消耗暂时增加时,蓄电池6的输出也增加,使得能够抑制来自燃料电池8的输出的波动。

如上所述,在本实施例中,在高输出/高速行驶状态下,充电更早地开始,并且目标充电率soct根据剩余燃料量qf的减少而降低,直到剩余燃料量qf达到到达目标剩余燃料量qfb,从而使得能够确保发电所需的时间并且将燃料电池8的输出抑制到一定水平。燃料电池8的输出效率随着输出增加而逐渐降低。因此,通过抑制燃料电池8的输出,提高了燃料电池8的输出效率。进一步地,由于可以相对于车辆电力消耗的波动来抑制燃料电池8的输出的变动,在这方面也可以提高燃料电池8的输出效率。

因此,例如,在高输出/高速行驶状态持续的状态下,像车辆在高速公路上行驶时,能够使燃料电池8高效地发电,这使得能够抑制燃料消耗并增加车辆的里程。

注意,在低输出/低速行驶状态下,没有较早执行发电开始判定,并且在蓄电池6的充电率soc已经达到到达目标充电率socb之后,开始发电,像在比较例中那样。但是,由于电动机3的电力消耗在低输出/低速行驶状态下较小,因此不需要增加燃料电池8的输出。因此,燃料电池8的效率的降低可被抑制。

进一步地,在本实施例中,基于通过使车辆电力消耗平滑化而计算出的车辆速度等效值来执行发电开始判定。当车辆速度等效值超过阈值va达预定时段ta或更长时,判定车辆1处于高输出/高速行驶状态并且发电开始。另一方面,当判定例如车辆速度本身等于或高于阈值并且车辆处于高输出/高速行驶状态中时,即使输出是恒定的,车辆速度在上坡、下坡等中波动。因此,难以准确地确定车辆的高输出/高速行驶状态。在当车辆电力消耗等于或高于阈值时简单地确定车辆处于高输出/高速行驶状态的情况下,车辆电力消耗由于加速/减速而大幅波动,使得阈值附近的判定结果高度频繁切换。因此,难以以能够抑制频繁的判定结果的切换的方式设定阈值。在本实施例中,基于通过使车辆电力消耗平滑化而获得的车辆速度等效值来执行发电开始判定。因此,车辆速度较少受到上坡、下坡等的影响,并且能够抑制由加速/减速引起的输出波动的影响,从而使得能够稳定并且准确地判定车辆1的高输出/高速行驶状态。

虽然上面已经描述了本发明的实施例,但是本发明的模式不限于上述实施例。

例如,在本实施例中,燃料电池用作发电单元,可使用由发动机和发电机的组合组成的单元,而不是燃料电池。在这种情况下,车辆是可实现串联模式的混合动力车。此外,在这样的车辆中,控制驱动发电机和发动机,并且以与针对上述燃料电池的输出控制相同的方式来控制来自发电机的输出,从而使得能够高效地致动发动机并增加车辆的里程。

附图标记的说明

1车辆

3电动机

6蓄电池

8燃料电池(发电单元)

20剩余燃料量检测器(剩余燃料量检测单元)

21蓄电池监测单元(充电率检测单元)

22控制单元(发电开始判定单元,发电控制单元)

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1