用于交通工具的控制系统的制作方法

文档序号:4144707阅读:218来源:国知局
专利名称:用于交通工具的控制系统的制作方法
技术领域
本发明一般涉及用于交通工具的控制系统的领域。本发明尤其涉及控制系统,用于使交通工具相对于参考交通工具具有所选择的位置和所选择的速度。
背景技术
飞行器的远程控制通常由命令交通工具的空速(airspeed)或惯性速度(地速)来进行,而速度的方向通过控制交通工具的朝向来选择。控制输入通常是以飞行器的精度、纬度或方向轴形式给出的命令。因此,如果控制飞行器的操作者想让飞行器在某个方向运动,操作者必须知道飞行器正指向哪个方向,以确定必须使用哪个控制轴以在哪个方向,以便使飞行器在想要的方向运动。当相对于另一个运动交通工具控制飞行器时,操作者也必须知道运动交通工具的速度和方向。
已经使用了相对于另一个交通工具控制交通工具的几种方法,包括在受控交通工具上使用传感器以确定参考交通工具的邻近或位置。这种方法已经在例如汽车的(automotive)巡航系统中使用,如在U.S.Pub.Nos.US2002/0072843和US 2003/0004633中公开的那些。在US.Pat.No.5,768,131中,受控交通工具上携带的雷达系统用于测量相对于受控交通工具前面的交通工具的距离和速度。其它系统已经包括摄像机,如授予Valery等的US.Pat.No.6,324,295,或者光源和反射器,如授予Biferno等的US.Pat.No.5,530,650,用于确定在补给燃料期间飞机的相对位置和运动。
虽然多年来在飞机和其它交通工具的远程控制领域已经有显著的发展,但是仍然存在明显的缺点。如果操作者想相对于运动目标如另一个交通工具操作受控交通工具,那么操作者必须考虑受控交通工具和目标两者的位置和速度,使控制受控交通工具成为更困难的任务。

发明内容
存在对改善的用于交通工具的控制系统的需要。
通过提供这样一种系统实现这个目的该系统允许容易地控制受控交通工具相对于参考交通工具或目标的位置和速度。安装在受控交通工具上的传感器系统感测受控交通工具的位置和受控交通工具的惯性运动,并且安装在受控交通工具上的接收机接收通信参考交通工具的位置和运动的发射数据。传感器系统通信表示受控交通工具的位置和惯性运动的数据给安置在受控交通工具上的控制系统,用于与来自接收机的数据比较,允许计算受控交通工具相对于参考交通工具的位置和运动。表示受控交通工具相对于参考交通工具的选择的位置和/或速度的数据,与计算的相对位置和相对速度比较,并且控制系统命令受控交通工具上的设备操纵受控交通工具,以便消除计算值和选择值之间的误差。
例如,本发明允许相对于参考交通工具的速度和方向控制飞机。这个控制独立于风或参考交通工具的其它运动,即由波浪导致的海上的船的运动。而且,速度和位置命令独立于飞机或参考交通工具的姿态或朝向。在飞机接近它要着陆的运动船的情况下,命令可以在相对于船的X、Y、Z坐标系统中。因此,X方向的命令将在船首/船尾方向移动该交通工具,并且Y方向的命令将在左舷/右舷方向移动该交通工具。Z方向的命令将改变相对于运动船的垂直位置和/或速度。
飞机携带用于确定相对于地面的位置和飞机的惯性运动的传感器,并且携带用于接收发射到飞机的数据信号的接收机。参考交通工具也携带确定参考交通工具相对于地面的位置和速度的传感器。参考交通工具的位置和速度发射给飞机,并且飞机上携带的数字系统计算飞机相对于参考交通工具的位置和速度。这些相对值与选择的位置和/或速度比较,选择的位置和/或速度可以由操作者在飞行之前或期间通信给数字系统,并且数字系统命令飞机上的飞行控制设备操纵飞机达到和保持选择的位置和/或速度。
通过使用命令控制台上的图形显示来选择相对于参考交通工具的三维速度或位置命令,飞机的速度和位置可以由地面控制站(GCS)操作者控制。这些显示可以在多种坐标系统中显示飞机相对于参考交通工具的位置和速度,坐标系统包括笛卡尔和极坐标系统。操作者可以使用输入设备选择并拖曳命令到想要的值,指向并点击命令,或者在想要的命令上敲键盘。另外,相对速度或位置也可以从由操作者使用的控制杆命令,或者命令可以自治的,如自动起飞或自动接近和着陆、复飞/中止着陆、位置保持或其它预编程命令和操纵。


为更完整地理解本发明,包括它的特征和优点,现在结合附图参考本发明的详细说明,在附图中相同的号码表示相同的部分,并且其中图1是船和正在由根据本发明的飞行控制系统控制的飞机的透视图;图2是位于图1的船上的着陆垫(landing pad)的透视图;图3是本发明的地面控制站的透视图;图4是本发明的飞行控制盒的透视图;图5是本发明的飞行控制系统的组件的示意图;图6是图3的地面控制站上的第一图形显示的图;图7是图3的地面控制站上的第二图形显示的图;以及图8是显示本发明的方法的步骤的示意流程图。
具体实施例方式
本发明提供这样一种系统,用于使用相对速度相对于参考交通工具控制受控交通工具,该相对速度通过比较受控交通工具的位置和运动与已知点的位置和运动来确定。
为了说明本发明的系统,该系统的说明将参考它作为用于结合海上的船而操作的飞机的控制系统的使用。船上的已知点可以是降落点(TDP)用于使飞机着陆。如果飞机以相同的速度运动,即与TDP的速度和方向相同,那么相对速度为零。本发明允许相对于TDP的精确的飞机速度控制,而不管TDP的速度或相对风的速度和方向。这个系统的独特特性是因为系统允许操作者能够以如下方式相对于运动交通工具控制飞机,该方式类似于相对于地面上的点控制地面速度的方式,所以飞机速度的控制独立于飞机的朝向。如这里所使用的,“速度”将被理解为向量,方向和大小两个都包括,虽然这些可以独立地说明。
虽然本发明的系统在飞机/船组合的使用中说明,但是系统可以用于任何组合和数目的陆地、空中或海洋交通工具或其它运动对象,在那里它有用于相对于可运动点或交通工具控制交通工具的位置和速度。应用的一些例子包括这样的用途由地面交通工具控制飞机、由飞机控制地面交通工具、由飞机控制其它飞机、以及由地面交通工具控制其它地面交通工具。
现在参考图1和2,飞机11被描述为接近船13飞行。虽然在图1中显示为无人驾驶的tiltrotor类型的飞机,但是飞机11可以是任何类型,并且可以是固定翼飞机或其它种类的旋翼飞机,并且可以是有人驾驶的并由飞行员控制。图2显示着陆垫15,它位于船13的甲板17上并用于飞机11起飞(launch)和/或降落(recover)。虽然认为着陆垫15是TDP,但是着陆垫的运动不独立于船13的运动。因此,认为船13是“参考交通工具”,用于确定飞机11相对于船13的位置和速度,并且船13和TDP的运动可以交换使用。
为了在飞行或起飞/降落期间控制飞机11,远程导航系统和飞机11上携带的半自动控制器一起使用。参考图3和4,用于系统的操作者接口可以有几种类型,包括地面控制站(GCS)19,其具有各图形和数字显示器21、各键盘23、鼠标25或类似的输入设备,以及音频/视频组件,如图3中所示。接口的另一个例子是如图4中所示的飞行控制盒(FCB)27,包含一组操纵杆29或类似的触觉输入设备以及各图形显示器31。飞机11可以由一个或更多的操作者操作,每个操作者使用操作者接口设备之一。为说明本发明的系统的操作,系统在这里描述为包含用于控制飞机11的GCS 19和FCB 27。
系统的基本模式允许GCS 19和FCB 27的两个操作者命令飞机11相对于船13的速度。两个操作者的任何一个可以命令从滑翔到最大飞机值的相对速度,并且按要求,GCS 19可以从GCS 19到FCB 27来回切换控制。
系统的主要组件如图5中所示。飞机11上携带的组件由括弧33表示,船上或参考交通工具13上携带的组件由括弧35表示。
在飞机11上,全球定位系统(GPS)接收机模块37接收从沿轨道飞行的GPS卫星发射的信号39、41,允许GPS模块37确定飞机11相对于地面的位置。同样地,惯性运动传感器43,它可以是加速计,测量飞机11在三个正交轴中的运动,并且数据接收机45接收从船13上的组件35以及从GCS19和/或FCB 27发射到飞机11的数据。
在船13上,GPS接收机模块47也接收GPS卫星信号(未显示),并且确定船13相对于地面的位置,并且惯性运动传感器49测量船13的运动。结合这些数据源以产生用于船13的位置和速度数据,然后使用发射机53,在传输信号51中发送数据到飞机11的数据接收机45。
虽然不要求位于参考交通工具上,但是GCS 19和FCB 27通常位于船13上。GCS 19和/或FCB 27发送数据传输55到飞机11,用于提供飞行控制命令给飞机11。如下面所说明的,传输55通信飞机相对于船13的所选位置和/或速度,操作者希望飞机11达到并保持该位置和/或速度直到给出新命令。在一些实施例中,传输51和55可以使用相同的发射机例如发射机53发送。另外,在飞机11是有人驾驶的飞机的那些实施例中,驾驶员可以发射或输入这个发射的数据。
飞机11的数据接收机45接收传输51和55,并且发射的数据发送给飞机11上携带的数字控制系统57。另外,从GPS模块37和传感器43感测的数据发送给控制系统57,并且控制系统57计算飞机11相对于地面的位置和速度、以及飞机11相对于参考交通工具的位置和速度,该参考交通工具是船13。这个计算的相对位置和相对速度与传输55中通信的选择的位置和/或选择的速度比较,并且确定误差量。然后控制系统57命令飞机11上的各种飞行控制设备,如节流阀(throttle)59和方向舵61,操纵飞机以便最小化并且最好消除计算值和选择值之间的误差。其它由控制系统57控制的飞行控制设备可包括如所示的副翼63、襟翼65、引擎机舱67或其它飞行控制设备69,包括用于螺旋推进器的转子和浆叶角致动器的循环控制。
本发明的关键优势是相对于参考交通工具控制飞机11,并且可以命令该飞机11在移动GCS 19或FCB 27的控制的方向上运动。响应独立于飞机11的方位定向。例如,如果操作者希望飞机相对于参考交通工具在+X方向运动,那么他将输入希望的系统模式并在+X方向移动X控制器,如FCB 27上的操纵杆29之一(图4)或者GCS 19的显示器上的图标(图3),而相对于船13的受控变量(位置或速度)将在X方向变化。这也应用到Y和Z方向。
图6和7说明控制飞机11时可以使用的两个坐标系统。图6显示极坐标俯视图形显示71,它可以由GCS 19使用以发送相对速度命令给飞机11。显示71包括在同心圆74中心的表示船13的参考交通工具图标73。船13相对于正北的朝向由图标73相对360度罗盘75的旋转指示,该罗盘在同心圆74上描述。相对于船13的笛卡儿坐标系统被描述为轴77和79。其中轴77与船13和图标73的当前朝向对齐,而轴79垂直于轴77。线81指向飞机11相对于船13的实际当前位置。如图6的例子中所示,线81指示飞机11实际上位于船13的后面并且稍微向右的距离。
向量83指示相对于船13的速度的飞机速度(大小和方向)。小圆圈85指示由GCS 19命令的速度的希望的终点(terminus)。当飞机11相对于船13的实际速度等于飞机11相对于船13的希望速度时,圆圈85的中心将位于向量83的外端。显示71的同心圆74指示相对速度的大小的选择值。当速度向量从显示71的中心向更远扩展时这个大小增大。因为显示71表示极坐标命令系统,所以相对速度的大小将不会是负的。通过简单地观察显示71,这个配置允许船13的朝向、命令的飞机11的相对速度以及飞机11的实际相对速度快速并且容易地确定。如果GCS操作者想要改变飞机11相对于船13的速度,那么他简单地点击圆圈85并拖曳圆圈85到显示71上表示新的相对速度的位置。然后这个命令的或选择的相对速度被发射到飞机11,该飞机11由控制系统57(图5)命令而做出必要的飞行控制调整,从而实现并保持命令的相对速度。通过命令飞机11以实现零相对速度,飞机11将保持它的相对于船13的位置。
应该理解的是,用于操作显示71上的图标的系统可以包括被编程到系统中的半自动动作或快捷键。例如,系统可以具有这样的快捷键通过用鼠标或其它输入设备在显示71内的选择位置右键点击,该快捷键允许操作者命令飞机11具有零相对速度。
控制飞机11的相对速度时由命令显示71提供的优点是操作者可以用一个简单的动作命令相对速度向量,并且他也可以看见飞机11相对于这个速度命令的速度。使用一个小显示,操作者可以知晓位置并且具有命令控制,加上可以观察所有下面的信息(1)船相对于罗盘的朝向;(2)飞机位置相对于船的方向;(3)飞机速度相对于船的方向;(4)飞机相对于船速度的大小;(5)相对于船的命令的速度的大小;以及(6)相对于船的命令的速度的方向。
虽然如上所述用于控制速度时,但是可以替代地配置极坐标显示71以允许飞机11相对于船13的定位,虽然最好仅当飞机11位于远离船13处时使用这个。在这样的使用期间,表示飞机11的位置的图标(未显示)可以拖曳到显示71上相对于船13的想要位置,并且飞机11可具有零相对速度,即位置(station)保持,或者具有选择的相对速度以从命令的位置重新开始(resume)。当用于位置命令时,显示71上的同心圆74用作距离或半径指示器。图6中所示的是指示预编程位置点(station point)的三角图标87,相对于船13设置该位置点,这里显示为船13的正后方的一距离。
图7中显示GCS 19上的笛卡儿坐标俯视显示89。最好只有当飞机11接近船13时使用笛卡儿坐标。图标91表示接近TDP 93的表示的飞机11,该TDP 93在船13的甲板95上。坐标是在X、Y系统中,具有指示到TDP 93的距离的范围引导97。可以配置显示89以允许GCS 19的操作者操纵图标91,以便通过相对于如由甲板95表示的船13拖曳图标91,控制飞机11的运动。或者可以将显示89配置为只显示信息,这不允许通过操纵图标91直接控制飞机11。
在控制已经从GCS 19传递到FCB 27之后,FCB 27的操作者也可以在极坐标或笛卡儿坐标中命令飞机11。当控制切换到FCB时,操纵杆29将在中心位置,该操纵杆将命令相对速度来保持在它的当前值。这意味着飞机11将以相对于船13的相同速度和相同的方向继续,直到FCB操作者命令相对速度改变。FCB操作者可以通过分别向前或向后移动纵向操纵杆来命令速度的增大或减小,并且速度命令将与杆位移成比例变化。当在极坐标模式中时,速度的方向可以通过移动FCB 27上的横向操纵杆改变,使得左和右横向杆运动将命令速度向量以与杆位移成比例的速率分别在逆时针和顺时针方向旋转。
FCB 27的操作者也具有通过命令船坐标系统中的速度来驾驶飞机的能力,该船坐标系统是X、Y系统。在运动船的甲板或TDP上手动定位飞机或执行手动着陆,这个模式是必需的。纵向操纵杆的向前或向后移动将在X方向(船甲板上船头和船尾)命令速度,而横向操纵杆的右或左移动将在Y方向(船甲板上左舷和右舷)命令速度。控制器上向前移动最好将命令向甲板后面的速度,而向右移动最好将命令向甲板的左舷侧的速度。当操纵杆居中时,飞机11将被命令保持它相对于TDP的当前位置。选择这些惯例是因为FCB 27的操作者当飞机11接近时将面对甲板的后面,并且这个惯例将以与杆移动相同的方向移动飞机11。为了使命令独立于飞机11的朝向,在X、Y坐标系统中而不是在飞机坐标系(axes)中命令速度。
特别适合本发明的控制系统的一个应用是,操纵飞机到用于另一个控制系统的采集窗口中。例如,飞机可以由自动降落或着陆系统被操纵到用于采集的窗口中。
图8是说明本发明的系统的相对速度控制方法的流程图。该方法从步骤99开始,在该步骤中,飞机上携带的传感器系统确定飞机相对于地面的位置和速度。在步骤101中,飞机接收到通信参考交通工具的位置和速度的数据传输,该数据传输在步骤103中与从步骤99感测的数据一起使用,以计算飞机相对于参考交通工具的速度和/或位置。在步骤105中命令飞行控制设备以便驾驶飞机到想要的相对速度和/或位置。也显示了可选的步骤107,在该步骤中,通信想要的相对速度和/或位置的发射数据由飞机接收。
本发明的控制系统的一个另外的优点是,它考虑使用各种自治(autonomous)和半自治模式控制飞机11,包括1.自动降落在这个模式中,操作者操纵飞机11到到采集窗口中,然后命令自动降落系统将飞机11着陆在TDP上。定义X、Y、Z坐标系统,正X轴从船尾向外,具有对指定接近角的旋转的选项。Y是右舷侧向外为正,而Z是向上方向为正。一旦采集,船13上的传感器就跟踪飞机11,并且发送三维位置数据到GCS 19,该GCS 19又发射这些位置给飞机11。
2.自动接近接近阶段命令飞机跟随预置的接近轨迹(profile)从它的当前位置到TDP上的点。接近轨迹指定X方向的速度和Z位置(高度)作为到TDP的距离的函数。接近轨迹要求飞机Y位置到达零并在接近时始终保持在零,意味着飞机11以希望的接近角与船13对齐。当飞机已经接近到达TDP时,位置保持功能将从事于保持飞机11在TDP上盘旋。
3.甲板跟随进行位置保持之后,可以命令飞机11开始跟随甲板起伏和摆动运动(surge heave and sway motion),保持飞机11在选择的相对于TDP的位置。
4.下降到甲板下降到甲板是自动降落的最后阶段,在该阶段中命令飞机11以指定的相对于TDP的速率下降。
5.复飞/中止(Waveoff/Abort)如果GCS 19或FCB 27的操作者选择,那么可以命令飞机11复飞,并且它将执行预定的操作以离开船13。飞机11在正X方向运动(向船13的后面)并且进入柔和的垂直爬升预定的时间段,在该预定的时间段之后命令相对速度向量为零,并且飞机高度保持在那时的当前值。
如果控制系统的故障管理逻辑确定自动降落不能完成,那么自动进入中止。中止的原因可以包括过大的位置或速度误差、控制系统的部分的丢失或故障、以及数据上行链路的丢失。中止期间飞机11的控制最好与复飞相同,唯一的差别是中止是自动发起的,而复飞是由GCS或FCB操作者发起的。
6.飞到位置飞到位置模式允许GCS操作者在距离船13一定距离和方向指定一个点,飞机11将自动飞到该点。飞机11加速到预先计划的速度简况(profile),飞到指定位置,减速并停止在那个位置。然后它在那里保持相对位置,直到它被命令做其它的。这个模式是命令飞机飞到采集窗口的方便方法,飞机从该采集窗口被采集,并且启动自动降落。如果数据通信丢失,那么也可以自动使用这种类型的模式,以发送飞机11到预定位置和飞行路径。
本发明提供显著优于现有技术的优势,包括(1)飞机的自治控制,它通过比较来自机上传感器的值和发射到飞机的指示参考交通工具的速度和位置的数据,命令飞机达到并保持飞机相对于参考交通工具的选择的位置和/或速度;(2)相对于运动交通工具容易地控制飞机,而操作者不必考虑飞机相对于地面的位置或速度;(3)通过将图形显示上相对速度向量的终点的表示、操纵到相对于参考交通工具的速度的希望的角度和大小,从而控制相对于参考交通工具的飞机的速度;(4)通过操纵触觉输入设备如操纵杆,控制相对于参考交通工具的飞机的位置和/或速度。
虽然已经参考说明性的实施例描述了本发明,但是不打算在受限制的意义上解释这个描述。参考该描述时,本发明的各种修改和说明性实施例的组合以及其它实施例,对本领域的技术人员将是显然的。
权利要求
1.一种用于控制飞机飞行的系统,包含传感器系统,安置在飞机上,用于感测飞机的位置和飞机的惯性运动,该传感器系统适合通信感测的数据,该数据表示飞机的位置和惯性运动;接收机,安置在飞机上并且适合接收发射的参考数据,该参考数据通信参考交通工具的位置和运动;命令的数据,表示飞机相对于参考交通工具的选择的速度;以及控制系统,安置在飞机上,用于使用感测的数据和参考数据计算飞机相对于参考交通工具的计算速度,并且用于控制飞机上的飞行控制设备,使得飞机达到并保持相对于参考交通工具的选择的速度,该选择的速度对应于命令的数据。
2.根据权利要求1所述的系统,其中命令的数据在飞机飞行之前预编程到控制系统中。
3.根据权利要求1所述的系统,其中接收机还适合接收通信命令的数据的传输。
4.根据权利要求3所述的系统,其中命令的数据从参考交通工具发射。
5.根据权利要求3所述的系统,其中使用远离飞机的控制站,通过操纵图形用户接口产生命令的数据。
6.根据权利要求3所述的系统,其中使用远离飞机的控制站,通过操纵触觉用户接口产生命令的数据。
7.根据权利要求1所述的系统,其中从参考交通工具发射通信参考交通工具的位置和运动的发射的数据。
8.根据权利要求1所述的系统,其中传感器系统使用全球定位系统接收机模块确定飞机的位置。
9.一种用于控制飞机飞行的系统,包含飞机上携带的传感器,该传感器适合确定飞机相对于地面的位置和飞机的惯性运动,该传感器也适合输出通信飞机的位置和运动的数据;飞机上携带的接收机,适合接收发射的数据,该数据通信参考交通工具相对于地面的位置和参考交通工具相对于地面的运动;以及飞机上携带的控制系统,连接到传感器和接收机,该控制系统使用来自传感器的数据和由接收机接收的数据,计算飞机相对于参考交通工具的位置和飞机相对于参考交通工具的运动,该控制系统适合命令飞机上的飞行控制设备,用于使飞机以如下方式操纵达到并保持相对于参考交通工具的选择的位置或相对于参考交通工具的选择的速度。
10.根据权利要求9所述的系统,其中飞机相对于参考交通工具的选择的位置和速度在飞机飞行之前被选择并且输入到控制系统中。
11.根据权利要求9所述的系统,其中接收机适合接收通信飞机相对于参考交通工具的选择的位置和速度的数据。
12.根据权利要求11所述的系统,其中从参考交通工具发射通信飞机相对于参考交通工具的选择的位置和速度的数据。
13.根据权利要求9所述的系统,其中从参考交通工具发射通信参考交通工具的位置和运动的数据。
14.根据权利要求9所述的系统,其中传感器使用全球定位系统接收机模块确定飞机的位置。
15.一种控制飞机飞行的方法,该方法包含以下步骤(a)使用飞机上携带的传感器确定飞机相对于地面的位置和飞机的惯性运动;(b)使用飞机上携带的接收机接收发射的数据,该数据通信参考交通工具相对于地面的位置和参考交通工具相对于地面的运动;(c)使用飞机上携带的控制系统,通过比较来自传感器的数据和发射的数据,计算飞机相对于参考交通工具的速度;以及(d)用控制系统命令飞机上的飞行控制设备,从而使飞机达到并保持相对于参考交通工具的选择的速度。
16.根据权利要求15所述的方法,还包含步骤飞机飞行之前,将通信飞机相对于参考交通工具的选择的位置和速度的数据输入到控制系统中。
17.根据权利要求15所述的方法,还包含步骤在步骤(d)之前,用接收机接收包含数据的传输,该数据通信飞机相对于参考交通工具的选择的位置和速度。
18.根据权利要求17所述的方法,还包含步骤从参考交通工具发射通信飞机相对于参考交通工具的选择的位置和速度的传输。
19.根据权利要求15所述的方法,还包含步骤在步骤(b)之前,从参考交通工具发射通信参考交通工具的位置和运动的数据。
20.一种多交通工具系统,包含参考交通工具;至少一架飞机;参考交通工具上携带的参考传感器系统,适合确定参考交通工具相对于地面的位置和相对于地面的运动;每架飞机上携带的飞机传感器系统,适合确定每架相应的飞机相对于地面的位置和惯性运动;每架飞机上携带的接收机,用于接收通信参考交通工具的位置和运动的发射数据;每架飞机上携带的控制系统,适合计算每架相应的飞机相对于参考交通工具的速度,并且适合命令飞行控制设备,用于使每架相应的飞机以相对于参考交通工具的选择的速度飞行。
21.根据权利要求20所述的多交通工具系统,其中参考交通工具是船。
22.根据权利要求20所述的多交通工具系统,其中参考交通工具是第二架飞机。
23.根据权利要求20所述的多交通工具系统,其中参考交通工具是陆基交通工具。
24.一种飞行控制系统,用于控制飞机相对于参考交通工具的速度,所述系统包含由参考交通工具携带的控制台;以及手持控制器;其中控制台或手持控制器可用于控制飞机相对于参考交通工具的速度。
25.根据权利要求24所述的飞行控制系统,其中手持控制器包括触觉输入设备。
26.一种图形显示,用于控制飞机相对于运动交通工具的速度,包含运动交通工具图标,表示运动交通工具;速度向量图标,表示飞机相对于运动交通工具的实际速度;命令的相对速度图标,表示飞机相对于运动交通工具的选择的速度;其中飞机相对于运动交通工具的速度,可以通过在图形显示内移动命令的相对速度图标来选择性地控制。
27.根据权利要求26所述的图形显示,其中对图形显示编程以产生信号,用于控制飞机以响应命令的相对速度图标的运动。
28.根据权利要求26所述的图形显示,还包含相对速度大小图标,表示飞机相对于运动交通工具的速度。
29.根据权利要求28所述的图形显示,其中相对速度大小图标是围绕运动交通工具图标的多个圆圈。
30.根据权利要求26所述的图形显示,其中速度向量图标变化,以响应命令的相对速度图标的运动,以便表示飞机达到并保持飞机相对于运动交通工具的选择的速度。
31.根据权利要求26所述的图形显示,还包含极坐标系统,用于指示运动交通工具的朝向。
32.根据权利要求26所述的图形显示,还包含笛卡儿坐标系统,它链接到运动交通工具图标,以帮助选择命令的相对速度图标的运动。
33.根据权利要求26所述的图形显示,还包含飞机位置图标,表示飞机相对于运动交通工具的当前物理位置。
34.根据权利要求26所述的图形显示,还包含位置保持图标,表示飞机相对于运动交通工具的预编程的位置或速度。
全文摘要
一种用于控制飞机飞行的系统,包含传感器(37,43)、接收机(45)和数字控制系统(57),它们都在飞机上携带。传感器(37,43)确定飞机相对于地面的位置和飞机的惯性运动。接收机(45)接收发射的数据(51,55),该数据通信参考交通工具相对于地面的位置和运动。控制系统(57)使用来自传感器(37,43)和接收机(45)的数据,计算飞机相对于参考交通工具的位置和速度,然后命令飞机上的飞行控制设备(33)以如下方式操纵飞机保持相对于参考交通工具的选择的位置和/或速度。该系统允许使用图形或触觉用户接口。
文档编号B64C13/20GK1934562SQ200480042484
公开日2007年3月21日 申请日期2004年3月25日 优先权日2004年3月25日
发明者肯尼斯·E·布伊尔塔, 詹姆斯·E·哈里斯, 布赖恩·P·霍恩扎, 杰弗里·W·埃普, 凯尼·J·舒尔特 申请人:贝尔直升机泰克斯特龙公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1