具有两种不同的制动力分配方式的车辆制动系统的制作方法

文档序号:3955830阅读:386来源:国知局
专利名称:具有两种不同的制动力分配方式的车辆制动系统的制作方法
技术领域
本发明总的是涉及一种制动系统,更特别的是,涉及一种通过优化车辆的前轮和后轮的制动力分配来改进机动车辆的制动系统的制动性能的技术。
在制动车辆,使机动车的前轮和后轮开始在路面上同时锁定时,机动车的前轮和后轮上的制动力可用一条如图1中所示的向上凸起的曲线来表示,在图中,后轮的制动力沿垂直座标取值,而前轮的制动力则沿水平座标取值。这条曲线称之为“理想分配曲线”,它表示作用在前轮和后轮上的制动力的理想分配。为了改进制动系统的制动能力或制动性能,制动系统的技术条件最好确定成使前轮和后轮的制动力的实际分配曲线尽可能接近理想的分配曲线。制动系统的技术条件包括,举例来说,前轮和后轮的制动缸的直径,前、后盘式制动器的制动轮的有效半径,以及前后轮制动鼓的内径。
当理想的分配由上述曲线表示时,按制动系统的最基本布置而建立的前、后轮制动力的实际分配可用图1中所示的直线表示。最基本的布置中并没有安装一载荷感知式比例阀(LSP阀)。还要指出,后轮的制动力并不恒定,而是随作用在车辆上的载荷量相对于最小载荷的增加而加大,该最小载荷是车辆在最小载荷行驶时作用在车辆上的载荷。“最小载荷行驶”的意思是指车辆在行驶时车上只有司机(在客车的情况下,没有任何乘客;或者在工业车辆的情况下,没有任何货物、行李或载荷)。表示车辆在最小载行驶时的理想分配的理想分配曲线与车辆在满载行驶时的理想分配曲线不同,这也可以从图1中看出。“满载行驶”的意思是指在客车的情况下,车辆携带额定的乘客数(包括司机)的行驶,在工业车辆的情况下,携带额定的最大载荷的行驶。
此外,为了防止车辆失去对行驶方向的控制,制动系统通常都设计成在制动车辆时可避免在锁定住前轮之前锁住后轮。制动系统还要设计成在作用在后轮上的载荷为最小的最小载荷行驶时,防止后轮相对于前轮的提前锁定,而这种提前锁定将使后轮具有最大的锁定趋势。描述得更详细一些,就是制动系统通常要适宜在使后轮制动力增加的方向上使前、后轮制动力的实际分配曲线(亦即由上述最基本的制动布置的技术条件所确定的基本分配线)与理想分配曲线之间的偏差减为最小。
但是,实际上很难将制动系统设计成使前、后轮制动力的实际分配线与理想分配线足够接近。如图1所示,在车辆满载行驶时的实际分配线与理想分配曲线的偏差量要比最小载荷行驶时的大。该偏差发生在使后轮制动力减少的方向上,也就是说,力图使制动系统的设计能准确地符合理想分配曲线是有限制的,这是因为,实际的基本分配通常是用一条直线来表示的,同时,理想分配曲线是随着车辆载荷的改变而变化的。
虽然制动系统的基本布置有上述缺点,但是还知道有一种改进的布置,其中,在液压源与后轮制动缸之间装有一比例阀,以使实际分配线与理想分配曲线更接近。如图1所示,比例阀(负载感知式比例阀或LSP阀)的实际分配线是弯折的直线,它们比基本分配线更接近于理想分配曲线。如同在未经审查的日本实用新型申请的公报No.2—130870(1990年发行)中所公开的那样,比例阀是一种减压阀,它适用于在所产生的液体压力超过预定的临界值以后,按预定的比例降低由液压源产生的液体压力,并将降低的液体压力作为制动压力作用到后轮制动缸上。在所产生的液体压力达到临界值(在图1中,在比例阀的分配线的弯折点处用点表示)以前,比例阀并不作为减压阀起作用,且由压力源产生的液体压力就作用在后轮制动缸上。
在工业车辆,如卡车中,作用在后轮上的载荷以相当大的程度随货物量的变动而变动,当作用在后轮上的载荷较大时,如果上述的临界值是固定的,即,如果比例阀开始作为减压阀而起作用时产生的液体压力的值是固定的,则制动能力或制动性能就不够。考虑到这一缺点,用于这类工业车辆的制动系统就装有在现有技术中已经熟知的载荷载荷感知式比例阀。在这种载荷感知式比例阀(通常称为“LSP阀”或“LSPV”)中,与阀的分配线的弯折点相对应的临界值随着车辆的载重量的改变而改变。有两种类型的载荷感知式比例阀,也就是,连杆型与球型。连杆型的阀利用了这样一个事实或现象,即与车辆后轮相对应的悬挂件和非悬挂件的部分之间的相对位移量随着作用在后轮上的载荷的加大而加大。因此,连杆型的阀适用于以悬挂件和非悬挂件的相对位移量的形式检测车辆载荷。球型阀利用了这样一个事实或现象,即当作用在后轮上的载荷减少时,车身的后部要相对于前部升高。球形阀采用一个适合于在其倾角随车身的倾角改变的斜面上滚动的球,以便使球由于滚动的结果而座落在一个阀座上。在球型阀中,球在斜面上滚动的困难程度表明了车辆载荷的大小。
但是,载荷感知式比例阀的分配线与理想分配曲线之间的相近程度是有限的。这就是说,在使后轮制动力小于理想值的方向上,特别是如图1所明显地示出的那样,在车辆处于满载行驶时,它难于充分地解决不希望出现的载荷感知式比例阀的实际分配线与理想分配曲线有偏差的倾向,在图1中,有阴影线的区域是后轮的实际制动力与理想值有偏差的区域。因此,当车辆满载行驶时,作用在后轮上的实际制动力要大大小于理想值,或是不能增大到最佳值。因而采用载荷感知式比例阀仍然具有后轮的制动力不足的缺点,尽管它能防止后轮的锁定。
上述的难于在车辆满载行驶时将后轮制动力加大到理想值或最佳值的问题,在防抱死制动系统中也同样存在,该系统适合于以本技术领域中公知的防抱死方式控制车辆的制动压力。制动力的防抱死控制将在以后进行详细描述。
制动系统分为前、后制动力独立控制型,以及交叉型或X交叉型。在前—后制动力独立控制型中,一个包括右前轮和左前轮制动在内的压力作用子系统与一个包括右后轮和左后轮制动在内的压力作用子系统是相互独立的。在X交叉型中,一个包括左前轮制动和右后轮制动在内的压力作用子系统与一个包括右前轮制动和左后轮制动在内的压力作用子系统是互相独立的。
在前—后制动力独立控制型的防抱死制动系统中,前轮制动力与后轮制动力通常都在制动力的防抱死控制中彼此相互独立地调整。在此情况下,前—后制动力的实际分配不受由制动系统的技术条件所决定的基本分配线的限制,而是能以很大的自由度不同于基本分配线。因此,可以使实际分配线与理想分配曲线充分接近。所以,前—后制动力独立控制型的制动系统不会存在后轮制动力不能在车辆满载行驶时足够加大的上述问题。
在X交叉型的防抱死制动系统中,有几种布置可用于执行制动力的防抱死控制。这些布置的一个例子表示于图2中,图中,主制动缸的常开截止阀306装在与主制动缸300(液压源)和前轮制动缸302连接的前制动缸通道304上,而后制动缸通道308则在其一端与位于截止阀306和前轮制动缸302之间的前制动缸通道304的一部分相连。后制动缸通道的另一端与一后轮制动缸307相连。一其形式为减压阀312的常闭截止阀装在一油箱通道310上,该通道310的一端与后制动缸通道308相连,其另一端与油箱316相连,油箱接收通过截止阀312从车轮制动缸302、307排出的制动液。一泵318与油箱316相连,以使制动液回流至主制动油缸300。按照这种制动布置,前、后轮制动缸302、307中的制动力由主制动油缸300中产生的压力加大。
如图3所示,本申请的受让人提出了另一种X交叉型的制动布置。与图2所示的制动布置不同,图3的这个制动布置适用于通过泵318的运转来增加前、后轮制动缸中的制动力。也就是说,主制动缸截止阀306在制动力的防抱死控制过程中基本上保持关闭,而泵318则与位于截止阀306下游的前制动缸通道304的一部分相连,从而使来自泵318的受压液体不会返回主制动缸300,而是返回车轮制动缸302、307,这样,车辆制动缸中的制动力就在制动系统的防抱死控制过程由于泵318的运转而加大。
在X交叉型防抱死制动系统的两种布置的任何一种中,前、后轮制动缸302、307中的制动力不能彼此独立地调整,但是可以调整成使前轮制动缸302中的制动力等于后轮制动缸307中的制动力。因此,与前—后制动力独立控制型的制动系统不同,X交叉型的制动系统不能建立这样一条实际分配线,即在使后轮制动缸中的制动力在防抱死控制过程中增加的方向上偏移基本分配线的实际分配曲线。这样,同不能执行制动力的防抱死控制的普通制动系统一样,X交叉型制动系统也有着在车辆满载行驶时后轮制动力不足的问题。
X交叉型防抱死制动系统还可以采取图4和图5所示的其它布置。在图4的布置中,每个均有加压位置、保压位置和减压位置的两个三位阀分别装在前、后轮制动缸302、307上。在图5的布置中,每个前轮和后轮制动缸302、307都装有串连的两个截止阀322、324,以代替在图4的布置中所用的三位阀320。虽然图4和图5的这些布置可以控制前、后轮制动力的实际分配,且不受基本分配线的限制,但是这些布置也有另一个问题,即结构不免要复杂,导致制造成本增加。
因此,本发明的主要目的在于提供一种用于机动车辆的制动系统,其制动性能得到了改进,优于现有技术的制动系统,特别是,由于有选择地采用了体现前、后轮制动力的两种分配方式,从而使由其中一种方式所限定的后轮制动力比由另一种方式限定的大,由此改善了它在车辆满载行驶时增加后轮制动力的能力,这样使实际分配线尽可能地与理想分配曲线接近。
本发明的第一个可供选择的目的是提供一种制动系统,其中,用一种结构简单的装置建立两种不同的分配方式。
本发明的第二个可供选择的目的是提供一种制动系统,它有选择地采用两种不同的和各自对应于车辆载荷较小值和较大值的理想分配曲线相对应的分配方式,从而使前、后轮的制动力有最佳的分配。
本发明的第三个目的是提供一种交叉型或X交叉型防抱死制动系统,它具有两个压力作用子系统,每个子系统基本上都设计成能同时实现对前、后轮制动力的控制,此制动系统可在车辆满载行驶时改进制动力的防抱死控制,特别是,能使后轮制动力大于前轮制动力,同时又避免使压力控制阀装置的结构复杂化。
本发明的第四个可供选择的目的是提供一种交叉型或X交叉型防抱死制动系统,它具有两个压力作用子系统,每个子系统都具有一个按防抱死压力控制模式操作,以增加前、后轮制动力的液体再循环泵;和一个用于只能使前轮制动力增加,以保证前、后轮制动力最佳分配的中间阀。
本发明的第五个可供选择的目的是提供一种X交叉型防抱死制动系统,其中,只能加大前轮的制动力,并且采用了一个结构简单的单向阀装置。
本发明的第六个可供选择的目的是提供一种X交叉型防抱死制动系统,其中,只能加大前轮的制动力,并且有一种负载循环控制模式,其中的中间阀能交替地关闭与打开,从而以加大的控制自由度控制前、后轮的制动力。
本发明的第七个可供选择的目的是提供一种防抱死制动系统,其中,中间阀的负载循环可以改变,由此进一步改进制动力的控制自由度。
本发明物的第八个可供选择的目的是提供一种防抱死制动系统,其中,中间阀的负载循环可以根据防抱死压力控制操作中的减压趋向予以最优地控制。
上述的主要目的可以根据本发明的原理达到,本发明提供了一种在图6中示意地示出的制动系统,它通过操作车辆的用于相应的前、后轮的前制动器202和后制动器204来制动机动车辆,制动系统包括一分配控制装置210,它适合于控制分别由前、后制动器202、204产生并作用于前、后轮上的前、后轮制动力的分配。分配控制装置210按照从第一种分配方式和第二种分配方式中选出的一种分配方式控制分配。第一种和第二种分配方式中的每一种都代表前、后轮制动力彼此相对,这样至少在前、后轮制动力小于各自的预定值时,由第二种分配方式所限定的后轮制动力比由第一种分配方式所限定的大。也就是说,第一和第二种分配方式要如下安排,即至少在车辆以较小的作用在前、后轮上的制动力制动时,按照第二种分配方式的后轮制动力比按照第一种分配方式的要小。
本制动系统当然可能采用摩擦制动器作为前、后轮的制动器,但是也可以采用其它类型的制动器,如电磁制动器、变阻式制动器、电再生式制动器和气制动器。
在本制动系统中所用的分配控制装置210可以有各种形式。例如,在装有液压操纵的摩擦制动器的制动系统中,可以通过调整作用在摩擦制动器上的液压制动压力(制动液的压力),或通过控制接受液压制动压力,从而将摩擦构件推向与车轮一起旋转的转子的活塞的受压区来予以控制。在后一种情况下,可以适当地选择能有效地对各个转子进行操作的活塞的数量。
在适用于调整液压制动压力的分配控制装置的一种形中,前轮制动力和后轮制动力都按照第一种分配方式控制,以具有同样的水平,而前轮制动力则根据第二种分配方式相对于后轮制动力减少。前轮制动力相对于后轮制动力的减少比例可以恒定。前轮制动力的减少量在前轮制动力变化的整个范围内以及在车辆的所有行驶条件下都可以是相同的。反过来,前轮制动力的减少量也可以根据车辆的行驶条件而变化。例如,前轮制动力的减少量可以随车辆所行驶的路面的摩擦系数的增加而加大。
前、后制动力的“预定值”可以选择成一个基本上与比例阀的额定值相对应的值,超过这个值,后制动力就在车辆按最小载荷行驶时,相对于前制动力减少。“预定值”可以小于上述的值。反过来,“预定值”也可以选择成一个基本上与比例阀在车辆满载行驶时的额定值相对应的值。“预定值”可以是与处于比例阀在车辆按最小载荷行驶时以及按满载行驶时的额定值之间的中间值相对应的值。
如上所述,如果分配控制装置按第一种和第二种分配方式运行,则本发明的原理就可以得到满足,第一和第二种分配方式要如下安排,即只要前、后轮的制动力都小于各自的预定值,由第二种分配方式所限定的后轮制动力就比由第一种分配方式所限定的大。也就是说,本发明的原理要求第一和第二种分配方式要如下安排,即当车辆用较小的作用在前、后轮上的制动力制动时,按照第二种分配方式的后轮制动力小于按照第一种分配方式的制动力。但是,第一和第二种分配方式也可以如下安排,即在前、后制动力的整个范围内,由第二种分配方式限定的后轮制动力大于由第一种分配方式限定的制动力。也就是说,第一和第二种分配方式可以安排成这样,即不管作用在前、后轮上的制动力的水平如何,按照第二种分配方式的后轮制动力小于按照第一种分配方式的制动力。
本制动系统不仅可用于四轮机动车,也可以用于二轮机动车辆,同时同样可用于客车和卡车这样的工业车辆。
如图1所示,在采用载荷感知式比例阀的传统制动系统中,比例阀的分配线在使后轮制动力小于理想值或最佳值的方向上,特别是当按满载条件行驶的车辆用较小的作用在前、后轮上的制动力制动时,明显地偏离理想的分配曲线。在制动器踏板工作的初始阶段,或是在具有低摩擦系数的路面上制动的过程中,作用在前、后轮上的制动力比较小。因此,即使不存在锁定后轮的危险,传统的制动系统也无法将后轮制动力加大到足够高的水平。产生这种缺点是由于,只要制动力比较小,则在传统系统中所用的比例阀的分配线对车辆的最小载荷行驶和满载行驶而言都是一样的。在这方面,可以注意到,图1中所示的最小载荷行驶及满载行驶时比例阀的分配线在它们靠近图1中所示座标系统的原点的部分是彼此重合的。此外,传统的制动系统适用于防止在锁定前轮之前锁住后轮。
为了解决上述缺点,本制动系统装有按照可选择地采用的两种分配方式运行的分配控制装置,这两种分配方式要如下安排,即至少在前、后轮的制动力较小,亦即小于各自的预定值时,使按照第二种分配方式的后轮制动力大于按照第一种分配方式的制动力。
例如,第一和第二种分配方式可以这样确定,使第一种分配方式与车辆以最小载荷行驶时的理想分配曲线接近或相似,而第二种分配方式则与车辆满载行驶时的理想分配曲线接近或相似。如前所述,车辆的最小载荷行驶与满载行驶是车辆按作用在其上的载荷而言的两种极端行驶的情况,由于车辆通常是在处于这两种极端载荷情况之间的负载情况下制动的,因此在安排前、后轮制动力的第一和第二种分配方式的上述情况下,就要考虑这两种行驶情况。
总之,在本发明中,按照两种不同的分配方式运行的分配控制装置能至少在作用于前、后轮上的制动力较小时,充分加大后轮制动力而不致将后轮锁定。因此,本发明的制动系统能够减少车辆所需的制动距离,同时又避免后轮的过早锁定。
上述的第一个可供选择的目的可以按照本发明的第一个优选形式来实现,其特点为,制动系统还包括一用于使工作液体加压的液压源200,并且如图7所示,前、后制动器202、204分别包括前、后轮制动缸206、208。前、后轮制动缸206、208都供以由液压源加压的工作液体。分配控制装置包括(a)一装在前轮制动缸206和液压源200之间的单向阀214,以及(b)用于有选择地使单向阀214失效的选择性失效装置216。单向阀216在由液压源产生的压力比前轮制动缸中的压力大,超过预定的差值时,使液体沿第一方向从液压源流向前轮制动缸,这样,欲通过单向阀作用在前轮制动缸上的流体压力就相对于由上述压力源产生的压力而降低。单向阀214阻止液体沿与第一方向相反的第二方向流动。选择性失效装置216在需要时使单向阀失效,从而防止单向阀起着降低作用在前轮制动缸上的压力的作用。
选择性失效装置216可以包括,举例来说,(a)一个与单向阀214平行相连并在单向阀的旁路设置的旁通管道,和(b)一个装在旁通管道上的截止阀。这个截止阀在按照第一种分配方式控制前、后轮的制动力分配时开启,以使单向阀基本上失效,从而阻止它的减压功能,而在按照第二种分配方式控制分配时该阀关闭,使单向阀能执行它的减压功能。截止阀可以是一种由施加电流来激励的电磁线圈控制的截止阀,或是一种通过施加外部先导力来操作的先导控制截止阀,这种外部先导力可以是由能随车辆载荷的改变而产生位移的适当的位移构件所产生的力。位移构件可以是用于制动系统中以感觉车辆载荷的连杆型载荷感知式比例阀的载荷感知构件。
单向阀214可以包括一阀座、一开关件和一呈弹簧形式的偏压装置,偏压装置偏压开关件,由此使开关件安置在阀座上。在此情况下,选择性失效装置216可以包括(a)一用于使开关件抵抗弹簧的偏压力移离阀座的气门开启件,和(b)一控制装置,它用于在分配控制装置应按照第一种分配方式控制前、后轮制动力的分配时,操作气门开启件到某个工作位置,以使开关件移离阀座;并用于在分配控制装置应按照第二种分配方式控制分配时,操作气门开启件到一非工作位置,以使开关件靠弹簧的偏压力安置在阀底上。
液压源200可以主要地由一主制动缸组成,它机械地产生一与作用在制动器操作件上的操作力成比例的液压力。另一种方案是,液压原200也可以是一个由电力操作的压力源,它电力地产生一与制动器操作件的操作力或操作量成比例的液压力。用电力操作的压力源可以主要地由一个泵和一个调节泵的输出压力的由电磁线圈操纵压力的电磁阀组成。另一种方案是,用电力操作的压力源也可以采用一个电动机,其旋转运动由一个滚珠丝杠转换成用于产生液压力的活塞的直线运动。在此情况下,装有一控制器,以控制电动机,使之能调节由活塞的线性运动产生的液压力。
在本发明的上述第一种优选形式中,分配控制装置包括单向阀与选择性失效装置,作用在前轮制动缸上的工作液体的压力可相对于由压力源产生的压力降低一个与单向阀的预定值相对应的量,而由压力源产生的压力则作用在后轮制动缸上,除非选择性失效装置使单向阀失效,以阻止它的减压功能。因此,前、后轮制动力的分配按照第二分配曲线受到控制。也就是说,前轮的制动力要控制得低于后轮的制动力,其量相当于单向阀打开,使液体能通过它流向前轮制动缸时的预定值。因此,第二种分配方式要由分配控制装置来建立,以便只要失效装置处于它的非工作位置,就控制后轮的制动力,使其大于前轮的制动力。
在按照本发明的上述第一种优选形式的制动系统中,分配控制装置采用了如上所述的单向阀,它可以使结构简单,并能用较低的费用获得。
上面指出的第二个可供选择的目的可以按照本发明的第二种优选形式实现,其特点为,当作用在车辆上的载荷小于预定的载荷值时,分配控制装置按照第一种分配方式控制前、后轮的制动力分配,而当载荷不小于预定的载荷值时,按照第二种分配方式控制制动力的分配。
本发明的上述第二种优选形式直接利用了这样一个事实,即前、后轮制动力的理想分配随目前作用在车辆上的载荷而变化。分配控制装置在车辆载荷较小时采用第一种分配方式,而在车辆载荷较大时采用第二种分配方式,以便在车辆载荷较大时使后轮制动力要大于车辆载荷较小时的情况。
在本发明的上述第二种优选形式中,前、后轮制动力的实际分配可以总是相对于车辆载荷来加以适当控制的,同时所需的车辆制动距离即使在车辆载荷较大时也可以减少。前、后轮制动力在车辆的最小载荷行驶和满载行驶时的实际分配示于图10中,图中的BF和BR分别代表前轮与后轮的制动力。
在本发明的第二种优选形式中,第一种分配方式的安排能比第二种分配方式更有效地避免后轮的提前锁定。当车辆载荷较小时,作用在后轮上的载荷也较小,因此可能有锁定的趋势。但是,在这种小载荷的情况下,分配控制装置按照第一种分配方式控制前、后轮制动力的分配,从而有效地避免后轮的提前锁定,同时有效地防止由于后轮拐弯力的减少而引起的不希望出现的车辆转向或方向稳定性的降低,而这种后轮拐弯力的减少是由后轮的锁定引起的。另一方面,第二种分配方式要安排成能比第一种分配方式更有效地减少所需的车辆制动距离。由于第二种分配方式是在车辆载荷较大时使用的,因此后轮可以有效地利用路面的摩擦系数,以减少所需的制动距离。
在防抱死制动系统中,制动力是按防抱死方式调节的,以便即使在无防抱死控制的条件下正常建立起来的前、后轮制动力的非防抱死控制分配方式和与实际车辆载荷相对应的理想分配方式没有偏差时,也能防止锁定车轮。因此,不管车辆是在最小载荷时行驶还是在满载时行驶,即使按照非防抱死控制分配方式的后轮制动力较大,实际的分配方式也能和与实际的车辆载荷相对应的理想分配方式精确地一致。
根据上述发现,按照本发明的原理的制动系统可以适用于执行按照本发明的第三种优选形式的制动力的防抱死控制,该第三种优选形式适用于达到上述的第三个可供选择的目的。在本发明的这个第三种优选形式中,制动系统是一种如图8中的液压回路图所示的用于四轮机动车辆的交叉型或X交叉型防抱死制动系统。本制动系统有两个压力作用子系统,它们与相应的主制动缸224的两个互相独立的加压室相连,两个压力作用子系统的每一个都包括(a)一将主制动缸的两个加压室中相对应的一个与前制动器的前轮制动缸206连接起来的前制动缸通道226,(b)一将前制动缸通道226与后制动器的后轮制动缸208连接起来的后制动缸通道228,(c)一做成常开截止阀形式的主制动缸截止阀230,它装在位于主制动缸224和前、后制动缸通道226、228的连接点之间的前制动缸通道226的一部分上,(d)一以其两相对端中的一个接在后制动缸通道228上的油箱通道234,(e)一接在油箱通道的另一端上的油箱232,(f)一装在油箱通道234上的其形式为常闭截止阀的减压阀236,(g)一以其两相对端中的一个接在油箱232上,而另一端接在前、后制动缸通道226、228中的至少一个上的油泵通道238,(h)装在油泵通道238上,用于将工作油从油箱输向每个压力作用子系统的一部分的油泵240,以及(i)一可按防抱死压力控制模式运行,以控制主制动缸截止阀230、减压阀236和油泵,执行用于按防抱死方式控制前、后轮制动缸206、208中的液体压力的防抱死压力控制操作,其中的分配控制装置包括控制器241以及装在每个压力作用子系统的一部分上的减压控制装置242,而子系统的该部分并不是在主制动缸和前、后制动缸通道接头之间的那部分。减压控制装置适用于将由其形式为主制动缸224的第一液压源产生的压力作用在前轮制动缸206上,以由此在控制器241没有处于防抱死压力控制模式的建立第一种分配方式。控制器241和减压控制装置242共同合作,建立起第二种分配方式,以使由包括至少一个主制动缸224和油泵240的第二液压源产生的压力能被减压控制装置242降低,然后在控制器241处于防抱死压力控制模式时作用在前轮制动缸208上。
如上所述构成的防抱死制动系统最好能装有一比例阀,以适用于在由液压源(主制动缸或油泵)产生的压力比前轮制动缸205的大一个超过预定差的值时,使后轮制动缸208中的压力相对于前轮制动缸205中的压力降低,而这个预定差既可以是固定的,也可以是变化的。在这个例子中,比例阀可以装在后制动缸通道228的一部分上,该部分位于后轮制动缸208与后制动缸通道228和泵通道238的连接点这间。在这种情况下,使比例阀在泵240运行中失效的装置加大了后轮制动缸的压力。这种失效装置防止比例阀动作,以免在需要由泵240的操作增加后轮制动缸的压力时,降低后轮制动缸的压力。
在图8所示的防抱死制动系统中,在前、后轮制动缸206、208受到防抱死压力控制时,泵240在原理上起着液压源的功能。不过,在需要使泵240工作,以在油箱232中没有储存工作液体或制动液时增加前、后轮制动缸的压力时,主制动缸224可以用作液压源。在这种特殊的情况下,打开主制动缸截止阀230,使由主制动缸224加压的液体能供给前、后轮制动缸206、208,由此增加这些制动缸中的压力。因此,在本发明的第三种优选形式中,在前、后轮制动缸206、208的防抱死压力控制过程中,用主制动油缸224和泵240中的至少一个作液压源。
虽然图8所示的制动系统适用于使泵通道238的排放或输出端与位于主制动缸截止阀230下游的后制动缸通道228相连,但是泵通道230的输出端也可以与在例如主制动缸截止阀230的上游或下游的前制动缸通道226的一部分相连。
当减压控制装置242放置在图8所示制动系统中的后制动缸通道228中时,减压控制装置242可以装在前制动缸通道226上。
在图8的制动系统中,装有一旁通道,以绕过主制动缸截止阀230,在这个旁通道上装有一单向阀250,从而防止来自主制动缸224的液体流向前、后轮制动缸206、208。单向阀250允许液体沿相反的方向流动,阀的开口压力差基本上为零。这个单向阀250的功能不仅是在释放制动器操作构件时,用作使液体能迅速流回主制动缸224的阀,而且也可用作一放泄阀,该阀在泵240工作,以增加前轮制动缸的压力时,用于防止前轮制动缸206中的压力过份升高,超过主制动缸200的压力值。参考标号252也代表一用于后轮制动缸208的单向阀。单向阀252的功能与用作前轮制动缸206的单向阀250的相同。
在具有按照本发明第三种优选形式的两个压力作用子系统的交叉型或X交叉型防抱死制动系统中,每个压力作用子系统基本上设计成能执行前、后轮制动力的同步控制。在系统正常工作,没有防抱死压力控制时,由压力源产生的压力作用在前轮制动缸上,而前、后轮制动力则按照第一种分配方式予以控制。在防抱死住压力控制时,由压力源产生的压力在它作用到前轮制动缸上以前就由减压控制装置降低了。因此,控制器和减压控制装置共同合作,建立了第二种分配方式,以使前轮制动缸中的压力高于后轮制动缸中的压力。
参考图11,按照本发明的上述第三种优选形式的防抱死制动系统具有如下所说的优点。
当本防抱死制动系统处于正常压力控制模式时,不管车辆是按最小载荷行驶还是按满载行驶,前、后轮制动力的分配都按照第一种分配方式控制。因此,如图11(a)的右侧所指出的那样,满载行驶时的实际分配方式或曲线偏离了理解分配曲线,以致使后轮制动力BR小于最佳值或理想值。
当制动系统处于防抱死压力控制模式时,作为防抱死压力控制的结果而建立起来的实际分配曲线在按最小载荷行驶时与理想分配曲线足够接近或相似,即使非防抱死控制分配曲线与理想分配曲线有偏差,这样后轮制动力BR大于理想值时也是如此。另一方面,在按满载行驶时,非防抱死控制分配曲线与(满载行驶时的)理想分配曲线足够接近或相似,也就是说,与理想分配曲线没有偏差,以使后轮制动力BR大于理想值。因此,实际分配曲线与非防抱死控制分配曲线足够接近或相似。这样,由于防抱死压力控制在按最小载荷行驶时的工作,并由于非防抱死控制分配在满载行驶时的使用,不管车辆是按最小载荷行驶还是按满载行驶,实际分配曲线都如图11(b)所示的那样基本上与满载行驶时的理想分配曲线一致。
在本发明的该第三优选形式中,不管车辆是按最小载荷行驶还是按满载行驶,第一种分配方式是在正常的压力控制模式下,在按防抱死压力控制模式的最小载荷行驶中建立的,而第二种分配方式则是在按防抱死压力控制模式的满载行驶中建立的。
本发明的第三种优选形式可以恰当地与上述的第二种优选形式组合。在这个例子中,第一种分配方式是在同时按正常压力控制模式和防抱死压力控制模式的最小载荷行驶过程中建立的,而第二种分配方式则是同时按正常压力控制模式和防抱死压力控制模式的满载行驶过程中建立的。
从上面的描述中可以理解,按照本发明的第三种优选形式的防抱死制动系统保证了前、后轮制动力的实际分配方式,使之尽可能地接近在防抱死压力控制模式下的理想分配曲线或模式,这样,汽车在防抱死压力控制模式下所需的制动距离可以大大地减少。
上述的第四个可供选择的目的可以按照本发明的第四种优选形式来达到,其特点为,制动系统是如图9所示的用于四轮机动车辆的交叉型或X交叉型防抱死制动系统。每个压力作用子系统有两个压力作用子系统,它们与主制动缸224的两个相应的互相独立的加压室相连,这两个压力作用子系统中的每一个均包括(a)一将主制动缸224的两个加压室中的相对应的一个与前制动器的前轮制动缸206连接起来的前制动缸通道226,(b)一将前制动缸通道226与后制动器的后轮制动缸208连接起来的后制动缸通道228,(c)一做成常开截止阀形式的主制动缸截止阀230,它装在位于主制动缸224和前、后制动缸通道226、228的连接点之间的前制动缸通道226的一部分上,主制动缸截止阀230在制动系统处于防抱死压力控制模式时关闭,在制动系统不处于防抱死压力控制模式时打开,(d)一装在后制动缸通道228上的做成常开截止阀形式的中间阀254,(e)一油箱通道234,它以其两相对端中的一个接在位于中间阀254与后轮制动缸228之间的后制动缸通道228的一部分上,(f)一接在油箱通道234上的油箱232,(g)一装在油箱通道234上、其形式为常闭截止阀的减压阀236,(h)一泵通道238,它以其两相对端中的一个接在油箱232上,而另一端接在位于中间阀254和前、后制动缸通道226、228的连接点之间的后制动缸通道228的一部分上,(i)一装在油泵通道238上,用于将工作油从油箱232输向每个压力作用子系统的一部分的油泵240,以及(j)一控制器241,它可按防抱死压力控制模式工作,以控制主制动缸截止阀230、中间阀254、减压阀236和泵240,执行用于按防抱死方式控制前、后轮制动缸206、208中的液体压力的防抱死压力控制操作,其中的分配控制装置包括控制器241和一个单向阀装置256,该单向阀装置装在位于前、后制动缸通道226、228的连接点和后制动缸通道228与泵通道238的连接点之间的后制动缸通道228的一部分上,单向阀装置包括一第一单向阀258和一第二单向阀260,第一单向阀在由泵产生的压力比前轮制动缸206中的压力高,超过一预定的差值以后,允许流体通过它沿第一方向从泵240流向前轮制动缸206,并阻止流体通过它沿与第一方向相反的第二方向流动,第二单向阀260允许流体通过它沿第二方向流动并允许液体通过它沿第一方向流动。
本发明的第四种优选形式中使用的单向阀装置可以看作是减压控制装置的一个例子。
在防抱死制动系统的上述形式中,装有主制动缸截止阀230、减压阀236和中间阀254,以控制前、后轮制动缸中的压力。如图9所示,在前、后轮制动缸206、208之间装有中间阀254,用以将前、后轮制动缸的独立的压力控制部分地引入基本布置中用于同步控制这些制动缸的压力。在没有中间阀254时,前、后轮制动缸的压力可以经常按同样的压力控制方式或模式控制,同时这些压力之间可以有同样的关系。在设有中间阀254时,前、后轮制动缸的压力可以根据对应的前、后轮的锁定趋势彼此独立地进行调节。例如,前轮制动缸的压力可以加大,而后轮制动缸的压力则可以减少。
本防抱死制动系统适用于泵通道238的输出端与在中间阀254上游的后制动缸通道228的一部分相连的情况。在这种布置中,如果泵240工作,输出有压力的液体,而中间阀254保持关闭状态,则当后轮制动缸的压力降低或保持不变时,前轮制动缸的压力就增加。这样,前轮制动缸的压力可以独立于后轮制动缸的压力而加大。因此,当前、后轮位于分别具有较高和较低的摩擦系数值的相应路面区域中时,这种布置能有效地减少制动车辆所需的制动距离。也就是说,本布置有可能使前轮制动缸的压力增为最大,以最大程度地利用前轮所在路面区域中的较大的摩擦系数。
在图9所示的上述防抱死制动系统中,分配控制装置的单向阀256装在位于前制动缸通道226和泵通道238的连接点之间的后制动缸通道228的部分上。此外,单向阀装置256包括彼此平行布置的第一和第二单向阀258、260,这样仅在泵240的出口压力比前轮制动缸206中的压力高,超过预定的差值以后,第一单向阀才允许液体沿第一方向从泵240流向前轮制动缸206,而第二单向阀260允许液体沿与第一方向相反的第二方向流动,此时的气门开启压力差基本上等于零。
当图9的制动系统或它的控制器241不处于防抱死压力控制模式时,也就是处于正常的压力控制模式时,由主制动缸224加压的液体通过打开的主制动缸截止阀230供往前轮制动缸206,并通过第二单向阀260和常开的中间阀254供往后轮制动缸208,且没有由单向阀256造成的减压。这样,作用在后轮制动缸208上的压力并未相对于主制动缸的压力而降低,由此,前、后轮制动力的分配就按照第一种分配方式受到控制,使前、后轮制动缸的压力彼此相等。
当控制器241处于防抱死压力控制模式时,主制动缸截止阀230关闭泵240工作,以使从泵240输出的液体通过第一单向阀258送往前轮制动缸206。由于只在泵240的出口压力升高到预定的开阀额定值以后才允许流体通过第一单向阀258沿第一方向流动,因此作用在前轮制动缸206上的压力降低至泵240的出口压力,其降低量与第一单向阀258的开启压力差相当。但是,由泵240输送出来的流体作用在后轮制动缸208上,且不会有由第一单向阀258产生的减压。因此,前轮制动缸206中的压力要控制得低于后轮制动缸208中的压力,其降低量与第一单向阀258的开启压力差相当,而前、后轮制动缸的压力则按防抱死压力控制模式增加,且泵240处于工作状态。因此,前、后轮制动力在防抱死压力控制模式下的分配是按照第二种分配方式控制的,这种分配方式基本上与在正常的压力控制模式下建立起来的非防抱死控制分配方式,也就是使后轮制动力变得较高的方式相同。
按照本发明的第四种优选形式设计的分配控制装置也可以用于上述的本发明的第三种优选形式。
在按照本发明的这个第四种优选形式的X交叉型防抱死制动系统中,中间阀的设置可使前、后轮制动缸的压力在每个压力作用子系统中彼此相互独立地予以控制,该子系统基本上设计成用于同步控制前、后轮制动缸的压力。因此,安装中间阀,以便根据车辆的行驶条件的变化提高前、后轮制动缸压力的防抱死压力控制的自由度。
上面指出的第五种可供选择的目的可根据其中包括单向阀装置的本发明的上述第四种优选形式的一种有利布置来达到。在这个布置中,至少有一部分位于前、后制动缸通道226、228的连接点与后制动缸通道228和泵通道238的连接点之间的后制动缸通道228的部分是由第一和第二通道组成的,这两个通道彼此相互同心而且彼此相互独立,并且分别具有图形和环形的横截面形状。在第一和第二通道中的一个中装有第一单向阀256,而在第一和第二通道的另一个中装有第二单向阀260。
第一单向阀258可以包括一其形状为球的开关件,它在合适的偏压装置的偏压作用下座落在阀座上。第二单向阀260可以是其中包括一由弹性材料制成的环形单向密封件的阀。
在上述有利的布置中,第一和第二单向阀258、260装在第一和第二通道的一个和另一个中,这两个通道有圆形和环形的横截面形状并且彼此同心地布置,以使圆形和环形通道中的一个位于另一个通道之内。也就是说,圆形和环形通道并不在其直径方向上平行布置。这种布置有利于最大限度地减小单向阀装置256在那些第一圆形和第二环形通道的直径方向上的最大尺寸,这样,就可以有效地减小单向阀装置256的总体尺寸。因此,装有单向阀装置的制动系统在制造时不会过多地增加所需的安装空间。
上面指出的第六个可供选择的目的可以按照本发明的上述第四种优选形式的另一种有利的布置来达到,其特点为,控制器241有多个压力控制模式,它们是有选择地建立的,用以按防抱死模式控制主制动缸截止阀230、中间阀254和减压阀236。压力控制模式包括(1)中间阀和减压阀都同时打开,而主制动缸截止阀关闭,以减少前、后轮制动缸206、208中的压力的模式,(2)主制动缸截止阀和中间阀都关闭,而减压阀打开,通过运转泵240来增加前轮制动缸中的压力,并减少后轮制动缸中的压力的模式,以及(3)主制动缸截止阀和减压阀同时关闭,而中间阀交替地关闭与打开,通过运转泵240来增加前、后轮制动缸中的压力的负载循环压力控制模式。
在上述有利的布置中,控制器241具有负载循环控制模式,其中的中间阀254交替地关闭与打开,从而通过运转泵240,来增加前、后轮制动缸中的压力。在防抱死压力控制模式中,从泵240输出的流体在中间阀254处于关闭状态时只供向前轮制动缸206,而在中间阀254处于开启状态时,则不仅供向前轮制动缸206,而且也供向后轮制动缸208。因此,重复交替地关闭和打开中间阀254的动作,就有可能增加前、后轮制动缸中的每一个的压力,其增加率为处于中间阀保持打开时的增加率和中间阀保持关闭时的增加率之间的中间值。负载循环控制模式提高了前、后轮制动力控制的自由度。
如果控制器241改变成包括用于改变中间阀254在负载循环压力控制模式下的负载循环的装置,则上面指出的第七个可供选择的目的就可以达到。虽然负载循环可能是固定的,但是还是希望能根据车辆的具体行驶条件改变负载循环,以便能用较大的自由度控制制动力,从而提高制动系统的制动性能。这种布置允许在根据车辆的行驶条件按防抱死压力控制模式适当地控制中间阀的负载循环时,以最佳的比率增加前、后轮的制动力。
改变中间阀打开时的时期与中间阀关闭时的时期的比例,就可以改变中间阀254的负载循环。
车轮制动力的增加率可以用某些机械装置来改变,例如,像装在前、后制动缸通道中,其流通液体的横截面积可以变化的小孔那样的节流器。在上述所希望的布置中,这种机械装置可以由用于如上所述地改变中间阀的负载循环的装置来代替,这种装置由装在控制器中的控制程序或电子线路组成。因此,该设置允许提高制动缸压力的增加率,但又避免了制动系统的成本的增加。
通常,各个车辆都有不同的车轮制动缸压力的最佳增加率,以保证与制动系统的规定特性,如前、后轮制动缸的直径比有关以及与车辆的特定制动条件,如实际制动效果和车辆在前、后轮上的载荷分配有关的车辆制动力的防抱死控制。在上述布置中,前、后轮制动缸的压力增加率可以容易地得到控制而无需昂贵的机构,以使中间阀的负载循环可以由控制器控制,从而满足特殊车辆的制动系统的规定特性。
如果上述的用于改变中间阀的负载循环的装置改变成能根据前轮制动缸的减压趋势和后轮制动缸的减压趋势中的至少一个改变负载循环,而这些趋势在受到上述控制器的控制时已经在防抱死压力控制运行中显示出来,则上面指出的第八种可供选择的目的就可以达到,举例来说,这些减压趋势或滞后作用可以用曾经与前、后轮制动缸一起起作用的减压次数或减压频率,这些油缸的减压时期,或者减压率来表示。
这种以前的和现存的减压趋势直接反映前、后轮的锁定趋势。因此,车轮的锁定趋势可以通过监控防抱死压力控制模式中的减压趋势来检测。如果后轮制动缸中的压力比前轮制动缸中的压力减少得更频繁,就有可能确定,后轮有比前轮高的锁定趋势。在这种情况下,最好降低后制动缸的压力,并提高前轮制动缸的压力。换句话说,最好确定中间阀的负载循环,以便能建立一个在后轮制动缸已经显示出有比前轮制动缸高的减压趋势时,建立下述的前、后轮制动缸的压力分配,它使前轮制动缸中的压力增加率较高,并使后轮制动缸中的压力增加率较低。
在根据前、后轮制动缸的减压趋势改变负载循环的上述布置中,车轮的制动能力可以因所考虑的每个轮子的锁定趋势而达到最大。在这方面,应当指出,车轮的锁定趋势是由各种因素,如车轮所在路面区域的摩擦系数;和车轮的制动转矩及作用在车轮上的力综合而成的。因此,由中间阀的如此受到控制的负载循环所确定的制动缸压力的增加率可以以高的精度予以适当的控制,由此而反映车轮的实际制动或锁定趋势。
前、后轮制动缸的减压趋势可以通过监控所产生的信号来检测,从而对主制动缸截止阀、中间阀和减压阀的线圈励磁或去磁。这样,上述布置就不需要用于检测车轮制动缸的减压趋势的专门的传感器,因而能以较低的的费用获得,同时又能适当地控制中间阀的负载循环,也即车轮制动缸中的压力增加率。
用于改变中间阀的负载循环的装置可以用来根据车辆上的载荷沿车辆行驶方向的变动量来改变负载循环。这种载荷变动可以根据车辆在行驶方向上的减速来检测。描述得更具体一些,在制动车辆时,由于车辆载荷在车辆行驶方向上的变动,作用在前轮上的载荷加大,而作用在后轮上的载荷则减小。这就意味着,应当加大前轮制动缸的压力,以增加作用在前轮上的制动力,同时应减少后轮制动缸的压力,以防止后轮锁定。为此,最好确定中间阀的负载循环,以便建立一个前、后轮制动缸的压力分配,它在装有前轮制动缸的前轮上的载荷变动量较大时,与前轮上的载荷变动量较小的情况相比,使前轮制动缸产生较大的压力增加率并使后轮制动缸产生较小的压力增加率。
另一种方案是,用于改变中间阀的负载循环的装置可以用于根据车辆上的载荷沿车辆侧向的变动量改变负载循环,这个变动量可以根据车辆的侧向加速来控制。在用前、后轮制动缸制动的前、后轮分别位于车辆沿其转弯的车辆转向线的外侧与内侧的压力作用于系统中,由于车辆载荷沿垂直于行驶方向的侧向变动,作用在前轮上的载荷增加,而作用在后轮上的载荷减少。在此情况下,同样也希望增加前轮制动缸的压力,以加大前轮的制动力,并减少后轮制动缸的压力,以防止后轮锁定。在这方面,最好确定中间阀的负载循环,以便在其中的前后轮分别位于车辆转弯线的外侧与内侧的压力作用子系统中建立一种前、后轮制动缸的压力分配,它在载荷变动量较大时,与载荷变动量较小的情况相比,能使前轮制动缸产生较大的压力增加率而使后轮制动缸产生较小的压力增加率。
通过阅读对本发明的现有优选实施例的下列详细描述,并结合附图进行思考,就可以更好地了解本发明的上述及可供选择的目的、特性和优点,图中图1是已知用于说明在一的曲线图机动车辆的制动系统中的前、后轮的制动力之间关系;图2是一已知的交叉型或X交叉型防抱死制动系统的一个例子的示意图;图3是与图2有同样型式的已知防抱死制动系统的另一个例子的示意图;图4是一已知的前一后制动力独立控制型防抱死制动系统的一个例子的示意图;图5是与图4所示型式相同的防抱死制动系统的另一个例子的示意图;图6是示出本发明的原理的框图7是示出本发明的一种优选形式的框图;图8是一液压回路图,示意地示出了本发明的另一个优选形式;图9是一液压回路图,示意地示出了本发明的又一个优选形式;图10是说明图7所示本发明的优选形式的一个优点的曲线图;图11是说明图8所示发明的优选形式的一个优点的曲线图;图12是一示意图,示出了本发明的制动系统的一个实施例;图13是一局部的前立面图,用剖面示出了装在图12所示制动系统中的比例阀;图14是一曲线图,指出装在图12所示制动系统中的单向阀装置的压力控制特性;图15是一流程图,示出了由用在图12的制动系统中的控制器的计算机执行的减压控制程序;图16是一曲线图,说明了在图12的制动系统中受到控制的前、后轮制动力之间的关系;图17是一示意图,示出了按照本发明的另一实放例的防抱死制动系统;图18是一前立面图,用剖面示出了装在图17的制动系统中的比例阀;图19是一液压回路图,示意地示出了制动液进出在图17所示制动系统中的主制动缸、泵和前、后轮制动缸的流动;图20是一曲线图,说明了图17所示制动系统在按第四和第五种运行模式以防抱死方式受到不同的控制时,前、后轮制动缸中压力的变化;图21是一曲线图,说明了图17的制动系统在受到控制时,前、后轮的制动力之间的关系;图22是一前立面图,用剖面示出了装在图17所示实施例中的单向阀装置和第二截止阀的结构细节;图23是一流程图,示出了由用于图17所示制动系统中的控制器的计算机执行的,用于控制第二截止阀的程序;图24是一流程图,示出了在图23所示程序的步骤S40中执行的子程序;图25是一流程图;示出了由计算机执行的用于确定第二截止阀的电磁线圈的关闭(OFF)时间T1的程序;图26是一曲线图,说明了用于图17所示制动系统的泵的液体间歇输送和第二截止阀的电磁线圈的励磁及去磁之间的关系;图27是一示意图,示出了按照本发明的另一实施例的防抱死制动系统;图28是一前立面图,用剖面示出了用于图27所示制动系统中的比例阀;图29是一曲线图,说明了图27所示制动系统在受到控制时,前、后轮的制动力之间的关系;图30是一示意图,示出了本发明的防抱死制动系统的又一实施例。
首先参看图12,其中描述了用于机动车辆的其形式为交叉型或X交叉型制动系统的本发明的一个实施例。
在图12中,参考标号10代表一起着液压源作用的主制动缸。主制动缸10是串列式的,其中,两个互相独立的液体加压室按串连的方式布置。主制动缸10通过一增压器12与其形式为制动踏板14的制动器操作件连接。当机动车的司机或操作人员操作或压下制动踏板14时,在主制动缸10的两个加压室中机械地产生相等的流体压力。
主制动缸10的加压室中的一个与用于车的左前轮和右后轮的由液压操作的制动器的制动缸相连,而另一个加压室则与用于车的右前轮和左后轮的由液压操作的制动器的制动缸相连。这些制动缸在以后均称之为“车轮制动缸”。这样,制动系统就有两个互相独立的压力作用子系统,其中的一个有左前轮制动缸和右后轮制动缸,而另一个则有右前轮制动缸和左后轮制动缸。由于这两个压力作用子系统在结构上是彼此相同的,因而在图1中只示出了子系统中的一个,该子系统将在下面描述。
在每个压力作用子系统中,主制动缸10的相应的加压室通过一前制动缸通道22与前轮制动缸20相连。后制动缸通道24的一端与前轮制动缸通道22相连,其另一端与后轮制动缸30相连。
在后制动缸通道24中,装有一比例阀34(以后均称之为“P阀34”)。P阀34是一个减压阀,它的工作使得在主制动缸压力达到一预定的额定值以前,由主制动缸10产生的流体压力(以后都称之为“主制动缸压力”)作用到后轮制动缸30上,且不会降低主制动缸的压力,并使得高于额定值的主制动缸压力,按一预定的比例减少,由此将降低的压力作为制动压力作用在后轮制动缸30上。这个P阀34是一个载荷感知式比例阀,其中,上述的额定值随作用在车辆上的载荷量的增加而加大。对载荷感知式的P阀34将在下面参考图13进行详细描述。
P阀34装在车辆上,使P阀34与车辆的悬挂件和非悬挂件的部分相连,这些部分对应于后轮。P阀34有固定在车身上的阀体40,车身是车辆的悬挂构件。在阀体40中,不渗漏地装有一可滑动的阶梯形活塞42。由于活塞42装在阀体40上,在阀体40中形成的空间便分成一与主制动缸10连通的输入室44,和一与后轮制动缸30连通的输出室46。这些输入与输出室44,46通常都通过一经过活塞42形成的连通通道48彼此保持连通。在连通通道48上装有一截止阀50。截止阀50有一个其形状为球52的开关件52;一个阀座54;和其形状为回复弹簧56,用于在朝向阀座54的方向上偏压球52的偏压装置。通常,截止阀50保持开启,用静止的阀开关件60使球52与阀座54隔开一段距离。当主制动缸的压力,亦即输入室44中的压力超过P阀34的额定值时,活塞42就朝着离开阀开关件60的方向移动,球52在回复弹簧56的偏压力的作用下最终座落在阀座54上,从而关闭连通通道48。因此,输入和输出室44、46彼此断开。这样,输出室46中的压力就相对于输入室44中的压力按一由活塞42的受压面积的比例所决定的比值降低。
活塞42的一个在输入室44一侧的端部经过阀40延伸,并暴露在大气中,从而使活塞42的暴露端部的端面与一杠杆64紧密接触,杠杆64以其最近的一端铰接在阀体40上。杠杆64在中部分叉,并有两个相距较远的端部。这两个相距较远的端部中的一个通过其形式为调节弹簧66的偏压装置与阀体40相连,而另一个末端通过一主弹簧68与车辆的非悬挂构件(例如后轴)相连。这个主弹簧68起着力的生成装置的作用,它产生随车辆的悬挂件和非悬挂件的部分之间的相对位移量而变化的力,这些部分对应于后轮。按照这个布置,杠杆64对活塞42作用一个力,该力对应于从调节弹簧66的偏压力减去主弹簧68的偏压力而得到的差。当车辆满载行驶时,主弹簧68的偏压力小于汽车在最小载荷行驶时的偏压力,其结果将使主弹簧68收缩,这样,通过杠杆64传递到活塞42上的力F就增加,且球52需要克服的用以打开截止阀50的力相应地增加。因此,P阀34开始减少后轮缸30中的制动力时主制动缸压力的额定值就在作用于车辆(后轮)上的载荷增加时升高。
在前轮制动缸20和前、后制动缸通道22、24的连接点之间的前制动缸通道22的一部分上,装有一具有彼此平行置放的第一单向阀72和第二单向阀74的单向阀装置70。第一和第二单向阀72、74分别允许制动液流动的方向是彼此相反的。
第一单向阀72允许制动液沿从主制动缸10向前轮制动缸20的方向流动。也就是说,当主制动缸10的压力比前轮制动缸20中的压力高,超过一基本上不等于零的预定差值(开阀压力差)时,允许制动液通过第一单向阀72沿上述方向流动。这就是说,在单向阀72上游侧的压力比前轮制动缸20中的压力高,超过预定的开阀压力差时,第一单向阀72就允许液体沿上述方向流动。第一单向阀72阻止制动液沿从前轮制动缸20向主制动缸10的方向流动。第一单向阀72的开启压力差,举例来说,是由一偏压用于第一单向阀72其形式为球的开关件的弹簧的偏压力确定的。应当指出,第一单向阀72的目的并不是要阻止制动液沿上述方向流动,而是要降低前轮制动缸20中的制动力,第一单向阀72可以看作一个单向阀型的减压阀。
另一方面,第二单向阀74允许制动液沿从前轮制动缸20向主制动缸10的方向流动,其开阀压力差基本上为零。由于制动液经过第二单向阀74流动的方向与制动液经过第一单向阀72流动的方向相反,因此这两个单向阀72、74共同合作,允许制动液经过单向阀装置70双向流动。
这样构成的单向阀装置70在主制动缸压力和前轮制动力(在前轮制动缸20中的压力)之间的关系中提供了一种滞后作用。这种滞后作用将参考图14在下文中加以描述。
当主制动缸的压力在车辆操作人员压下制动踏板14从而从零增加时,第一单向阀72保持关闭,直至主制动缸的压力比前轮制动缸20中的压力大,其差值超过预定的开阀压力差。因此,不允许制动液从主制动缸10向前轮制动缸20流动,并且前轮制动力保持为零,直至第一单向阀72的预定开启压力差被超过。因此,只有主制动缸的压力从零开始增加。换句话说,在图14的曲线中,代表主制动缸压力和前轮制动力的点(以后称之为“前—后力分配点”)从座标的零点沿平行于水平轴的方向移动,而主制动缸压力是沿着水平轴取值的。
当第一单向阀72的开启压力差由于制动踏板14的进一步压下而被超过时,力分配点移至图14中所示的“a”点。如果主制动缸压力进一步地加大,则第一单向阀72打开,制动液从主制动缸10流向前轮制动缸20,这样,前轮制动力就在主制动缸压力加大时从零开始上升,以使前轮制动力比主制动缸压力低,其差值为第一单向阀72的预先设定的开启压力差。因此,力分配点从“a”点移至图14中所示的“b”点。
如果在主制动缸压力相当于力分配点“b”时将制动踏板14松开,只要主制动缸压力高于前轮制动力,则第二单向阀74就保持关闭,阻止制动液从前轮制动缸20流向主制动缸10。因此,前轮制动力保持不变,处于与力分配点“b”相对应的水平上,而主制动缸压力则降低至与图14中所示的力分配点“c”相对应的水平。
当主制动缸压力进一步降低到低于前轮制动力的水平时,第二单向阀74就打开,允许制动液从前轮制动缸20流向主制动缸10,使前轮制动力在主制动缸压力降低时下降。因此,力分配点从“c”移至零点。
再请参考图12,一由电磁线圈操纵的截止阀80与单向阀装置70平行设置。此截止阀80通常保持打开,这样就使单向阀装置70不能执行它的减压功能。截止阀80由控制器84控制,控制器84主要包括一装有中央处理装置(CPU)的计算机、一只读存储器(ROM)和一随机存取存储器(RAM)。控制器84适用于关闭截止阀80,以便在车辆载荷超过一预定值时可使单向阀装置70的减压功能有效。为此,在控制器84上连有一载荷传感开关90。此载荷传感开关90固定在车辆的悬挂构件上,也就是,固定在车身上,以使开关90如图13所示的那样位于P阀34的杠杆64的附近。开关90的位置要使得当车辆载荷小于预定值时,开关90转到OFF,而当车辆载荷超过预定值时,也就是说,当将活塞42推入阀体40,杠杆64的逆钟针摆动角超过预定值时,转到ON。车辆载荷的预定值举例来说,可以是车辆的最大名义载荷值(可能与满载行驶相对应),或者可能是最大名义载荷值的80%或60%。
位于控制器84的计算机中的ROM储存了如图15的流程图中所示的用于减压控制过程的控制程序,该程序用于控制由电磁线圈操纵的截止阀80,以便在需要时使单向阀装置70失效。此程序按预定的循环时间执行。该程序从步骤S1开始,以确定载荷传感开关90是否处于ON的状态。如果开关90由于车辆载荷小于预定值而不处于ON的状态,则在步骤S1中得到一个否定的决定(NO),于是控制流程转至步骤S2,此时,截止阀80的电磁线圈去磁,以打开截止阀80,用于使单向阀装置70不能执行它的减压功能。如果车辆载荷大于预定值且开关90处于ON的状态,就在步骤S1中得到一个肯定的决定(YES),于是控制流程转向步骤S3,此时,截止阀80的电磁线圈励磁,以关闭截止阀80,用于使单向阀装置70能够执行它的减压功能。在完成步骤S2或S3以后,一个执行减压控制程序的循环就终止。
参考图16的曲线图,下面将按此图详细地说明本制动系统的有利作用。为了说明简要起见,下列描述以举例的方式仅涉及制动系统在最小载荷行驶和满载行驶时的运行,而不描述当车辆载荷在最大值和最小值之间的中间值时的运行。这一情况适用于以后要描述的本发明的其它实施例。
当制动踏板14由司机压下,同时载荷传感开关90处于OFF状态,车辆载荷小于预定值时,主制动缸压力作用在前轮制动缸20上,且不会被第一单向阀72降低主制动缸的压力。与此同时,主制动缸的压力通过P阀34作用在后轮制动缸30上。因此,前—后力分配点将如图16的曲线所示的那样,沿着第一基本分配线(由没有P阀34和单向阀装置70的基本制动布置所确定)和用于最小载荷行驶的P阀34的分配线从零点开始移动。如果汽车司机将制动踏板14下压至与前轮制动力相对应的位置,而该制动力又略低于前轮开始在路面上锁定时的水平,则力的分配点就移至第一基本分配线或用于最小载荷行驶的P阀34的分配线和用于最小载荷行驶的前轮锁定线的交点(也在图16中示出)。前轮锁定线由车辆行驶的路面的摩擦系数确定。在本特定实施例中,交点用“a”标出。从图16的曲线可以明显地看到,与交点“a”相对应的后轮制动力并不比由用于最小载荷行驶的理想分配曲线来表示的水平低,并且车辆在制动时可以使前、后制动力得到适当的控制。
另一方面,当车辆满载行驶,载荷传感开关90位于ON的位置时,主制动缸压力由第一单向阀72降低,以致作用在前轮制动缸20上的是降低了的主制动缸压力,而主制动缸的压力经过P阀34作用在后轮制动缸30。在此情况下,前—后力的分配点首先从零点沿平行于后轮制动力在图16的曲线中沿其取值的垂直轴的方向移至点“b”。也就是说,在前轮制动压力或力保持为零时,只有后轮制动压力或力增加,直至主制动缸的压力升高,产生第一单向阀72的预定的开启压力差。
当主制动缸的压力已经升高,产生了第一单向阀72的预定的开启压力差时,前轮制动力开始升高,且力的分配点沿第二基本分配线(由没有P阀34但是有单向阀装置70的基本制动布置所确定)和用于满载行驶的P阀34的分配线从点“b”开始移动,这也在图16中示出。如果汽车司机将制动踏板14下压至与前轮制动力相对应的位置,而该制动力又略低于前轮开始在路面上锁定的水平,则力的分配点移至第二基本分配线或用于满载行驶的P阀34的分配线与用于满载行驶的前轮锁定线的交点(也在图16中示出)。在本特定的实施例中,交点在“c”处标出。
如上所述,本制动系统的采用使得在按最小载荷行驶时,前、后轮制动力的分配按照第一基本分配线和用于最小载荷行驶的P阀34的分配线的综合来控制,而在按满载行驶时,其分配按照第二基本分配线和用于满载行驶的P阀34的分配线的综合来控制。因此,在满载行驶时与其用于满载行驶的P阀的分配线位于相应的按照本发明的P阀34的分配线之下的传统制动系统相比,本制动系统对减少实际的后轮制动力相对于理想分配曲线的偏差量或减少量是有效的。因此,按照本实施例的制动系统能够产生一个增大的前、后轮制动力的总和(也就是增大的总制动力),这个加大的总和使得有可能减少车辆所需的制动距离。
在本实施例中,用于最小载荷行驶的P阀34的分配线对应于车辆在最小载荷行驶时前、后轮制动力的第一种分配方式,而按照本发明的用于满载行驶的P阀34的分配线则对应于车辆在满载行驶时前、后轮制动力的第二种分配方式。由图16的曲线可以理解,在前、后轮制动力的整个范围上,第二种分配方式限定的后轮制动力大于由第一种分配方式所限定的制动力。
还应当指出,在零和与最小载荷行驶时的P阀34的额定值相对应的值之间的在整个范围内,由第二种分配方式限定的后轮制动力大于由第一种分配方式限定的制动力,其大于量和与第一单向阀72的开启压力差相对应的量相同。也就是说,按照第二种分配方式的后轮制动力相对于按照第一种分配方式线的制动力朝着理想分配曲线(用于满载行驶)的水平升高,即使在后轮制动力靠近零时也是如此。因此,理论上有一个前—后分配区,在此区中,后轮可在前轮被锁定之前在路面上锁定。但是,车辆在其上实际行驶的路面的摩擦系数并不会在整个0到1之间的范围内变化。实际上,路面不会有非常接近0的摩擦系数,而是例如在1—0.05的范围内,而这个范围对应于后轮可能发生提前锁定的理论分配区。因此,如果第一单向阀72的开启压力差(它决定了按照第二种分配方式的后轮制动力与按照第一种分配方式的后轮制动力的差)如下决定,即使按照第二种分配方式的后轮制动力不会超过按照用于满载行驶的理想分配曲线的制动力,则后轮的提前锁定实际上并不会出现。
在本实施例中,第一单向阀72的开启压力的开启压力差是在第二种分配方式通过在实际上具有最低摩擦系数值的路面上同时锁定前、后轮的那个点时,按一个不大于与按照第二种分配方式的后轮制动力相对于按照第一种分配方式的制动力的增量相对应的值而预先设定的。
在松开制动踏板14时,前轮制动缸20中的制动液经过第二单向阀74返回主制动缸10,而后轮制动缸30中的制动液则经过P阀34回至主制动缸。因此,不管截止阀80当时所选择的位置如何,当制动踏板14松开时,制动液就能从前轮制动缸20排向主制动缸10。
从本实施例的上述描述中可以理解,杠杆64、载荷传感开关90、截止阀80和控制器84彼此合作,构成用于有选择地使单向阀装置70,更特殊一些,使第一单向阀失效的选择性失效装置的一个实施例,这个选择性失效装置与单向阀装置和P阀34合作,构成用于按照所选择的上述第一和第二种分配方式中的一种控制作用在前、后轮上的制动力分配的分配控制装置的一个实施例。
下面参考图17—22描述其形式为X交叉型且有各种特性的防抱死制动系统的本发明的第二实施例。
与按照第一实施例的制动系统一样,按照本第二实施例的制动系统是交叉型或X交叉型的。不过,本制动系统与第一实施例的制动系统的区别在于,本制动系统能进行对前、后轮的制动压力或力的防抱死控制,同时适合于不仅采用主制动缸,而且也采用流体再循环泵作为液压源。本实施例的这些方面将在下面加以详细描述。
如图17所示,一常开的由电磁线圈操纵的第一截止阀100装在位于主制动缸10和第一与第二制动缸通道22、24的连接点之前的前制动缸通道22的一部分上。另外,与第一截止阀100平行地装有一旁路返回通道102,以便绕过截止阀100。旁路返回通道102装有一单向阀104,它阻止制动液沿从主制动缸10向前轮制动缸20的方向流动,但允许制动液在开阀压力差基本上为零时沿相反的方向流动。
在后制动缸通道24中装有一比例阀或P阀110。与用于第一实施例中的P阀34不同,P阀110不是具有用于引发减压功能的可变额定压力的载荷传感型阀,而是一种固定额定值型的阀,其中,减压功能是在主制动压力处于预定的额定值时引发的。P阀110将在下面进行详细描述。
P阀110有一壳体12,它有一个具有一大直径部分114和一小直径部分116的阶梯形缸孔118。具有一大直径部分120和一小直径部分122的阶梯形阀门活塞124可滑动地装在阶梯形缸孔118中。阀门活塞124由其形式为一弹簧126的偏压装置偏压,以使活塞124通常保持不工作的位置,此时,大直径部分120的端面紧靠在壳体112的小直径部分116的底壁上。在缸孔118和阀门活塞124之间,装有一形式为杯形密封128的密封件。此杯形密封128将缸孔118内的空间分成两部分。这两部分中的一个位于大直径部分114这一侧,用作一个输入室130,而另一部分则位于小直径部分116这一侧,用作一输出室132。输入室130与主制动缸10相连,而输出室132则与后轮制动缸30相连。
杯形密封128包括一个一通密封部分134和一个二通密封部分136。一通密封部分134阻止制动液沿从输入室130向输出室132方向的流动,同时一通密封部分134与缸孔118的大直径部分114的周向表面气密地接触。一通密封部分134允许液体沿从输出室132向输入室130方向的流动,同时密封部分134与大直径部分114的表面隔开一段距离。当阀门活塞124从图18的非工作位置移至某工作位置(沿如图所示的右边方向)时,活塞124的大直径部分120和小直径部分122之间的台肩表面与二通密封部分136紧密接触,从而阻止液体沿相反方向在输入室130和输出室132之间流动。当阀门活塞124位于图18的非工作位置时,二通密封部分136脱离活塞124的台肩表面,从而允许液体在输入室130和输出室132之间流动。
杯形密封128有一个环形突起它在限定输入室130和输出室132的两个相对表面的每一个上形成。如图18所示,环形突起有一个半圆的横截面形状。在输入室130这一侧的环形突起防止杯形密封128与阀门活塞124在输入室130这一侧的表面的整个区域上接触,而在输出室132这一侧的环形突起则防止杯形密封128与位于缸孔118的大直径部分120和小直径部分122之间的台肩表面在输出室132这一例的表面的整个区域上接触。
如图17所示,一常开的由电磁线圈操纵的第二截止阀140装在位于P阀110和前、后制动缸通道22、24的连接点之间的后制动缸通道24的一部分上。油箱通道142的一端与位于P阀110和第二截止阀140之间的后制动缸通道24的一部分连接,其另一端与油箱144连接。一常闭的由电磁线圈操纵的第三截止阀146装在油箱通道142上。在本第二实施例中,第一截止阀100构成主制动缸截止阀的一个例子,第二截止阀140构成中间阀的一个例子,且第三截止阀146构成减压阀的一个例子。
泵通道148的一端与油箱144相连,其另一端与后制动缸通道24相连。泵150装在泵通道148上,用于将制动液吸入油箱144并在其中加压。泵150是柱塞型的,由电动机152驱动,用以以间歇的方式输送加压液体。油箱通道148的输出端或输送端(另一端已在上面指出)在第二截止阀140的上游侧,亦即在主制动缸10的这一侧与后制动缸通道24的一部分相连。
返回通道154的一端与位于P阀110和第二截止阀140之间的后制动缸通道24的一部分相连,其另一端与位于主制动缸10和第一截止阀100之间的前制动缸通道22的一部分相连。单向阀156装在返回通道154上。此单向阀156阻止制动液沿着从主制动缸10至后轮制动缸30方向的流动,但允许液体在开阀压力差基本上为零时沿相反的方向流动。
单向阀装置160装在位于后制动缸通道24与泵通道148的连接点和前、后制动缸通道22、24的连接点之间的后制动缸通道24的一部分上。同在第一实施例中所装的单向阀装置70一样,单向阀装置160包括一其开启压力差基本上为零的第一单向阀162,和一其开启压力差基本上为零的第二单向阀164。第一和第二单向阀162、164彼此相互平行地安装,并有相反的允许制动液流动的方向。
但是,单向阀装置160在第一与第二单向阀的位置和朝向方面与单向阀装置有区别。在第一实施例中,主制动缸10总是用作用于前、后轮制动缸20、30的液压源,因此单向阀装置70放在主制动缸10和前轮制动缸20之间。另一方面,在本第二实施例中,在按防抱死方式控制车轮制动力时,将泵150用作液压源,因此第一单向阀162的朝向要使得用第一或减压单向阀162作为一个单向阀,以在从泵150输出的制动液的压力比前轮制动缸20中的压力高,其大于量超过单向阀162的预定或预先设好的开启压力差以后,允许制动液沿从泵150向前轮制动缸20方向的流动。泵150作为液压源工作的原理将在下面详细描述。
下面参考图19说明制动液在主制动缸10。泵150和前、后轮制动缸20、30中的流进和流出。应当指出,图19只示意地示出了制动液回路的主要部分,略去了有关P阀110和常开的第二截止阀140的设置。
在本制动系统按常规运行,而泵150未工作时,由主制动缸10加压的制动液经过第一截止阀100供往前轮制动缸20,并通过第一截止阀100和单向阀装置160的第二单向阀164供往后轮制动缸30。由于第二单向阀164的开启压力差基本上为零,因此在前、后轮制动缸20、30上作用有几乎是相同的制动压力。
另一方面,当泵150工作时,第一截止阀100关闭,且从泵150输出的制动液经过第一单向阀162供往前轮制动缸260,同时不流经第一单向阀162供往后轮制动缸30。由于第一单向阀162的开启压力差基本上不为零,因此前轮制动缸20中的制动压力要比后轮制动缸30中的制动压力低一个与第一单向阀162的预定开启压力差相对应的量。
第一和第二单向阀162、164的结构将在下面详细描述。
第一、第二和由电磁线圈操纵的第三截止阀100、140和146的电磁线圈都与控制器170相连,控制器主要由计算机、A/D转换器和驱动器组成。计算机装有一中央处理装置(CPU)、一只读存储器(ROM)、一随机存取存储器(RAM)和一输入总线。控制器170根据表示前、后轮转速的车轮速度传感器172、174的输出信号按需要有选择地打开和关闭截止阀100、140、146。
用于驱动泵150的电动机152也由控制器170控制。在原理上,当油箱144中的制动液的整个体积由泵150泵出时,电动机152和泵150就停止。尽管只要按防抱死方式控制车轮制动压力电动机152便可能保持运转,而泵150在油箱144被抽空时就会停止,以使工作噪声减为最小。
油箱144的抽空可以用一个适合于检测油箱144的活塞176的轴向位置的位置传感器(例如临近传感器)来直接检测,或用一个适合于根据作用在电动机152上的电流检测作用在电动机152上的载荷的载荷传感器来间接地检测,再或者用一个适合于测量电动机152的连续运行时间的计时器来检测。在间接检测抽空的场合,当检测到的载荷低于一预定的额定值时,或当所测得的运行时间超过一预定极限时,电动机152就停止。
控制器170可以在需要将制动液从前、后轮制动缸20、30中分别排出,用以在制动压力的防抱死控制过程中快速地降低制动压力时,适宜关闭电动机152并停止泵150。在这方面,应当指出,使泵150运行,将加压的液体输往后制动缸通道24的操作,可以防止同时降低前、后轮制动缸20、30中的制动压力。
另外,控制器170可以在需要将前、后轮制动缸20、30中的制动压力仅仅加大一个小量时,用于停止泵150。由于柱塞型的泵150以一定的循环时间间歇地输送制动液,因此难于将制动压力加大一个量,该量比在从泵150一次输送液体时增加的制动压力的量要小。因此,当需要将制动压力只增加一个小量时,泵150就停止,而第一截止阀100打开一段较短的时间,以允许主制动缸的压力能作用在前、后轮制动缸20、30上,从而将制动压力按所需的小量升高。
下面将详细描述用于控制截止阀100、140和146的控制器170的运行。
在制动车辆时,控制器170根据车轮速度传感器172、174的输出信号监控车辆的各个轮子的旋转情况(例如减速值、滑动量和滑动比),并确定是否有轮子有锁定的趋势。控制器170按下表1中所示的七种压力控制模式中任选的一个控制截止阀100、140、146,以控制车轮制动缸20、30。这七种压力控制模式是通过三个截止阀100、140、146的打开和关闭状态的各个不同组合建立的。
表 1模式 截止阀的状态前后制动缸的压力控制状态1 2 3前 后1. o o c主制动缸增加 主制动缸增加2. o c c主制动缸增加 保持不变3. o c o主制动缸增加 减少4. c o c泵增加泵增加5. c c c泵增加保持不变6. c c o泵增加减少7. c o o减少 减少为了执行车轮制动压力的防抱死控制,控制器170进行下列步骤(a)确定两个压力作用子系统的前、后端中的任何一个是否有锁定的趋势,如果确定有一个轮子有锁定趋势,则根据该轮子的旋转情况确定压力控制指令(以减压指令、压力保持指令和加压指令中选取),该指令的发出用于控制所论及的轮子的制动缸中的制动压力;(b)然后,根据所确定的压力控制指令(减压、保持或加压指令),并根据具有锁定趋势的轮子是前轮还是后轮选择七种压力控制模式中的一种;以及(c)然后按所选择的压力控制模式控制上述轮子的制动缸中的压力。为此,控制器170的ROM储存了用于根据轮子的旋转条件确定各个轮子的压力控制指令的程序,以及用于按照所确定的压力控制指令控制(开或关)相应的截止阀100、140、146的线圈的程序。
下面将详细描述本制动系统的防抱死压力控制操作,假设与两个压力作用子系统中的一个有关联的前轮有锁定趋势,而后轮没有锁定趋势。
在此情况下,前轮制动缸20中的压力应当首先降低。但是,由表1中可以明显地看出,可供使用的七种压力控制模式并不包括只减少前轮制动缸20中的压力的模式。因此,选择第七种压力控制模式,以同时降低前、后轮制动缸20、30中的压力。
在第七种压力控制模式中,第一截止阀100的线圈转至ON,以关闭这个截止阀100,从而使前、后轮制动缸20、30与主制动缸10断开。另外,第三截止阀146的线圈转至ON,以打开这个阀146,从而降低前、后轮制动缸20、30中压力。描述得更具体一些,使前轮制动缸20通过第二单向阀164,常开的第二截止阀140和现在已打开的第三截止阀146与油箱144连通,从而允许制动液从前轮制动缸20流向油箱144。与此同时,后轮制动缸30通过P阀110与打开的第三截止阀146与油箱144连通,允许制动液从后轮制动缸30流向油箱144。这样,前、后轮制动缸20、30中的制动压力就按照第七种压力控制模式同时降低。
当前轮的锁定趋势由于车轮制动缸20、30中的压力降低而消除或大大地减少时,第七种压力控制模式就中止运行。此后,就根据前、后轮的锁定趋势,按照所选择的第四、第五、第六和第七种压力控制模式中的一种控制前、后轮制动缸20、30中的压力。
在第四种压力控制模式中,第一和第三截止阀100、146都是关闭的,而第二截止阀140开启,因而从泵150输出的液体经过第一单向阀162回到前轮制动缸20中,并经过打开的第二截止阀140和P阀110回到后轮制动缸30中,由此使前、后轮制动缸20、30中的压力都增加,在这个第四种压力控制模式中,从泵150输出的液体的压力被第一单向阀162降低,其量为单向阀162的预设的开启压力差。因此,当制动压力增加时,前轮制动缸20中的制动压力低于后轮制动缸30中的制动压力,其值为第一单向阀162的开启压力差。
在第五种压力控制模式中,三个截止阀100、140、146全部关闭,前轮制动缸20中的压力同第四种模式中的一样,由于泵150的工作而增加,后轮制动缸30中的压力则保持不变。
在第五种压力控制模式中,从泵150输出的制动液并不返回后轮制动缸30,而是只回至前轮制动缸20。在第四种模式中,与之相反,从泵150输出的制动液也返回后轮制动缸30。因此,如图20所示,在第五种模式中,前轮制动缸20中的压力增加率高于在第四种模式中的。同样如此图所示,后轮制动缸30中的压力在第四种模式中是增加的,而同一油缸中的压力在第五种模式中是保持不变的。
在第六种压力控制模式中,第一和第二截止阀100、140都关闭,而第三截止阀146则打开,这样,前轮制动缸20中的压力就增加,同第四种模式中的一样,而后轮制动缸30中的压力则降低。
在原理上,第一、第二和第三种压力控制模式并不用于前轮制动缸20的制动压力的防抱死控制。在这三种模式中,第一截止阀100是打开的。在防抱死压力控制中,最好使前、后轮制动缸20、30与主制动缸断开,以便降低泵150的输出压力,并使从泵150输出的液体的压力波动为最小。但是,如果有必要在油箱144被全部抽空,整个液体体积由泵150泵出之后增加前轮或后轮制动缸20、30中的压力,则要建立第一、第二和第三种压力控制模式中的适当的一种,以便用由主制动缸10所产生的压力增加上述车轮制动缸中的压力。
当前轮制动缸20中的压力按第四或第五种压力控制模式通过泵150的工作来增加时,单向阀104起着减压阀的作用,防止前轮制动压力超过主制动缸的压力。
在描述在前轮出现锁定趋势而后轮没有锁定趋势的情况下运行制动系统的同时,描述制动系统在后轮出现锁定趋势而前轮没有锁定趋势时的运行。
在这种情况下,必需首先降低后轮制动缸30中的压力。为此,首先将制动系统置于第三种压力控制模式下,其中,第一和第三截止阀100、146是打开的,而第二截止阀140是关闭的,这样,就可相对于前轮制动缸20中的压力执行基本上无防抱死的压力控制。也就是说,前轮制动缸20中的压力被由主制动缸10中产生的压力加大,而后轮制动缸30中的压力则通过打开的第三截止阀146降低。
接着,就可以按需要用控制器170来有选择地建立从第一至第七种压力控制模式。当前轮没有锁定趋势时,可以有选择地建立第一、第二和第三种压力控制模式,并按防抱死方式只控制后轮制动缸中的压力。如果前轮和后轮同样都有锁定趋势,或是只有前轮有锁定趋势而后轮的锁定趋势已被消除,则如同前轮有锁定趋势而后轮无锁定趋势的情况一样,按防抱死方式控制前、后轮制动压力或前轮制动压力。
如果前轮位于摩擦系数不均匀的路面区域中,该区域具有较高的摩擦系数,而后轮位于具有较低摩擦系数的路面区域中,则后轮有锁定趋势而前轮无锁定趋势。在此情况下,最好使前轮制动压力为最大,同时防止前轮的锁定,以使前轮能够利用路面区的较高的摩擦系数来缩减车辆的制动距离。另一方面,最好将作用在后轮上的拐弯力增至最大,用以提高车辆的转向或方向的稳定性。换句话说,希望制动系统能够增加前轮制动压力而不增加后轮制动压力,或是能够减少后轮制动压力而不增加前轮制动压力。在本第二实施例中,建立第五或第六种压力控制模式,以增加前轮制动压力而不增加后轮制动压力,并建立第六种压力控制模式,以减少后轮制动压力而不降低前轮制动压力。这样,本实施例可保证不仅减少车辆所需的制动距离,而且在前轮位于摩擦系数不均匀的路面的高摩擦系数区而后轮位于低摩擦系数区时,在制动车辆的情况下,提高车辆的转向稳定性。
下面将参考图21的曲线描述按照第二实施例的防抱死制动系统的有利作用。
在由汽车司机压下制动踏板14而开始的车辆的正常制动中,是主制动缸10而不是泵150起着压力源的作用,不管单向阀装置160是否存在,主制动缸压力都作用在前轮制动缸20上。因此,前—后力的分配点从图21所示曲线的座标系的零点开始,沿着第一基本分配线和用于车辆按最小载荷行驶的P阀110的分配线移动。
如果车辆按最小截荷行驶(车辆以较小的截荷行驶的一种形式),则当作用在制动踏板14上的下压力已经增加,将前轮制动压力加大到一个略低于前轮开始在路面上锁定的水平时,力分配点就到达如图21所示的点“a”。当由于制动踏板14上的下压力进一步加大,使前轮的锁定程度过大而启动前轮制动压力的防抱死控制时,前轮制动压力和后轮制动压力都同时按第七种压力控制模式降低。因此,如图21的曲线所示,力的分配点就沿左侧方向以点“a”移至位于第一分配线或用于最小载荷行驶的P阀110的分配线上的某个点。在这个特殊的例子中,力的分配点移至点“b”。上面的说明是以这样的假设为基础的,即制动踏板14保持受压,而主制动缸压力即使在前、后轮制动压力开始第一次降低以后仍然继续增加,也就是说,假设泵150的开口压力以车轮制动压力开始第一次降低时的水平开始增加。
如果由于前轮的锁定趋势消除,要起动运行的第四种压力控制模式,以增加前、后轮制动压力,则将从泵150输出的制动液供给前轮制动缸20,其压力降对应于第一单向阀162的开启压力差。但是,从泵150输出的制动液供往后轮制动缸30时没有压力降。应当指出,在前轮的锁定趋势已经消除的时候,也就是说,当运行的第四种压力控制模式已经起动时,制动液的一部分已经储存在油箱144中。在开始从泵150输出制动液以后,前轮制动压力和力保持不变,只增加后轮制动压力和力,直至第一单向阀162打开时为止。因此,力的分配点沿着图21的曲线的垂直轴(后轮制动力沿轴取值)在正的方向上从点“b”移至位于第二基本分配线或用于满载行驶的P阀110的分配线上的某个点,在这个特殊的例子中,压力分配点移至点“c”。接着,力的分配点沿着用于满载行驶的P阀110的分配线,在增加后轮制动力的方向上从点“c”移动,最终到达用于最小载荷行驶的后轮锁定线和用于满载行驶的P阀110的分配线的交点“d”。此后,就按防抱死方式控制后轮制动压力,以便消除后轮的锁定趋势。
当加大作用在制动踏板14上的下压力,使前轮制动力加大至一个略低于车轮锁定水平的值时,如果车辆按满载行驶(车辆按较大载荷行驶的一种形式),则前—后力的分配点将如图21所示的那样移至点“e”。进一步增加制动踏板上的下压力,将使前轮制动压力按防抱死的方式起动。因此,力的分配点将如上所示的移至点“b”。
当由于前轮锁定趋势的消除而起动运行的第四种压力控制模式,以增加前、后轮制动压力时,力的分配点就同上面的情况一样,沿垂直轴的正向从点“b”移至点“c”。在运行泵150,进一步地增加前、后轮制动压力时,力的分配点又沿着用于满载行驶的P阀110的分配线从点“c”移动,最终到达用于满载行驶的P阀110的分配线和用于满载行驶的前轮锁定线的交点“f”。此后,执行防抱死控制,以消除前轮的锁定趋势。
在本第二实施例中,在正常压力控制的运行(不存在制动压力的防抱死控制)过程中,按照第一基本分配线和用于最小载荷行驶的P阀110的分配线的综合控制前、后轮制动力的实际分配,不管车辆是按照最小载荷行驶还是按照满载行驶。反之,当车辆以最小载荷行驶,按防抱死压力控制运行时,前、后轮制动力的实际分配基本上按照用于最小载荷行驶的理想分配曲线控制,更精确一些,按照在用于满载行驶的P阀110的分配线之下(在图21中)的那部分用于最小载荷行驶的理想分配曲线和在用于最小载荷行驶的理想分配曲线和在用于最小载荷行驶的理想分配曲线下方的那部分用于满载行驶的P阀110的分配线控制。当车辆以满载行驶,按防抱死压力控制运行时,实际分配基本上按照用于满载行驶的P阀的分配线控制,更精确一些,按照在用于满载行驶的P阀的分配线下方的那部分用于满载行驶的理想分配曲线,和在用于满载行驶的理想分配曲线下方的那部分用于满载行驶的P阀的分配线控制。
因此,在本第二实施例中,车辆满载行驶时的前、后轮制动力之和或总的车轮制动力要相对于传统的制动系统中的增加,在传统的制动系统中,即使在车辆满载行驶时,防抱死压力控制操作也是按照第一基本分配线执行的。因此,在本制动系统中,车辆所需的制动距离可以缩短。由图21所示的曲线还可以理解到,车辆满载行驶时的后轮制动压力或力可以有效地增加,由此而减少所需的车辆制动距离,即使当理想的后轮制动力小于P阀110的额定值,例如当满载的车辆突然在覆盖有雪的路面或其它具有低摩擦系数的路面上制动时。
在本实施例中,前、后轮制动力在正常压力控制操作时和在防抱死压力控制操作,并且车辆按最小载荷行驶时的分配对应于第一种分配方式,而前、后轮制动力在防抱死压力控制操作且车辆按满载行驶时的分配对应于第二种分配方式。在前后轮制动力的整个范围内,第二种分配方式限定的后轮制动力大于由第一种分配方式限定的制动力。
在本第二实施例中,第一单向阀162的开启压力差比装在图12所示第一实施例中的第一单向阀72的大。描述得更具体一些,第一单向阀162的开启压力差要确定成或预调成使第二基本分配线能够与为在具有低摩擦系数(约为0.3)的路面上行驶的满载车辆确定的后轮锁定线相交,这种路面例如为由压实的雪覆盖的路面。换句话说,第一单向阀162的开启压力差是确定得比较高的,以致在车辆满载行驶,同时后轮制动压力低于P阀110的额定值时,如果后轮制动压力没有按防抱死的方式控制,后轮仍然能在制动踏板14过分压下时在这种低摩擦系数的路面上锁定。但是,实际上,在这种情况下,由于按防抱死压力控制操作,后轮在制动踏板过分压下时的早期锁定便可以防止或受到限制。也就是说,本实施例是适宜的,它使得防抱死压力控制操作有效地与比前轮制动压力高的后轮制动压力结合,而该高出的压力是由第一单向阀162的开启压力差引起的,这样,就使实际的前—后力分配方式与用于满载行驶的理想分配曲线充分接连,即使后轮制动压力低于P阀110的额定值时也是如此。在这方面,所需的车轮制动距离在车辆满载行驶时也可同样大大地缩短。
因此,不仅在具有较高摩擦系数的路面上用较大的制动力制动的过程中,而且在具有较低摩擦系数的路面上用较小的制动力制动的过程中,按照第二实施例的防抱死制动系统能够在满载行驶时减少所需的车辆制动距离。为了在车辆满载行驶时用较大的制动力有效地减少所需的制动距离,即使在起动防抱死压力控制以后,也有必要加大主制动缸的压力,以使前、后轮制动压力的最大增加量足够大。由于这个原因,在车辆满载行驶并使用较大的制动力时,所需的制动距离不能总是有效地减少。反之,为了在车辆满载行驶时以较小的制动力有效地减少所需的制动距离,即使在起动防抱死压力控制以后,主制动缸的压力也无需加大。因此,在车辆满载行驶并采用较小的制动力时,经常可以有效地减少所需的制动距离。
下面将参考图22详细地描述单向阀装置160的结构。
在本实施例中,单向阀装置160与第二截止阀140在结构上做成一个部件,它在图17中用一个由点划线构成的正方形方框示出,这样,就可以减少所需的零件数和部件的总体尺寸。
第二截止阀140装在壳体177中。如同在本技术领域中所熟知的那样,第二截止阀140包括一线圈140a和一其形状为穿过线圈140a延伸并与线圈140a成同心关系的杆的驱动件140b。驱动件140b由一其形状为一套筒的静止支承件140c支承,以使驱动件140b可滑动地沿纵向相对于支承件140e移动。驱动件140b有一个部分为球形的上端部分140d(见图22),它用作一个阀件,而一个其形状为套筒的阀座件140e则同心地固定在支承件140c上。阀座件140e在其与阀件140d上端部分相对的一端有一个环形的阀座140f。阀座140f与阀件140d配合,组成一截止阀。阀座件140e有一在纵向上经过它而形成的中央连通通道140g。连通通道140g在阀座140f处开口。
上述壳体177也有一个具有圆形横截面的通道178,用于连接前轮制动缸20和后轮制动缸30(P阀110)。阀座件140e固定地装在通道178中,以使阀座件140e与通道178同心,并在阀座件140e和通道178的周向表面之间留下一个环形间隙。这个环形间隙起着与穿过阀座件140e而形成的中央连通通道140g同心的环形通道179的作用。
在环形通道179内,装有一其形状为杯形密封的用作第二单向阀164的一通密封件,和一其形状为O形环140h的二通密封件。杯形密封(第二单向阀)和O形环140h布置得在描述次序上从前轮制动缸20向着后轮制动缸30的方向。这些杯形密封和O形环140h将环形通道179分成一个在前轮制动缸20这一侧的第一部分和一个在后轮制动缸30这一侧的第二部分,以及在第一部分和第二部分之间的第三中间部分140i。中间部分140i与泵通道148的输出端或输送端相连。阀座件140e有一用于液体在连通通道140g和环形通道179之间连通的通道140j。在与通道140j相连的连接点和通道140g在前轮制动缸20这一侧的端部之间的连通通道140g的一部分上,装有第一单向阀162,其形状为具有一被弹簧偏压的球140k的单向阀。球140k通常在其形式为一弹簧140l的偏压装置的偏压作用下保持坐落在圆形的阀座140m(它也在阀座件140e上形成)上。
在如上所述地构造的单向阀装置160中,第一单向阀162阻止制动液沿着从前轮制动缸20向环形通道179的中间部分140j方向的流动。但是,第二单向阀164则允许制动液流入中间部分140i,其开启压力差基本上为零。另外,当中间部分140i中的压力比后轮制动缸30中的压力高,其大于量超过第一单向阀162的预先设定的开启压力差时,第一单向阀162允许制动液沿着从中间部分140i向着后轮制动缸30方向的流动。这个开启压力差由弹簧140l的偏压力确定。第二单向阀164总是阻止液体从中间部分140i流向后轮制动缸30。液体在中间部分140i和后轮制动缸30之间的流动只受到第二截止阀140的控制。在图22中,参考符号140n代表作为偏压装置的弹簧,它用于在离开阀座140f的方向上偏压阀件140d。
在本单向阀装置160中,其中装有第一单向阀162的中央连通通道140g,和其中装有第二单向阀164的环形通道179是彼此同心地形成的,这样,单向阀装置160在阀座件140e的半径方向或直径方向的总体尺寸可以减小,以使装有单向阀装置160的制动系统的尺寸为最小。
另外,具有阀座140f和140m的阀座件140e也用作限定连通通道140g和环形通道179的装置,同时还进一步地起着支承第一和第二单向阀162、164的作用。为了使所需要的零件数为最少并且使整个制动系统的尺寸为最小,这种布置是有效的。
从本第二实施例的上述描述中可以理解,单向阀装置160、控制器170和P阀110彼此合作,组成用于按照第一和第二种分配方式中所选择的一种控制作用在前、后轮上的制动力分配的分配控制装置的一个例子。还应当理解,通道178包括一个用作在与前制动缸通道24相连的连接点和与泵通道148相连的连接点之间的后制动缸通道24的一部分的那部分,以及中央连通通道140g和环形通道179分别用作两个同心的、互相独立的通道,其中的一个通道具有圆形的截面形状,另一个则具有环形的截面形状。
还应进一步指出,P阀110装在包括第一、第二和第三截止阀100、140、146油箱144和泵150的液压回路的外面。这种布置使之有可能将P阀110与一个整体的制动装置分开制造,该整体的制动装置包括容纳在一单个的共同壳体中的截止阀100、140、146,油箱144和泵150。这样,制动装置的尺寸与重量都可以减小。在将P阀110与制动装置彼此分开制造的地方,通常是将制动装置安装在车辆的发动机室内,更精确一些,装在主制动缸10的附近,同时使P阀位于设置后制动缸通道24的导管在其上支承的车身部分上,或是在其中包括后轮制动缸30的制动器附近。
下面将参考图23—26,描述本发明的第三实施例。本实施例与第二实施例的差别只在于用控制器170控制第二截止阀140的方式。
如图20所示,在第四种压力控制模式中,前轮制动缸20中的压力增加得比较慢,而后轮制动缸30中的压力则增加得比较快。在此第四种模式中,后轮制动压力靠泵150的运行来增加。在这方面,如图26的上部所示,泵150并不连续地输送经过加压的制动液,而是间歇地输送液体。因此,如果第二截止阀140在第四种压力控制模式中保持打开,其开启时间长于泵150的输送时间,则由泵150的每个输送动作输送的全部液体量都供往后轮制动缸30,除非第一单向阀162由泵150的输送压力打开。另一方面,后轮制动缸30的直径通常都小于前轮制动缸20的直径。因此,当同样的制动液量送往前、后轮制动缸20、30时,后轮制动缸30中的压力将增加得更灵敏。因此,按第四种模式连续控制车轮制动压力,并使第二截止阀140保持打开,其结果将使后轮制动压力过分迅速地增加,导致由于压力上升的尖峰所产生的不希望有的使后轮制动压力的控制稳定性下降。
由于上述缺点,按照本第三实施例的制动系统有一个负载循环压力控制模式,其中,第二截止阀140按有控制的负载循环交替地打开和关闭,而第一和第三截止阀100、146则保持关闭。这个负载循环压力控制模式被认为是第四种模式(用于缓慢地增加前轮制动压力和快速地增加后轮制动压力)和第五种模式(用于快速地增加前轮制动压力并保持后轮制动压力不变)之间的折衷。
在负载循环压力控制模式中,第二截止阀140的线圈的负载循环并不是固定值,而是用于连续改变前、后轮制动压力的增加率的可变量。
在负载循环压力控制模式中,如果第四种压力控制模式的特性胜过第五种压力控制模式的特性,则增加后轮制动压力的趋势就增加,如果第五种模式的特性胜过第四种模式的,则增加前轮制动压力的趋势就增加。因此,其中的第二截止阀140的负载循环可以连续地改变的负载循环压力控制模式有利于得到高的稳定性,而不会有过高的后轮制动压力的增加率,同时保证能合适地控制前、后轮制动压力的分配,也就是,合适地控制作用在前、后轮上的制动力的分配。
在本第三实施例中,如图23—25的流程图所示,控制器170的ROM储存了用于控制第二截止阀140的程序。图23的流程图示出了用于控制第二截止阀140的电磁线圈的程序,图24的流程图示出了在图23所示程序的步骤S40中所执行的子程序,而图25的流程图则示出了用于确定电磁线圈的OFF时间T1的程序。
下面首先简要地说明这些程序。
为了用泵150的运行来保证后轮制动缸30中的压力增加,需要正好在加压的制动液从泵150输出并供往后轮制动缸30时打开第二截止阀140。在本实施例中,第二截止阀140是打开的,而电磁线圈则保持被去磁或OFF,也就是说,存在去磁脉冲。但是,要相应地与泵150的间歇输送动作同步产生去磁脉冲是困难的。泵150有一个由输送时间和非输送时间组成的工作循环时间,它们基本上是相同的。本实施例进一步地采用使各对相邻的去磁脉冲都如图26的下部所示的那样按循不时间T3产生。每个去磁脉冲都有着与第二截止阀140的电磁线圈的OFF时间T1相对应的宽度,在线圈的OFF时间中,阀140保持打开。两个相邻的去磁脉中有一时间间隔T2,它包括电磁线圈的OFF时间T1,这也已在图26中示出。要使这个脉冲时间间隔T2等于泵150的输送时间,这个时间是泵150的工作循环时间的一半。根据这种布置,即使当一对去磁脉冲的产生并不与泵150在其间歇输送运行中的输送动作精确地同步时,由每对去磁脉冲中的一个去磁脉冲所产生的电磁线圈的OFF时间T1(截止阀140的打开时间)也通常保持在泵150的相应输送时间的输送时间之内。在图26所示的这个例子中,先前的去磁脉冲的整个OFF时间T1发生在对应的泵150的输送时间内。不过,这两个去磁脉冲OFF时间T1可以部分地与对应的泵150的输送时间重叠。在此情况下,第二截止阀140在其间由两个脉冲打开的总时间等于T1。
虽然有可能对泵150的每个输送动作或时间都产生去磁脉冲,但是这个布置并不是合乎要求的,因为第二截止阀140的电磁线圈对泵150的每个输送动作都要转至OFF和ON,而阀140对去磁脉冲的产生应当有高的响应。此外,这个布置有趋向使后轮制动压力快速增加。鉴于这些事实,本实施例改变成使各对去磁脉冲都用循环时间T3产生,这是泵150的工作循环时间的两倍。也就是说,每当泵150执行两个相邻的输送动作时,产生每一对去磁脉冲。因此,在循环时间T3中,从泵150输出的加压制动液以时间间隔T3—2T1供往前轮制动缸20,并以时间间隔T1供往后轮制动缸30。因此,从泵150供往前、后轮制动缸20、30的液体量的比例与(T3—2T1)/T1成正比。
当比例(T3—2T1)/T1加大时,前轮制动压力的增加率加大,而后轮制动压力的增加率减小,这样,作用在前轮上的制动力就增加,而作用在后轮上的制动力就减小。因此,在从泵150供往前、后轮制动缸20、30的制动液量的比例和前、后轮的制动压力或力的比例之间存在一个关系。也就是说,前、后轮制动压力和力的比例随从泵150供往前、后轮制动缸20、30的液体量的比例的加大而加大。
因此,前、后轮的制动力的比例可以因从泵150供往前、后轮制动缸20、30的液体量的比例的改变而改变。通过改变第二截止阀140的电磁线圈的OFF时间T1(打开时间)和后继各对去磁脉冲在其间产生的循环时间T3中的至少一个,就可以改变后一比例。如果增加电磁线圈的OFF时间T1,举例来说,则供往前轮制动缸20的液体量与供往后轮制动缸30的液体量的比例就减少,并且前轮制动和与后轮制动力的比例也相应地减少。如果减少电磁线圈的OFF时间T1,则供往前轮制动缸20的液体量与供往后轮制动缸30的液体量的比例就增加,并且前轮制动力与后轮制动力的比例也相应地增加。如果增加循环时间T3,则前、后轮制动缸20、30的液体供应量的比例增加,前、后轮的制动力的比例也相应地增加。如果减少循环时间T3,则前、后轮制动缸20、30的液体供应量的比例和前、后轮的制动力的比例都减少。
在本第三实施例中,只增加或减少第二截止阀140的电磁线圈的OFF时间T1,以连续地改变截止阀140的负载循环,该循环是截止阀140的打开时间与关闭时间之比。
此外,在本实施例中,电磁线圈的OFF时间T1是根据前、后轮制动压力的减少与增加的次数而确定的。为此,控制器170中装有一减压计数器CFR,当前轮制动压力减少一次时,它就增值,而当后轮制动压力减少一次时,它就减值。这个减压计数器CFR的存数代表前、后轮制动缸20、30的减压频率之间的关系。每次当计数器CFR的存数超过一正的额定值+K时,线圈的OFF时间T1(每个去磁脉冲的宽度)就增加一个预定的恒定值a,而每次当计数器CFR的存数比一个负的额定值一K小时,就减少一个值a。OFF时间T1是在0至T3的范围内变化的。
如果前轮制动压力的减少发生得比较频繁(如果前轮制动缸20显示出比较大的压力减少趋势),那么CFR的存数就超过正的额定值+K,第二截止阀140的OFF时间或打开时间T1就增加,这样,从泵150供往前轮制动缸20的液体量就减少,以减少前轮制动压力的增加率,并由此减少作用在前轮上的制动力。反之,由泵150供往后轮制动缸30的液体量增加,以增加后轮制动压力的增加率,并由此增加作用在后轮上的制动力。因此,在此情况下,前轮的制动功能降低,而后轮的制动功能提高。
如果后轮制动压力的减少发生得比较频繁,那么CFR的存数就小于负的额定值-K,且第二截止阀140的OFF时间或打开时间T1就减少,这样,从泵150供往前轮制动缸20的液体量就增加,以增加前轮制动压力的增加率,并由此增加作用在前轮上的制动力。反之,从泵150供往后轮制动缸30的液体受到阻止,使后轮制动压力保持在现有的水平上,并由此保持现有的作用在后轮上的制动力。因此,在这种情况下,前轮的制动功能提高,而后轮的制动功能的提高受到抑制。
应当理解,本第三实施例的采用使得通过在减压计数器CFR的存数的基础上改变线圈的OFF时间T1(第二截止阀140的去磁脉冲宽度),就可根据前、后轮制动缸20、30中的至少一个的减压趋势(减压滞后)来改变第二截止阀140的线圈的负载循环。
下面参考图23和24的流程图详细描述用于控制第二截止阀140的程序。在此程序中,第二截止阀140不仅按负载循环模式控制,而且也按下面所说明的其它压力控制模式控制。
图23的用于控制第二截止阀140的本程序是按预定的时间间隔执行的。程序从步骤S10开始,以确定制动系统是否处于防抱死压力控制的过程中。这个确定是根据装在控制器170的RAM中的信号发生器进行的。如果在步骤S10中得到否定的决定(NO),控制流程就转到步骤S60,产生一个信号,使第二截止阀140去磁或转至OFF,使阀40保持在打开状态。这样,本程序的一个循环就终止。
如果制动系统的防抱死压力控制在重复执行程序的过程中开始,并在步骤S10中得到肯定的决定(YES),则控制流程就转到步骤S20,以确定是否需要减少前轮制动压力。这个确定是根据装在RAM中的信号发生器进行的。如果在步骤S20中得到肯定的决定(YES),控制流程就转至步骤S60,将第二截止阀140的线圈转至OFF,以打开阀140。为了减少前轮制动压力,第二截止阀140应当按如上所说的第七种压力控制模式打开。在此第七种模式中,前、后轮制动缸20、30中的压力都减少。
如果在步骤S20中得到否定的决定(NO),控制流程就转到步骤S30,以确定是否需要减少后轮制动压力。设置这个步骤S30,是为了确定是否只需要减少后轮制动缸30的压力。如果在步骤S30中得到肯定的决定(YES),控制流程就转到步骤50,使截止阀140的线圈励磁或转至ON,以关闭阀140。在此情况下,不管前轮制动压力如何,都只减少后轮的制动压力。
如果前轮制动缸20和后轮制动缸30都不需要减少压力,则在步骤S30中得到否定的决定(NO),因此要实施步骤S40,以按负载循环压力控制模式控制第二截止阀140。在前一实施例中,在这种状态下选用了第四或第五种压力控制模式。而在本实施例中,则选用负载循环压力控制模式,而不是第四或第五种模式。
在理论上,运行的负载循环压力控制模式也可在表1中指出的第一或第二种压力控制模式中实行。但是在实际上,在防抱死压力控制操作中是很少选择第一和第二种模式的。在这个意义上,负载循环压力控制模式是作为第四或第五种模式的替换方案来使用的。
在负载循环压力控制模式中用于控制第二截止阀140的子程序在图24的流程图中详细地示出。在此子程序中,首先实施步骤S100,以从控制器170的ROM中读出循环时间T3(它是一个预定的常量);从控制器170的RAM中读出从现有循环开始的时间经过T,在该循环中,产生一对去磁脉冲其中的每一个都限定线圈的OFF时间T1;以及确定时间经过T是否达到预定的循环时间T3。也就是说,设置步骤S100是为了确定预定的循环时间T3是否已经经过。如果在步骤S100中得到否定的决定(NO),则执行步骤S110,以(从RAM)读出现在起作用的线圈的OFF时间T1;并确定时间经过T是否短于线圈的OFF时间T1。线圈的OFF时间T1将如下所述地由图25中的流程图所表示的程序确定,并储存在RAM中。如果在步骤S110中得到肯定的决定(YES),控制流程就转至步骤S120,将截止阀140的线圈转至OFF,以打开阀140。也就是说,产生所讨论的一对去磁脉冲的第一个。以后,就实施步骤S130,将时间经过T增加一个预定的值ΔT。这样,图24所示子程序的一个执行循环就终止,并使控制流程返回至图23的主程序。
图24的子程序每次都是在执行图23的主程序步骤S40时执行的。下面的描述涉及重复实行图23的主程序的步骤S40或图24的子程序,而不实行步骤S50和S60的情况。
当时间经过T由于重复执行图24的子程序而已经达到线圈的OFF时间T1时,在步骤S110中得到肯定的决定(YES),于是控制流程转至步骤S150,以从控制器170的ROM读出预定的脉冲间隔T2,并确定时间经过T是否短于脉冲间隔T2。如果在步骤S150中得到肯定的决定(YES),控制流程就转至步骤S160,在其中,第二截止阀140的线圈转为ON,以关闭阀140。也就是说,第一个去磁脉冲终止,代之以使线圈励磁或转为ON的一个励磁脉冲。跟在步骤S160后面的是步骤S130。
如果时间经过T在重复执行图24的子程序的过程中已经达到脉冲间隔T2,则在步骤S150中就得到否定的决定(NO),且控制流程转至步骤S170,以确定时间经过T是否短于线圈的OFF时间T1与脉冲间隔T2之和。如果在步骤S170中得到肯定的决定(YES),就实行步骤S180,使截止阀140的线圈转为OFF,以打开阀140。也就是说,产生所讨论的一对去磁脉冲中的第二个。此后,控制流程就转至步骤S130。
如果时间经过T在重复执行图24的子程序的过程中达到和(T1+T2),则在步骤S170中获得否定的决定(NO),控制流程就转至步骤S190,将截止阀140的线圈转至ON,以关闭阀140。由此终止第二去磁脉冲。然后,控制流程转至步骤S134。
当时间经过T由于重复执行图24的子程序而增加至预定的循环时间T3时,在步骤S100中得到肯定的决定(YES),并执行步骤S140,以重新调整用于起动产生一对去磁脉冲的下一个循环的时间经过T。
重复执行图24的子程序,第二截止阀140就受到以循环时间T3间歇地产生的相续的各对去磁脉冲的控制(打开和关闭),以使每对中的两个去磁脉冲都有脉冲间隔T2,并且每个脉冲都有与第二截止阀140的线圈的OFF时间T1相对应的宽度,这可在图26的下部中看出。
第二截止阀140的负载循环是按照图25的程序根据线圈的OFF时间T1的确定来控制的,下面将对它作详细的描述。
图25的程序是按预定的时间间隔执行的。该程序从步骤S200开始,以确定制动系统是否处于防抱死压力控制的过程。如果在步骤S200中得到否定的决定(NO),控制流程就转至步骤S210,将减压控制器CFR的存数和信号发送器FX与FY的值重新调整为零,同时也将线圈的OFF时间T1重新调整至预定的初始值T10。计数值CFR的存数和信号发生器FX、FY的值,以及OFF时间T1都储存在控制器70的RAM中。下面将描述信号发生器FX、FY的功能。执行图25的程序的一个循环以步骤S210告终。
如果防抱死压力控制在重复执行图25的程序时开始,则在步骤S200中得到肯定的决定(YES),且控制流程转至步骤S220,以确定是否需要减少前轮制动压力。如果在步骤S220中得到肯定的决定(YES),就执行步骤S230,以确定是否要将信号发送器FX调至“0”。如果在步骤S230中得到肯定的决定(YES),控制流程就转至步骤S240,以增值减压计数器CFR,然后转至步骤S250,以将信号发送器FX调为“1”。
跟在步骤S250后面的是步骤260,以确定计数器CFR中的存数是否大于正的额定值+K。如果在步骤S260中得到肯定的决定(YES),就执行步骤S310,将线圈的OFF时间T1增加一个预定的值a,并将增加后的OFF时间T1储存在RAM中。跟在步骤S310后面的是步骤S320,以将减压计数器CFR重新调整为零。
此后,就执行步骤S270,以确定计数器CFR中的存数是否小于负的额定值-K。如果在步骤S270中得到否定的决定(NO),则执行图25的程序的现行循环就终止。
如果仍然需要在下一个循环中减少前轮制动压力,则在步骤S220中得到肯定的决定(YES),并因为信号发送器FX已经调为“1”而在步骤S230中得到否定的决定(NO)。因此,控制流程转至步骤S260,同时跳过步骤S240和S250。这样,信号发送器FX就只在重复执行现行的程序,同时又不断需要减少前轮的制动压力时,和来增值减压计数器CFR。换句话说,信号发送器FX的作用是只在要发出每一个指令,以减少前轮制动压力时,值计数器CFR增值。如果不再需要减少前轮的制动压力,则在步骤S220中得到否定的决定(NO),且控制流程转至步骤280,将信号发送器FX重新调至零。以后,就执行步骤S290和随后的步骤S300、S330、S340和S350,以减少计数器CFR。用于后轮制动缸30的步骤S290、S300、S330、S340和S350与用于前轮制动缸20的步骤S220、S280、S230、S240和S250是等效的。
此后,执行步骤S260,以确定计数器CFR的存数是否大于正的额定值+K。如果在步骤S260中得到否定的决定(NO),就执行步骤S270,以确定计数器CFR的存数是否小于负的额定值-K。如果在步骤S270中得到否定的决定(NO),则执行图25的程序的现有循环就终止。如果在步骤S270中得到肯定的决定(YES),控制流程就转至步骤S360,以从控制器170的RAM中读出线图的OFF时间T1,并将线圈的OFF时间T1减少一个预定的值a。跟在步骤S360后面的是步骤S370,在其中,将计数器CFR重新调整为零,且执行图25所示程序的一个循环终止。
从对本第三实施例的上述说明中可以理解,单向阀装置160起着减压控制装置的作用,它与控制器170和P阀110合作,构成用于按照第一和第二种分配方式中的一种控制前、后轮制动力分配的分配控制装置。还应当理解,用于实施图23所示程序(即用于按负载循环压力控制模式控制第二截止阀140的图24的子程序)和图25的用于确定线圈的OFF时间T1的程序的步骤S40的部分控制器170,起着用于根据车轮制动缸20、30所需的减压次数而改变截止阀140的负载循环的装置的作用。
下面参考图27和28描述本发明的第四实施例。
本第四实施例与第二实施例的区别仅在于P阀的结构和P阀与泵150的连接。在图17的第二实施例中,泵通道148的输出或输送端与处于第二截止阀140和P阀110上游的后制动缸通道24的一部分相连,以使从泵150输出的制动液经过截止阀140和P阀110供往后轮制动缸30。在此布置中,后轮制动缸30中的制动压力受到P阀110的减压功能的影响,即使在防抱死压力控制运行中也是这样。这一布置不允许后轮制动压力提高到足够大的水平。考虑到这一缺点,如图28所示,本第四实施例采用了直接与泵150相连的P阀180。
P阀180的结构将参考图28予以描述。由于P阀180基本上与P阀110相似,所以下面只描述P阀180与P阀110的区别。图18中所用的同样的参考标号将用于标号P阀180的对应元件。为了简单起见,它们将不再予以描述。
P阀180的设计要使之不在防抱死压力控制操作中起作用。也就是说,P阀180要适应于在防抱死压力控制时接受泵150的出口压力,阻止阀门活塞124执行减压功能,即,防止阀门活塞124坐落在杯形密封128上。
描述得详细一些,阀门活塞124的小直径部分122不直接暴露在空气室181中,而是有一个固定在小直径部分122上的辅助活塞182暴露在空气室181中。一个其形状为O形环183的二通密封件密封地装配在小直径部分122上,而一个其形状为杯形密封184的一通密封件则液封地装配在辅助活塞182上。O形环183和杯形密封184在其间限定了一个泵的压力室185。泵的压力室185经过一连通通道187、一连通通道188和一液体通道189和泵150的输送侧或输出侧相连,通过187通过衬套186形成,通道188通过壳体112形成,通道189如图27所示的与泵通道148相连。
辅助活塞182有一中心盲孔190,它在其端面上有开口并暴露在空气室181中,这样就使盲孔190形成空气室181的一部分。换句话说,形成盲孔190,是为了增加空气室181的体积,以使在阀门活塞124运行,执行它的减压功能时可容易地减小空气室181的体积。由于在本P阀180中采用了与用于图18所示P阀的阀门活塞124相同的阀门活塞,小直径部分122有一中心盲孔191,但是在本实施例中,这个盲孔191并不是必不可少的。
辅助活塞182通常在其形式为一弹簧192的偏压装置的偏压作用下与阀门活塞124保持紧密接触。P阀180的开启压力差同时由弹簧126和192的偏压力确定。
O形环183不仅仅起着防止制动液沿着从输入室110向泵的压力室185方向的流动的作用,而且也起着防止制动液沿相反方向流动的作用。
在装有如上所述地构成的P阀180的防抱死制动系统中,从泵150输出,以在防抱死压力控制中增加后轮制动压力的制动液通过第二截止阀140和P阀180供往后轮制动缸30。此时,P阀180不起降低从泵150收到的液体的压力的作用。解释得更具体一些,辅助活塞182沿着使空气室181的体积减少的方向(在图28中所看到的右侧方向)移动,由此使辅助活塞182与空气室181的底部接触。与此同时,阀门活塞124沿相反方向(在图28中所看到的左侧方向)移动,以使大直径部分120与壳体112的底部接触。虽然有底的阀门活塞124的台肩表面液密地与杯形密封128接触,但是设置在上述杯形密封128上的突起允许液体相对于P阀110在输入和输出室130、132之间流动。因此,P阀180只不过起着一部分后制动缸通道24的作用。于是,后轮制动缸30中的制动压力可以增加至一个使单向阀能打开的水平,也即达到主制动缸10中的压力。这样,后轮制动压力可以增加到一个足够高的水平,同时即使在有着P阀180时,也可以充分地运用后轮所在路面的摩擦系数来制动车辆。
下面将参考图29的曲线描述本发明的第四实施例的有利作用。
当作用在制动踏板14上的下压力在正常的制动情况下以零开始增加而无防抱死压力控制时,前—后力的分配点从图29所示曲线的座标系统的零点开始,沿着第一基本分配线(由没有截止阀100、140、146和第一单向阀162的基本制动布置所确定移动。如果在车辆按最小载荷行驶时进一步地增加在制动踏板14上的下压力,则力的分配点就将如图29所示的那样,再移至P阀180的分配线与用于最小载荷行驶的前轮锁定线的交点“a”。
如果在这种情况下开始防抱死控制,以在第七种压力控制模式中同时减少前、后轮制动压力,则力的分配点就移至点“b”。如果由于消除了前轮的锁定趋势而要建立第四种压力控制模式,以减小前、后轮的制动压力,则前轮的制动压力保持不变,直至第一单向阀172打开,然后将前轮的制动压力加大。相应地,力的分配点沿着平行于图29所示曲线的垂直轴的方向从点“b”开始移动,而这个方向是使后轮制动力增加的方向,由于P阀180在后轮制动力由于泵150的工作而增加时是失去作用的,于是力的分配点就移至在用于最小载荷行驶的后轮锁定线上的点“c”。因此,后轮制动压力的防抱死控制就得到起动,以消除后轮的锁定趋势。
如果力的分配点在车辆处于满载行驶并按正常制动操作时移到图29所示的“d”点,就起动前轮制动压力的防抱死控制,然后力的分配点就会由于防抱死压力控制而移至点“b”。如果前轮的锁定趋向接着被消除,则力的分配点就由点“b”经过点“c”移至位于第二基本分配线上的点“e”,这是因为,P阀180已经失去了作用。第二基本分配线是由包括单向阀装置160(第一单向阀162)但是不包括P阀180的基本制动布置确定的。于是,力的分配点在使后轮制动压力增加的方向上沿着第二基本线移动。最终,力的分配点到达第二基本分配线与用于满载行驶的前轮锁定线的交点“f”。然后,前轮制动压力按防抱死方式受到控制,以避免前轮的锁定趋势。
在本第四实施例中,在正常的压力控制操作时(不存在制动压力的防抱死控制),不管车辆是处于最小载荷行驶还是满载行驶,前、后轮制动力的实际分配都按照P阀180的分配线受到控制。反之,在车辆处于最小载荷行驶并按防抱死压力控制操作时,前、后轮制动力的实际分配都按照与用于最小载荷行驶的理想分配曲线足够相似和接近的分配方式受到控制。在车辆处于满载行驶并按防抱死压力控制工作时,前、后轮制动力的实际分配按照位于第二基本分配线下方(图29)的用于满载行驶的理想分配曲线的一部分,和位于用于满载行驶的理想分配曲线下方的第二基本分配线的一部分受到控制。因此,在本实施例中,车辆满载行驶时的后轮制动压力可以进一步地提高,由此可使车辆的总制动力得以增加,并可使所需的车辆制动距离缩短。由图29的曲线还可以了解到,车辆满载行驶时的后轮制动压力或力可以有效地得到增加,以便即使在理想的后制动力小于P阀180的额定值时也能由此减少所需的车辆制动距离。
在本实施例中,车辆在正常的压力控制操作时和在按最小载荷行驶且处于防抱死压力控制操作时的前、后轮制动力的分配与第一种分配方式相对应,而在车辆按满载行驶及防抱死压力控制操作时的前、后轮制动力的分配与第二种分配方式相对应。在后轮制动力的整个范围内,由第二种分配方式限定的后轮制动力大于由第一种分配方式所限定的。
同按照第二实施例的制动系统一样,按照第四实施例的防抱死制动系统能在满载行驶时减少所需的车辆制动距离,不仅是在在摩擦系数较高的路面上用较大的制动力制动时,而且是在摩擦系数较低的路面上用较小的制动力制动时。如同上面相对于第二实施例所指出的那样,在车辆满载行驶时用较大的制动力所需的制动距离并不总是能够有效地减少,但是在车辆满载行驶时用较小的制动力所需的制动距离却总是能够有效地减少。
在本第四实施例中,单向阀装置160起着减压控制装置的作用,它与控制器170和P阀180合作,组成用于按照从第一和第二种分配方式或所选择的一种控制前、后轮制动力分配的分配控制装置。此外,控制器170的用于执行图23的步骤S40(图24的子程序)和图25的程序的那些部分、起着用于根据前、后轮制动缸所需的减压次数改变截止阀140的负载循环的装置的作用。
下面将参考图30描述本发明的第五实施例。
同按照前面的第四实施例的防抱死制动系统一样,按照本实施例的防抱死制动系统也设计成能在防抱死压力控制时,即使在存在P阀时,也可将后轮制动压力增加到主制动缸压力的水平。在图27的第四实施例中,同在图17中的第二实施例一样,P阀180位于后轮制动缸30和第二截止阀140之间,但是P阀180装有用于使它的减压功能失效的装置。在图30的本实施例中,采用了用于第二实施例中的P阀110,但是该P阀110位于单向阀装置160的上游。
描述得详细一些,如图18所示那样构成的P阀110装在位于前、后制动缸通道22、24的连接点与单向回阀装置160之间的后制动缸通道24的一部分上。这样,泵通道148的输送或输出端位于P阀110的下游,由此使从泵150输出的制动液在防抱死压力控制时不流经P阀110就供往后轮制动缸30。因此,由泵150的运行而增加的后轮制动压力不受P阀110的减压功能的影响。
在其中的P阀110位于前轮制动缸20和泵150之间的本第五实施例中,从泵150输出的制动液在防抱死压力控制中首先如图18所示的那样供往P阀110的输出室132。因此,P阀110的输出压力增加,使阀门活塞124与构成壳体112的一部分的衬套193的底部紧密接触。接着,只有P阀的输出压力增加,而其输入压力则保持不变。当P阀110的输出压力超过输入压力时,杯形密封128的一通密封部分134打开,允许制动液沿从输出室132向着输入室130的方向,经过一位于一通密封部分134和缸孔118之间的间隙流动,这样,从泵150输出的制动液就经过P阀110供往前轮制动缸20。这样,前轮制动压力就由于泵150的运行而得到提高。
在本第五实施例中,单向阀装置160起着减压控制装置的作用,它与控制器170和P阀110合作,组成用于按照从第一和第二种分配方式中所选择的一种控制前、后轮的制动力分配的分配控制装置。此外,控制器的用于执行图24的子程序和图25的程序的那些部分起着用于根据前、后轮制动缸所需的减压次数改变截止阀140的负载循环的装置的作用。
在上面所详细描述的几个实施例中,第一单向阀72、162的开启压力差是固定不变的。但是开启压力差可以是变化的,以使开启压力差随着车辆截荷或路面摩擦系数的增加而增加。
尽管用现有的优选实施例参考附图详细地描述了本发明,但是可以理解,本发明的实施对熟悉本技术的技术人员而言是可以存在不同的改变、修改和改进的,其前提是不背离下述权利要求书中所规定的本发明的范围。


下面对附图中出现的有关曲线作进一步地说明图1中的曲线a表示后轮锁定线;曲线b表示同时锁定前后轮的点;曲线c表示实际的后制动力与理想值偏差的区域;曲线d表示满载行驶时的基本分配线;曲线e表示满载行驶时的理想分配曲线;曲线f表示满载行驶时LSP阀的实际分配线;曲线g表示最小载荷行驶时的基本分配曲线;曲线h表示最小载荷行驶时的理想分配曲线,曲线i表示最小载荷行驶时LSP阀的实际分配线;曲线j表示前轮锁定线。
图10中的曲线a均表示理想曲线,曲线b均表示实际曲线。
图11(a)中的曲线a均表示理想曲线,曲线b均表示实际曲线。
图11(b)中的曲线a表示非防抱死控制曲线;曲线b表示实际曲线,该曲线与理想曲线相当;曲线c表示理想曲线,曲线d表示实际曲线,该曲线与非防抱死控制曲线相当。
图16中的曲线a表示用于满载行驶时的后轮锁定线;曲线b表示用于满载行驶时的理想分配线;曲线c表示第二基本分配线;曲线d表示第一基本分配线;曲线e表示按照本发明的用于满载行驶的P阀的分配线;曲线f表示按照传统系统的用于满载行驶的P阀分配线;曲线g表示用于最小载荷行驶时的理想分配曲线;曲线h表示用于最小载荷行驶的P阀分配线;曲线i表示用于满载行驶的前轮锁定线;曲线j表示用于最小载荷行驶的前轮锁定线;曲线k表示用于最小载荷行驶时的后轮锁定线;线段A表示后轮制动力在满载行驶时加大;线段B表示与单向阀72的开启压力相对应。
图21中的曲线a表示用于满载行驶时的后轮锁定线;曲线b表示第二基本分配线;曲线c表示第一基本分配线;曲线d表示用于满载行驶时的理想分配曲线;曲线e表示用于满载行驶的P阀分配线;曲线f表示用于最小载荷行驶的理想分配线,曲线g表示用于最小载荷行驶时的P阀分配曲线;曲线h表示用于最小载荷行驶的前轮锁定线;曲线i表示用于满载行驶的前轮锁定线;曲线j表示满载行驶时的控制范围;曲线k表示最小载荷行驶时的控制范围;曲线1表示用于最小载荷行驶的后轮锁定线;线段A表示与单向阀72的开启压力相对应。
图29中的曲线a表示用于满载行驶时的后轮锁定线;曲线b表示第二基本分配线;曲线c表示第一基本分配线;曲线d表示用于满载行驶时的理想分配曲线;曲线e表示满载行驶时的控制范围;曲线f表示用于最小载荷行驶时的理想分配曲线;曲线g表示最小载荷行驶时的控制范围;曲线h表示P阀的分配线;曲线i表示用于满载行驶的前轮锁定线;曲线j表示用于最小载荷行驶的前轮锁定线;曲线k表示用于最小载荷行驶的后轮锁定线;线段A表示对应于单向阀72的开启压力。
权利要求
1.一种通过分别操作用于车辆前、后轮的前、后制动器来制动机动车辆的制动系统,其特征为一分配控制装置(36、64、70、80、84、90、110、160、170、180、210、212),其设置用于控制分别由上述前、后制动器(20、30、202、204)产生的前、后轮制动力的分配,该制动力作用在上述前、后轮上;上述分配控制装置按照从第一种分配方式和第二种分配方式中选择的一种控制上述分配,上述第一种和第二种分配方式中的每一种代表彼此间相对的上述前、后轮制动力,以使至少在前、后轮制动力小于各自的预定值时,由上述第二种分配方式所限定的上述后轮制动力大于由上述第一种分配方式所限定的。
2.一种如权利要求1的制动系统,其特征为,它还包括一用于对工作液体加压的液压源(10,200),其特征为,上述前、后制动器(20、30、202、204)分别包括一前、后轮制动缸(20、30、206、208),对它们供以经过上述液压源加压的工作液体,以及上述分配控制装置包括(a)一个装在上述前轮制动缸与上述液压源之间的单向阀(72、214),上述单向阀在由上述压力源产生的压力大于上述前轮制动缸中的压力,其大于量超过一预定的差值以后,允许液体沿从上述压力源向上述前轮制动缸的第一方向流动,由此使通过上述单向阀供向上述前轮制动缸的液体压力相对于由上述压力源产生的压力而降低,上述单向阀阻止液体沿与上述第一方向相反的第二方向流动。(b)用于有选择地使上述单向阀失效,以防止上述单向阀起作用,从而降低供往上述前轮制动缸的压力的选择性失效装置(64、80、84、90)。
3.一种如权利要求1的制动系统,其特征为,上述分配控制装置在作用于车辆上的载荷小于一预定的载荷值时按照上述的第一种分配方式控制上述前、后轮制动力的上述分配,并在上述载荷不小于上述预定的载荷值时按照上述第二种分配方式控制上述前、后轮制动力的上述分配。
4.一种如权利要求1的用于四轮机动车辆的交叉型或X交叉型制动系统,它具有两个压力作用子系统,这两个压力作用子系统与相应的主制动缸(10、224)的两个互相独立的加压室连接,每个上述的压力作用子系统包括(a)一前制动缸通道(22、226),它连接上述主制动缸的上述两个加压室中的对应的一个和上述前制动器的一个前轮制动缸(20、26),(b)一后制动缸通道(24、228),它连接上述前制动缸通道和上述后制动器的一后轮制动缸(30、208),(c)一其形式为常开截止阀的主制动缸截止阀(100、230),它装在位于上述主制动缸和上述前、后制动缸通道的连接点之间的上述前制动缸通道的一部分上,(d)一以其两相对端的一个与上述后制动缸通道连接的油箱通道(142、234),(e)一与上述油箱通道的另一端连接的油箱(144、232),(f)其形式为常闭截止阀的一减压阀(146、236),它装在上述油箱通道上,(g)一泵通道(148、238),它以其两相对端的一个与上述油箱连接,另一端与上述前、后制动缸通道中的至少一个连接,(h)一泵(150、240),它装在上述泵通道上,用于从上述油箱向上述的每个压力作用子系统的一部分输送工作液体,以及(i)一能按防抱死压力控制模式操作的控制器(170、241),它用于控制上述主制动缸截止阀、上述减压阀和上述泵,以执行防抱死压力控制操作,用来按防抱死方式控制上述前、后轮制动缸中的上述液体的压力,其特征为,上述分配控制装置包括上述控制器和一减压控制装置(160、242),该减压控制装置装在在上述主制动缸与上述前、后制动缸通道之间的部分以外的上述每个压力作用子系统的一部分上,上述减压控制装置将由其形式为上述主制动缸的第一液压源产生的压力作用在上述前轮制动缸(20、106)上,以在上述控制器未处于上述防抱死压力控制模式时由此建立上述第一种分配方式,上述控制器与上述减压控制装置在上述控制器处于上述防抱死压力控制模式时相互合作,建立上述第二种分配方式,以使由包括上述主制动缸和上述泵中至少一个的第二液压源产生的压力被上述减压控制装置降低,然后作用在上述前轮制动缸上。
5.一种如权利要求1的用于四轮机动车辆的交叉型或X交叉型制动系统,它具有两个压力作用子系统,它们与相应的主制动缸(10、224)的两个互相独立的加压室连接,上述两个压力作用子系统的每一个包括(a)一前制动缸通道(22、226),它连接上述主制动缸的上述两个加压室的对应的一个和上述前制动器的前轮制动缸(20、226),(b)一后制动缸通道(24、228),它连接上述前制动缸通道和上述后制动器的一后轮制动缸(30、208),(c)一其形式为常开截止阀的主制动缸截止阀(100、230),它装在位于上述主制动缸和上述前、后制动缸通道的连接点之间的上述前制动缸通道的一部分上,上述主制动缸截止阀在制动系统处于防抱死压力控制模式时是关闭的,在制动系统不处于防抱死压力控制模式时是打开的,(d)一其形式为常开截止阀的中间阀(140、254),它装在上述后制动缸通道(24,228)上,(e)一油箱通道(142、234),它以其两相对端的一个与位于上述中间阀和上述后轮制动缸之间的上述后制动缸通道的一部分相连,(f)一与上述油箱通道的另一端相连的油箱(144、232),(g)一其形式为常闭截止阀的减压阀(146、236),它装在上述油箱通道上,(h)一泵通道(148、238),它以其两相对端的一个与上述油箱连接,而另一端与位于上述中间阀和上述前、后制动缸通道的连接点之间的上述后制动缸通道的一部分相连(i)一泵(150、240),它装在上述泵通道上,用于从上述油箱向上述的每个压力作用子系统的一部分输送工作液体,以及(j)一能按防抱死压力控制模式操作的控制器(170、241),用于控制上述主制动缸截止阀、上述中间阀、上述减压阀和上述泵,以执行防抱死压力控制操作,按防抱死方式控制上述前、后轮制动缸中的上述液体的压力,其特征为,上述分配控制装置包括上述控制器和一单向阀装置(160、256),该单向阀装置装在位于上述前、后制动缸通道的连接点和上述后制动缸通道与上述泵通道的连接点之间的上述后制动缸通道的一部分上,上述单向阀装置包括一第一单向阀(162、258)和一第二单向阀(164、260),上述第一单向阀允许液体在由泵产生的压力比上述前轮制动缸中的压力大一个预定的差值以后,经过它沿着从上述泵向着上述前轮制动缸的第一方向流动,并阻止液体经过它沿与上述第一方向相反的第二方向流动,上述第二单向阀允许液体经过它沿上述第二方向流动,并允许液体经过它沿上述第一方向流动。
6.一种如权利要求5的制动系统,其特征为,位于上述前、后制动缸通道(22、226、24、228)的连接点和上述后制动缸通道(24、228)与上述泵通道(148、238)的连接点之间的上述后制动缸通道(24、228)的上述部分,至少有一部分包括第一和第二通道(140g、179),此第一和第二通道彼此同心且互相独立,同时分别具有圆形和环形的横截面形状,上述第一单向阀(162、256)装在上述第一和第二通道中的一个中,而上述第二单向阀(164、260)则装在上述第一和第二通道中的另一个中。
7.一种如权利要求5的制动系统,其特征为,上述分配控制装置包括(a)一比例阀(180),它装在上述后制动缸通道(24、228)中,并包括一阀门活塞(124),它用来在由上述液压源产生的压力低于预定的额定值时,将由作为液压源的上述主制动缸(10、224)或上述泵(150、240)所产生的压力作用在上述后轮制动缸(30、208)上,并在由上述液压源产生的压力超过上述预定的额定值时,将由上述液压源产生的压力降低,并将降低了的压力供给上述后轮制动缸(30、208),以及(b)一失效装置(181、182)用于使上述比例阀失效,防止上述比例阀在上述后轮制动缸中的压力增加时起着减少作用在上述后轮制动缸中的压力的作用。
8.一种如权利要求7的制动系统,其特征为,上述失效装置包括用于将由上述泵(150)产生的压力沿着一个与移动阀门活塞来减少由上述泵产生的压力的方向相反的方向作用在上述比例阀(180)的上述阀门活塞(124)上的装置,这样,当上述后轮制动缸中的压力增加时,比例阀就失效。
9.一种如权利要求5的制动系统,其特征为,上述控制器(170、241)具有多种有选择地建立起来的压力控制模式,以按上述防抱死方式控制上述主制动缸截止阀(100、230)、上述中间阀(140、254)和上述减压阀(146、236),上述的多种压力控制模式包括(1)一种上述中间阀与上述减压阀都打开,而上述主制动缸截止阀关闭,以同时减少上述前、后轮制动缸(20、30、206、208)中的压力的模式,(2)一种上述主制动缸截止阀与上述中间阀都关闭,而上述减压阀打开,从而由上述泵(150、240)的工作来增加上述前轮制动缸中的压力,并减少上述后轮制动缸中的压力的模式,以及(3)一种上述主制动缸截止阀与上述减压阀都关闭,而上述中间阀交替地关闭与打开,以通过上述泵的运行来增加上述前、后轮制动缸中的压力的负载循环压力控制模式。
10.一种如权利要求9的制动系统,其特征为,上述控制器(170、241)包括用于按上述负载循环压力控制模式改变中间阀(140、254)的负载循环的装置。
11.一种如权利要求10的制动系统,其特征为,上述的用于改变上述中间阀的负载循环的装置根据上述前轮制动缸(20、206)的减压趋势和上述后轮制动缸(30、208)的减压趋势中的至少一种改变上述负载循环,而这些趋势是在上述控制器(170、241)的控制下在上述防抱死压力控制操作中显示出来的。
12.一种如权利要求1的制动系统,它还包括一用于对工作液体加压的液压源(10、200),其特征为,上述前、后制动器(20、30、202、204)分别包括一前、后轮制动缸(20、30、206、208),它们被供以由上述液压源加压的工作液体,并且上述分配控制装置包括(a)一单向阀(72、214),它装在上述前轮制动缸和上述液压源之间,上述单向阀允许液体在由上述压力源产生的压力比上述前轮制动缸的压力大一个预定的差值时,沿着从上述压力源朝着上述前轮制动缸的第一方向流动,由此使经过上述单向阀供给上述前轮制动缸的液体的压力相对于由上述压力源产生的压力而减少,上述单向阀阻止液体沿与上述第一方向相反的第二方向流动;(b)选择性失效装置(64、80、84、90、216),用于有选择地使上述单向阀失效,防止上述单向阀起着降低作用在上述前轮制动缸上的压力的作用;(c)一载荷感知式比例阀(34),它装在上述液压源和上述后轮制动缸之间,上述载荷感知式比例阀包括一用于检测作用在车辆上的载荷的载荷传感构件(64),上述载荷感知式比例阀在由上述压力源产生的上述压力低于额定值时,将由上述压力源产生的压力作用在上述后轮制动缸上,并在由上述压力源产生的上述压力超过上述额定值时,降低由上述压力源产生的上述压力,并将降低了的压力作用在上述后轮制动缸上;上述额定值随由上述载荷传感构件测出的上述载荷的增加而加大,上述选择性失效装置在由上述载荷传感构件测出的上述载荷小于一预定的载荷值时使上述单向阀(72、214)失效,这样,上述分配控制装置就在由上述载荷传感构件测出的上述载荷小于上述预定的载荷值时,按照上述的第一种分配方式控制上述前、后轮制动力的上述分配,并在上述载荷不小于上述预定的截荷值时按上述第二种分配方式控制上述前、后轮制动力的上述分配。
13.一种如权利要求12的制动系统,其特征为,上述选择性失效装置(64、80、84、90、216)包括(a)一旁路通道,它与上述单向阀(72、214)平行地连接,并绕过上述单向阀;(b)一装在上述旁路通道上的由电磁线圈操纵的截止阀(80);(c)一载荷传感开关(90),它响应上述载荷传感构件(64),并在由上述载荷传感构件测出的上述载荷小于上述预定的载荷值时发出一第一信号,在由上述载荷传感构件测出的上述载荷不小于上述预定的载荷值时发出一第二信号;以及(d)一控制器(84),它对上述第一信号作出响应,打开上述截止阀,从而使上述单向阀失效,并对上述第二信号作出响应,关闭上述截止阀,从而使上述单向阀起作用,使作用在上述后轮制动缸上的压力相对于由上述压力源产生的压力降低。
全文摘要
一种制动系统,用于分别由车辆的前、后轮的前、后制动器制动机动车辆,它包括一分配控制装置,用于按照从第一和第二种分配方式中选出的一种控制由各自的前、后制动器产生的前、后轮制动力的分配,每一种分配方式代表彼此间相对的前、后轮制动力,以使至少在前、后轮制动力小于各自的预定值时,由第二种分配方式限定的后轮制动力比由第一种分配方式限定的大。
文档编号B60T8/26GK1117453SQ95102490
公开日1996年2月28日 申请日期1995年3月15日 优先权日1994年3月15日
发明者栉直人, 杉谷达夫, 内田清之, 伊藤健治, 近藤敬, 门胁美德 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1