液态制冷剂与储液器的闪发气体接触进行再冷却的co的制作方法

文档序号:4765878阅读:280来源:国知局
专利名称:液态制冷剂与储液器的闪发气体接触进行再冷却的co的制作方法
技术领域
本发明涉及一种使CO2制冷剂沿预定流向循环的CO2制冷回路,它包括沿流动方向的放热换热器、具有液体部和闪发气体部的储液器,和接着该储液器的中温回路和低温回路,其中该中温回路和低温回路分别包括沿流动方向的膨胀装置、蒸发器和压缩机。该制冷循环还包括液体管路,将该储液器的液体部与中温和低温回路的至少一个回路连接。本发明还涉及这种制冷回路的运行方法。
背景技术
在这种CO2制冷回路中,在储液器中将产生闪发气体,并且需要将闪发气体从储液器中抽出来,以便使CO2制冷循环能够持续运转。有种建议是让闪发气体返回中温压缩机的入口或吸气端。然而,闪发气体的压力一般都高于压缩机吸气管上的吸气压力,并且闪发气体需要膨胀到这么低的压力,因此就会对制冷循环造成不必要的损失。
因此,一个目标就是处理聚集在储液器中的闪发气体,并且与仅将闪发气体膨胀进入中温压缩机入口相比能够提高制冷循环的制冷效率。
本申请人子公司Linde K ltetechnik GmbH & CO.KG的一份早期的、但在本申请申请日的未公开申请DE102004038640.4,其公开的内容全部被引入本申请中,该申请中建议将闪发气体流经内部换热器与从储液器流出的液体制冷剂保持热交换关系,然后流到低温回路通往中温回路压缩机的回管中。

发明内容
本发明旨在用另外一种方案解决上述问题。
根据本发明的一个实施例,该问题是这样解决的,即在液体管路上有内部换热器,闪发气体管路将该储液器的闪发气体部经过该内部换热器连接到低温压缩机的入口,其中该内部换热器将流过液体管路的液体内的有效热量传递给流过该闪发气体管路的闪发气体。传热使液体管路内的液体再冷,并使闪发气体过热。液体的再冷提高了液体制冷剂的制冷能力。同时,闪发气体的过热确保闪发气体在进入低温压缩机之前是干燥和过热状态。与DE102004038640.4的解决方案相比,该系统中的高温差和高压差使得制冷能力大幅提高。
根据本发明的一个实施例,在闪发气体管路上设置闪发气体阀。也可以用其它任何膨胀装置来替换闪发气体阀。闪发气体阀控制闪发气体流或不流到内部换热器和压缩机中。闪发气体的产生非常依赖于环境条件,特别是如果放热换热器在环境空气中工作,并且已经在“冬季模式”和“夏季模式”之间调节制冷循环。例如,在冬季模式下,产生的闪发气体相对较少,如果设置有可调闪发气体阀,那么可以更有效地关闭该闪发气体阀或者调节到使闪发气体流量很小的状态。
根据本发明的一个最佳实施例,闪发气体阀是控制阀。该控制阀可通过控制器自动控制,例如通过该控制装置在“夏季模式”和“冬季模式”之间切换。
根据本发明的一个最佳实施例,CO2制冷循环还包括设在闪发气体管路上的监测装置,该装置用来监测运行工况,也就是闪发气体的过热度。如果监测装置检测到的是两相闪发气体,就可以调节运行参数。监测装置可以包括压力传感器和/或温度传感器。压力传感器和温度传感器的组合是一种特别简单的、确定闪发气体“性质”的方法。也可以使用其它传感器。最好给该监测装置连接一个控制器,即将该监测信号提供给一个控制器,并将该控制器连接到该控制阀上,用来根据闪发气体的状态调节该控制阀。因此,可以根据闪发气体的性质来控制流过内部换热器的闪发气体流量。因此,如果闪发气体没有过热,即如果在闪发气体管路上存在两相状态的闪发气体,那么为了增加液体制冷剂传递给闪发气体的热量,可以减少闪发气体的流量。应当注意到,提供一个控制阀并根据闪发气体性质控制该控制阀这种想法本身以及尤其是没有独立权利要求中要求保护的那些特征或仅有这些特征的一部分,应当被认为是有创造性的。
CO2制冷回路可以包括位于放热换热器和储液器之间的中间膨胀装置。该中间膨胀装置可以将放热换热器内的100到120巴的高压降低到约30到40巴,最好是约36巴的中间压力。可以给制冷用户端提供中间压力的制冷剂,该用户端包括用户端膨胀装置和用户端蒸发器。由于压缩机、放热换热器和储液器通常相邻放置,或者靠近一个单独的机械室,因此制冷用户端的管路可以有足够的长度。由于在这些管路上仅有压力降,因此可以大大减少管路成本和各用户端的密封费用。
根据本发明的一个实施例,低温压缩机出口与中温压缩机入口连接。术语“低温回路”和“中温回路”通常各为封闭回路。但是,这两个回路的某些部分可以与一个公共回路部分结合。这样,在本发明的一个实施例中,中温压缩机可以构成低温回路的第二级压缩机。其它部件比如放热换热器和/或中间膨胀阀和/或储液器也可以构成这些回路的公共部分。可选择地,可以为低温回路单独提供一个低温压缩机或多级低温压缩机。
本发明的另一个实施例涉及一种CO2制冷装置,它包括根据本发明一个实施例的CO2制冷回路。该制冷装置可以是超市用制冷系统、工业用制冷系统,等等。在超市用制冷系统中,中温制冷用户端可以是展示柜等,比如奶制品、肉类、蔬菜和水果,其制冷温度为0度到10度以下。低温制冷用户端可以是制冷温度为-20度以下的冷冻机。
本发明的另一个实施例涉及一种CO2制冷回路的运行方法,该回路使制冷剂按照预定流向循环,该CO2制冷回路包括沿流动方向构成的放热换热器、有液体部和闪发气体部的储液器,以及在储液器之后的中温回路和低温回路,其中该中温和低温回路分别包括沿流动方向的膨胀装置,蒸发器和压缩机,该制冷回路还包括液体管路,该液体管路将储液器的液体与中温和低温回路中的至少一个回路连接,其中该方法包括下列步骤(a)从储液器的闪发气体部引出闪发气体;(b)使闪发气体和液体管路内的液体呈换热关系流动,使液体内的热量传递给闪发气体;(c)使闪发气体按照接近低温压缩机入口的压力的压力水平返回低温回路。
在步骤(c)中,可以使闪发气体直接返回低温压缩机的入口,或者进入通往低温压缩机的低温吸气管上,等等。
根据本发明的一个实施例,该方法还包括根据该CO2制冷回路的运行工况,调节从储液器引出的闪发气体量即闪发气体流量的步骤。
根据本发明的一个实施例,该方法还包括监测闪发气体状态的步骤,即闪发气体是过热还是包括液态和气态制冷剂的两相状态,根据闪发气体状态调节进行热交换的闪发气体流量。最佳的是,为了保证压缩机安全运转,使低温压缩机入口的闪发气体完全为气态。如果过热度提高到零过热,则减小闪发气体的流量是明智的,这样可以增大传热。
根据本发明的一个实施例,该监测闪发气体状态的步骤包括检测闪发气体压力和温度的步骤。
根据本发明的一个实施例,监测闪发气体状态的步骤是在执行闪发气体和液体制冷剂相互热交换流动步骤之后进行。这样只要简单地检测闪发气体的压力和温度,就可以很简单地监测闪发气体“性质”,即完全干燥状态。还可以监测储液器内和/或闪发气体管路内的闪发气体状态,根据进行热交换的液体和气体流量以及换热量来计算闪发气体的过热度,等等。


下面参考附图对本发明进行更详细的描述,其中图1仅示出根据本发明一个实施例的制冷回路。
具体实施例方式
图1示出使CO2制冷剂沿预定流动方向循环的CO2制冷回路2。制冷回路2包括放热换热器4,其中有CO2制冷剂,该换热器在超临界运行模式中作为气体冷却器,在低临界模式中作为冷凝器。换热器出口管路6将该放热换热器4经由中间膨胀装置8与储液器10连接。当放热换热器4和出口管路6中的制冷剂压力可以高到120巴,在“夏季模式”下一般约为85巴,冬季模式下一般为45巴时,中间膨胀装置8将压力降低到30到40巴之间,最好是36巴,该中间压力一般与“冬季模式”和“夏季模式”无关。储液器10分别在液体部12和气体部14收集液态和气态制冷剂并使之分离。
液体管路16将储液器10的液体部12与中温回路20和低温回路24的制冷用户端18和22连接起来。具体地,液体管路16分成低温支路17和中温支路19。低温和中温回路20和24分别包括至少一个低温和中温制冷用户端18,22。制冷用户端18和22分别包括膨胀装置26,28和蒸发器30,32。
中温回路20通过吸气管34和高压管40构成封闭回路,其中吸气管连接到中温回路20的压缩机组36的压缩机38的吸气口,高压管连接压缩机38的出口和放热换热器4的入口。中温回路压缩机38的入口压力一般在20到30巴之间,并且大约为26巴,这可以使中温回路20制冷用户端的制冷剂温度约为-10度。
在低温回路24中,低温吸气管42连接低温制冷用户端22与低温回路压缩机组44中的压缩机46的入口。回管48使低温回路制冷剂返回中温回路压缩机组36的入口。当低温回路压缩机组44入口压力一般在8到20巴之间,最好约为12巴时,该压力使低温回路24的制冷用户端的制冷剂温度约为-37度,其出口压力几乎与中温回路压缩机组的入口压力相等。低温回路24然后通过与中温回路20的公用回路部分构成封闭回路,即中温回路压缩机组36,高压管40,放热换热器4,中间膨胀阀8、储液器10和液体管路16。
闪发气体管路50连接到储液器10的气体部14。闪发气体管路50将基本为饱和压力即至少接近两相状态的闪发气体引出来。闪发气体管路50引导闪发气体流过闪发气体膨胀装置例如闪发气体阀52,和内部换热器54,该换热器连接到液体管路16上,与液体制冷剂呈热交换关系,并使闪发气体返回低温回路压缩机组44的入口或吸入端。因此,储液器内具有约为36巴中间压力的闪发气体在低温回路压缩机46的入口膨胀到约12巴。相应的冷却能力,即从液体制冷剂传递的热量,被传给中间换热器54内的液体制冷剂,提高了它的冷却或制冷能力。传递给闪发气体制冷剂的热量提高了气体的温度,并且保证了开始为两相状态的闪发气体在进入低温压缩机吸气端或入口之前被完全干燥和过热。内部换热器54不但可以设在液体管路16上,从而提高中温和低温回路20和24的液体制冷能力,而且也可以设在分路17和19的任何位置上,从而就不仅是增加回路20或24的制冷能力。在闪发气体管路50上还可以设置一个切换阀(未示)和一个可选择的闪发气体管路(未示),切换阀接在中间换热器54之后,可选择的闪发气体管路与切换阀连接并因此将该中间换热器54连接到中温压缩机组36的入口或吸气端。通过在使闪发气体流到低温压缩机46的入口和流到中温压缩机38的入口之间的切换,可以在一个宽范围内调节制冷能力的增加。
闪发气体阀52可以是热力膨胀装置,也可以是本领域公知的调节阀。具体地,可以是电控阀或机械控制阀。可以是热力膨胀阀TXV或是电子膨胀阀EXV。
控制器60被设置用来控制闪发气体阀52。该控制器可以是独立的,也可以是整个制冷回路控制装置的一部分。该控制器也可以与闪发气体阀52作成一个整体。包括温度传感器70和压力传感器72的监测设备56经过管路58与控制器60连接。控制器60用来控制经过中间换热器54的闪发气体流量,例如根据所需要的液体制冷剂提高的制冷能力或者根据闪发气体的过热工况。控制器60还可以控制上述切换阀。
还可以给放热换热器出口管6上的高压制冷剂提供进一步的再冷。因此,一部分制冷剂分流经过高压膨胀阀64和高压换热器62,使其余制冷剂再冷。管路68使该分流的制冷剂返回压缩机66的入口。压缩机66的入口可以与压缩机组36的其它压缩机38保持在基本相同的压力等级,或者是不同的即较高的或者较低的压力等级。
权利要求
1.一种制冷剂沿预定流向循环的CO2制冷回路(2),包括沿流动方向的放热换热器(4)、具有液体部(12)和闪发气体部(14)的储液器(10)、和在储液器(10)之后的中温回路(20)和低温回路(24),其中中温和低温回路(22,24)分别包括有沿流动方向的膨胀装置(26,28)、蒸发器(30,32)和压缩机(46,38),制冷回路(2)还包括液体管路(16)和闪发气体管路(50),该液体管路将储液器(10)的液体部(12)与中温和低温回路(20,24)中的至少一个连接,并有内部换热器(54),该闪发气体管路将储液器(10)的闪发气体部(14)经由内部换热器(54)与低温压缩机(46)的入口连接,其中该内部换热器(54)将流过液体管路(16)的液体中的有用热量传递给流过该闪发气体管路(50)的闪发气体。
2.根据权利要求1所述的CO2制冷回路(2),其特征在于,在闪发气体管路(50)中还包括闪发气体阀(52)。
3.根据权利要求2所述的CO2制冷回路(2),其特征在于,该闪发气体阀(52)是控制阀。
4.根据权利要求1到3中任一所述的CO2制冷回路(2),其特征在于,在闪发气体管路(50)中还包括监测装置(56),其用来监测闪发气体的状态。
5.根据权利要求4所述的CO2制冷回路(2),其特征在于,该监测装置(56)包括压力传感器(72)和温度传感器(70)。
6.根据权利要求4或5所述的CO2制冷回路(2),其特征在于,还包括与监测装置(56)和控制阀(52)连接的控制器(60),用来根据闪发气体的状态调节该控制阀(52)。
7.根据权利要求1到6中任一所述的CO2制冷回路(2),其特征在于,还包括位于放热换热器(4)和储液器(10)之间的中间膨胀装置(8)。
8.根据权利要求1到7中任一所述的CO2制冷回路(2),其特征在于,低温压缩机(46)的出口与中温压缩机(38)的入口连接。
9.一种包括根据权利要求1-8中任一权利要求所述CO2制冷回路(2)的CO2制冷装置(3)。
10.一种制冷剂按预定流向循环的CO2制冷回路(2)的运行方法,该CO2制冷回路(2)包括沿流动方向的放热换热器(4)、具有液体部(12)和闪发气体部(14)的储液器(10)、和在储液器(10)之后的中温回路(20)和低温回路(24),其中中温和低温回路(24)分别包括有沿流动方向的膨胀装置(26,28)、蒸发器(30,32)和压缩机(46,38),制冷回路(2)还包括液体管路(16),该液体管路将储液器(10)的液体部(12)与中温和低温回路(20,24)中的至少一个连接,其中该方法包括下列步骤(a)从储液器(10)的闪发气体部(14)引出闪发气体;(b)使闪发气体和液体管路(16)中的液体呈热交换关系流动,从而使液体中的热量传递给该闪发气体;(c)使该闪发气体在低温压缩机(46)的入口附近的位置返回该低温回路(24)中。
11.根据权利要求10所述的方法,其特征在于,还包括根据运行工况调节从储液器(10)引出的闪发气体量的步骤。
12.根据权利要求10或11所述的方法,其特征在于,还包括监测闪发气体状态并根据闪发气体状态调节闪发气体量的步骤。
13.根据权利要求12所述的方法,其特征在于,监测闪发气体的步骤包括检测闪发气体的压力和温度。
14.根据权利要求12或13所述的方法,其特征在于,监测闪发气体状态的步骤是在闪发气体和液体相互换热之后进行。
全文摘要
一种制冷剂沿预定流向循环的CO
文档编号F25B9/00GK101040153SQ200580026747
公开日2007年9月19日 申请日期2005年2月18日 优先权日2004年8月9日
发明者苏雷什·杜赖萨米 申请人:卡里尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1