制冷剂热交换器的制作方法

文档序号:13349395阅读:294来源:国知局
制冷剂热交换器的制作方法

本发明涉及一种制冷剂热交换器,被用于构成冷冻循环的冷冻机等,尤其涉及一种板式制冷剂热交换器(plate-typerefrigerantheatexchanger),在气体或液体等相同形态或不同形态的物质间进行导热。



背景技术:

以往的制冷剂热交换器如专利文献1所记载般,在形成为筒状的中空容器(文献中为槽罐(tank))下侧的内部空间设有板层叠体(文献中为板封装)。板层叠体具备:彼此邻接地配设的多个板(文献中为热交换板)。多个板是沿垂直方向配设,形成有:第1板间空间,相对于内部空间而实质上开放,以介质可从槽罐的下部空间朝上循环至上部空间为止的方式而构成;以及第2板间空间,相对于内部空间而封闭,使流体循环而可使介质气化。在板的上部,形成有可将气化后的介质予以排出的出口流路。在中空容器的上部,设有用于将气化后的介质予以排出的出口。

板是从上侧朝向下方,包含上部、中间部、下部而构成,在各部分,形成有包含山与谷的波浪形褶皱。板彼此之间的实际的热交换是经由中间部及下部来进行。中间部的波浪形褶皱在中间部的不同部分朝各种方向延伸。波浪形褶皱是以彼此邻接的板的波浪形褶皱遍及整个中间部而彼此交叉的方式而延伸。通过如此延伸的波浪形褶皱,板的刚性得到强化,与此同时,切实地进行从流体向介质的有效率的导热。

现有技术文献

专利文献

专利文献1:日本专利4383448号公报



技术实现要素:

[发明所要解决的问题]

所述专利文献1所记载的制冷剂热交换器中,板的侧端部是沿着中空容器的内壁面而配置,因此板与中空容器的内壁面之间的间隙变小,能够使中空容器小型化。但是,板上形成的波浪型褶皱复杂。而且,在板的中央部,插接有沿着板的积层方向而延伸的板状的分散构件。因此,有可能板层叠体的结构更加复杂化,制造成本增大。

本发明是有鉴于此以往技术的问题,目的在于提供一种具备具有简单构成的板而可抑制制造成本增大的制冷剂热交换器。

[解决问题的技术手段]

本发明的若干实施方式的制冷剂热交换器包括:中空容器,形成为筒状;板层叠体,配置在所述中空容器的内部下侧,将表背面形成有多个凹凸部的板予以积层,形成供第1制冷剂流动的第1热交换流路及供第2制冷剂流动的第2热交换流路;

供给管,配置在所述板层叠体的上方的所述中空容器的内部空间,将所述第1制冷剂供给至所述板层叠体;以及排出管,将从所述供给管供给的第1制冷剂与在所述板层叠体内流通的第2制冷剂进行热交换后予以排出,

所述板层叠体的所述板的下侧是接近并沿着所述中空容器的内壁面而形成为半圆形状,所述板的上侧具有比所述半圆形状的曲率半径大的曲率半径而形成为扁平状,

在所述板层叠体的上部,设有沿板积层方向延伸且导入所述第2制冷剂的第2导入孔,在所述板层叠体的下部,设有沿板积层方向延伸且导出所述第2制冷剂的第2导出孔,

所述第2热交换流路形成为:在沿板积层方向观察时,从所述第2导入孔随着朝下方前进而朝所述板的侧部侧延伸而弯曲,且随着朝下方前进而朝所述第2导出孔侧延伸,

所述第1热交换流路形成为:在沿板积层方向观察时,从所述第2导出孔随着朝上方前进而延伸至所述板的宽度方向端部侧。

根据所述制冷剂热交换器,第2热交换流路形成为:在沿板积层方向观察时,从第2导入孔随着朝下方前进而朝板的侧部侧延伸而弯曲,且随着朝下方前进而朝所述第2导出孔侧延伸,第1热交换流路形成为:在沿板积层方向观察时,从第2导出孔随着朝上方前进而延伸至板的宽度方向端部侧。因此,第1热交换流路及第2热交换流路的结构均是简单地构成。因而,能够提供一种简化制冷剂热交换器的结构,且可抑制制造成本增大的制冷剂热交换器。

而且,根据若干实施方式的制冷剂热交换器,

所述板层叠体构成为,在使邻接的板上分别形成的凹凸部彼此接触时,由邻接的凹凸部的凸部间的谷及凹部内的槽,形成对应的所述第1热交换流路及所述第2热交换流路。

此时,在将板彼此积层时,使凹凸部彼此接触时,由邻接的凹凸部的凸部间的谷及凹部内的槽,形成对应的所述第1热交换流路及所述第2热交换流路,因此能够使制冷剂热交换器的制造更加容易化。

而且,根据若干实施方式的制冷剂热交换器,

所述第2热交换流路具有冷凝流路与排出流路,所述冷凝流路随着朝下方前进而朝所述板的侧部侧呈直线状地延伸,所述排出流路随着朝下方前进而朝所述第2导出孔侧呈直线状地延伸,

所述冷凝流路的延伸方向的倾斜角度是以比所述排出流路的延伸方向的倾斜角度小的方式而构成。

此时,冷凝流路的延伸方向的倾斜角度是以比排出流路的延伸方向的倾斜小的方式而构成,因此可使从导入孔供给的第2制冷剂的流动起先较慢,而在后半程变快。因而,能够提高从第2制冷剂向第1制冷剂的导热效果,能够使经冷却的第2制冷剂迅速流向第2导出孔。因而,能够提供一种导热效率高的制冷剂热交换器。

而且,根据若干实施方式的制冷剂热交换器,

构成为,在形成于所述板的所述第2导入孔的下方,形成有限制凹凸部,所述限制凹凸部用于限制从所述第2导入孔供给的第2制冷剂朝下方移动。

此时,在形成于板的第2导入孔的下方,形成有限制凹凸部,所述限制凹凸部用于限制从所述第2导入孔供给的第2制冷剂朝下方移动,由此,当将这些板层叠时,其中一侧的板的限制凹凸部与另一侧的板的限制凹凸部接触,在第2导入孔的下方形成圆弧状的壁。因此,能够限制从第2导入孔供给的第2制冷剂朝下方移动,且能够使从第2导入孔供给的第2制冷剂的流动强制性地移动向板的宽度方向外侧。因此,能够防止第2制冷剂从第2导入孔朝下方流动而流入第2导出孔内的、导热效率低的流动于未然。

[发明的效果]

根据本发明的至少若干实施方式,能够提供一种具备具有简单构成的板而能抑制制造成本增大的制冷剂热交换器。

附图说明

图1表示本发明的一实施方式的热交换器,图1(a)是热交换器的侧视图,图1(b)是相当于从图1(a)的箭头i-i观察的剖视图。

图2表示本发明的一实施方式的nh3导入管,图2(a)是nh3导入管的侧视图,图2(b)是nh3导入管的底视图。

图3是本发明的一实施方式的板的正视图。

图4是使图3的板表背反转的状态的板的正视图。

图5表示另一实施方式的nh3导入管,图5(a)是nh3导入管的侧视图,图5(b)是nh3导入管的底视图。

具体实施方式

以下,参照附图,对于本发明的实施方式,参照图1~图5来进行说明。但是,作为所述实施方式而记载或图示的构成零件的材质、形状、其相对配置等,不过是单纯的说明例,并不意图将本发明的范围限定于此。另外,本实施方式中,作为制冷剂热交换器,以用于使气化的co2液化的co2液化器为例来进行说明。

制冷剂热交换器1如图1(a)及图1(b)所示,构成壳板(shellandplate)式热交换器,且构成为,使作为一次制冷剂的nh3制冷剂液与作为二次制冷剂的co2制冷剂气体进行热交换,nh3制冷剂从co2制冷剂吸热而气化,从而co2制冷剂液化。

制冷剂热交换器1具备:中空容器5,具有剖面为圆形的筒形状;板层叠体10,被收容在中空容器5的内部下侧;nh3供给管30,配置在板层叠体10上方的中空容器5的内部空间5a内,将nh3制冷剂液供给至板层叠体10;以及nh3排出管40,将从nh3供给管30供给的nh3制冷剂液与在板层叠体10内流通的co2气体制冷剂进行了热交换后的nh3气体予以排出。

板层叠体10是由板状的多个板11层叠而形成侧视为大致椭圆状。板层叠体10的详细将后述。在中空容器5的轴向一端侧的侧壁5c上部的宽度方向其中一侧,形成有nh3导入口31,在nh3导入口31中插接有nh3供给管30。nh3供给管30具有nh3导入管32,插接至nh3导入口31;以及nh3散布管33,连接于nh3导入管32的前端。

nh3散布管33是沿着中空容器5的上壁5b而大致平行地配置。nh3散布管33如图2(a)及图2(b)所示,具有短轴散布管33a与长轴散布管33b而构成,所述短轴散布管33a是从nh3导入管32弯曲而延伸,所述长轴散布管33b是从短轴散布管33a的端部弯曲而延伸。在短轴散布管33a及长轴散布管33b的下表面,沿散布管轴向呈两列地形成有朝向下方形成的多个细径的散布孔33c。

在中空容器5的一端侧的侧壁5c的上部,如图1(a)及图1(b)所示,形成有nh3导出口41,在nh3导出口41中插接有nh3排出管40。nh3排出管40是沿着中空容器5的轴心方向而延伸至中空容器5的另一端侧的侧壁5d的内面的附近位置为止,在nh3排出管40的另一端部形成有开口部40a。因此,经气化的nh3制冷剂气体经由开口部40a而从nh3排出管40流出。

在中空容器5的其中一个侧壁5c的中央部,设有co2导入口50,在co2导入口50中插入有co2导入管51。co2导入管51连通于形成在板层叠体10内部的co2导入孔13。

而且,在co2导入管51下方的中空容器5的其中一侧的侧壁5c上,形成有co2导出口53,在co2导出口53中插接有co2导出管54。co2导出管54连通于形成在板层叠体10内部的co2导出孔15。

构成板层叠体10的板11为金属板(例如不锈钢板)制,如图1(b)及图3所示,沿中空容器5的轴向观察时,相对于通过中空容器5的轴心s的水平线h而在上下方向上非对称地形成。即,中空容器5的轴心s更下侧的板11a是具有以中空容器5的轴心s更下方的位置为中心的曲率半径,而接近并沿着中空容器5的内壁面5e而形成为半圆形状。而且,中空容器5的轴心s更上侧的板11b是具有比以中空容器5的轴心s为中心的曲率半径大的曲率半径,而形成为扁平状(半椭圆形状)。

在构成板层叠体10的多个板11的各个上,如图3及图4所示,在表背面形成有多个凹凸部17。板层叠体10是将图3所示的板11′与图4所示的板11″一片隔一片地积层而构成。图4所示的板11″是:使图3所示的板11′进行表背反转的板。因而,图4所示的板11″为:与图3所示的板11′同样的构成,因此,图4所示的板11″中,对于与图3所示的板11′为同一形态的部分标注同一符号,并省略说明。

如图3所示,在板11′的宽度方向中央上部,设有呈圆形状开口的co2导入孔13,在板11′的宽度方向中央下部,设有呈圆形状开口的co2导出孔15。

凹凸部17具有:多个凹部18,在板11′的表面的除了右侧下部以外的部分,朝斜右侧上方倾斜(约25度的倾斜角度)而呈直线状地延伸;以及多个凸部19,形成在板11′的右侧下部,具有比凹部18大的倾斜角度(约60度)而朝斜右侧上方呈直线状地延伸。多个凹部18是具有规定间隔而彼此平行地形成,多个凸部19是具有规定间隔而彼此平行地形成。

当将图4所示的板11″层叠于图3所示的板11′的背侧时,在这些板11′、11″的表背面形成两个独立的第1热交换流路21及第2热交换流路22。第1热交换流路21是形成在图3所示的板11′的表面侧,且从co2导出孔15,随着朝上方前进而朝板11′的宽度方向右侧端部侧延伸。所述第1热交换流路21是由邻接的凹凸部17的凸部19间的谷所形成,并且由凹部18内的槽所形成。因此,第1热交换流路21形成为:从板11′的宽度方向其中一侧朝斜上方朝向另一侧的方向的流路。

另一方面,第2热交换流路22是形成在图4所示的板11″的表面侧,且构成为,从co2导入孔13,随着朝下方前进而朝板11″的右侧部侧及左侧部侧延伸并弯曲,且随着朝下方前进而朝co2导出孔15侧延伸。所述第2热交换流路22是由图4所示的板11″的凹部18的朝底面侧突出的突出部18a间的谷、及图3所示的凸部19间的谷所形成,并且由图3所示的板11′的凹部18的朝底面侧突出的突出部18a间的谷、及图4所示的板11′的凸部19间的谷所形成。

第2热交换流路22是具有冷凝流路22a及排出流路22b而构成,所述冷凝流路22a随着朝下方前进而朝板11″的侧部侧呈直线状地延伸,所述排出流路22b随着朝下方前进而朝co2导出孔15侧呈直线状地延伸。而且,冷凝流路22a的延伸方向的倾斜角度是以比排出流路22b的延伸方向的倾斜角度小的方式而构成。因此,可使从co2导入孔13供给的co2气体制冷剂的流动起先较慢,随后变快。因而,能够提高从co2气体制冷剂向nh3制冷剂液的导热效果,并且能够使经冷却的co2制冷剂液迅速地流入co2导出孔15。因而,能够提供一种导热效率高的制冷剂热交换器1。

而且,在图3所示的板11′上所形成的co2导入孔13的下方,形成有限制凹凸部20′,所述限制凹凸部20′用于限制从co2导入孔13供给的co2气体制冷剂朝下方移动。限制凹凸部20′是以包围co2导入孔13的下部外周的方式而形成为圆弧状。当从板11′的背侧观察时,所述限制凹凸部20′形成为凸状。

而且,在图4所示的板11″上所形成的co2导入孔13的下方,形成有限制凹凸部20″。所述限制凹凸部20″是以包围co2导入孔13的下部外周的方式而形成为圆弧状,当从板11″的表侧观察时形成为凸状。当将这些板11′、11″层叠时,图3所示的板的限制凹凸部20′的底部与图4所示的板11″的限制凹凸部20″接触,从而在co2导入孔13的下方形成圆弧状的壁。因此,能够限制从co2导入孔13供给的co2气体制冷剂朝下方移动。因此,能够使从co2导入孔13供给的co2气体制冷剂的流动强制性地移动向板11′、11″的宽度方向外侧,从而能够事先防止导热效率的下降。

这些板11′、11″是在经积层的状态下,将多个板11′、11″的外周通过熔接等予以连接而一体化。凹凸部17是通过冲压(press)加工而形成。

如此构成的制冷剂热交换器1中,从co2导入管51供给的co2气体制冷剂在板11′、11″的第2热交换流路22中流动,在此期间,与在第1热交换流路21中流动的nh3液制冷剂进行热交换而成为co2制冷剂液后,经由第2热交换流路22而从co2导出管54流出。

如此,根据制冷剂热交换器1,第2热交换流路22是构成为,在沿板积层方向观察时,从co2导入管51,随着朝下方前进而朝板11′、11″的宽度方向端部侧延伸而弯曲,且随着朝下方前进而朝co2导出孔15侧延伸,第1热交换流路21是构成为,在沿板积层方向观察时,从co2导出孔15,随着朝上方前进而延伸至板11′、11″的宽度方向端部侧。因此,第1热交换流路21及第2热交换流路22的结构均为简单的构成。因而,能够提供一种简化制冷剂热交换器1的结构,且可抑制制造成本增大的制冷剂热交换器1。

而且,当将邻接的板11′、11″彼此积层时,由邻接的凹凸部17的凸部19间的谷及凹部18内的槽,形成第1热交换流路21及第2热交换流路22,因此能够使制冷剂热交换器1的制造更加容易化。

另外,前述的实施方式中,表示了下述情况,即,nh3散布管33是具有短轴散布管33a与长轴散布管33b而构成,所述短轴散布管33a是从nh3导入管32弯曲而延伸,所述长轴散布管33b是从短轴散布管33a的端部弯曲而延伸(参照图2(b)),但也可如图5(a)及图5(b)所示,将长轴散布管33b设为具有与板层叠体10的轴向长度大致相同的长度,并在长轴散布管33b的长边方向中间部连接连通管35,所述连通管35连通于nh3导入管32而可供给nh3液制冷剂。若如此构成,则能够将nh3液制冷剂更均匀地供给至板层叠体10。

[符号的说明]

1:制冷剂热交换器

5:中空容器

5a:内部空间

5b:上壁

5c、5d:侧壁

5e:内壁面

10:板层叠体

11、11′、11″:板

11a:下侧的板

11b:上侧的板

13:co2导入孔

15:co2导出孔

17:凹凸部

18:凹部

18a:突出部

19:凸部

20:限制凹凸部

21:第1热交换流路

22:第2热交换流路

22a:冷凝流路

22b:排出流路

30:nh3供给管

31:nh3导入口

32:nh3导入管

33:nh3散布管

33a:短轴散布管

33b:长轴散布管

35:連通管

40:nh3排出管

40a:开口部

41:nh3导出口

50:co2导入口

51:co2导入管

53:co2导出口

54:co2导出管

h:水平线

s:轴心

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1