用于在hepa过滤元件中应用的层的制作方法

文档序号:5028530阅读:215来源:国知局

专利名称::用于在hepa过滤元件中应用的层的制作方法
技术领域
:本发明涉及一种用于在HEPA过滤元件中应用的层。
背景技术
:满足HEPA要求的过滤元件由现有技术已知。HEPA过滤元件可设计成悬浮物过滤器,其用于从空气中滤掉超过99.9%的大于O.ljim至0.3fim的所有颗粒。这种颗粒可包括病毒、能被吸入人体肺泡区的灰尘、尘螨及其排泄物、花粉、烟雾颗粒、细菌、各种有毒尘埃和气溶胶。另外,HEPA过滤元件还可用在医用领域中、特别是用在手术室、重症监护室和化验室中。此外还已知在洁净室中和在核技术中的多种应用。用于HEPA过滤元件的分级的欧洲标准是具有过滤级别H10至H14(HEPA)的DINEN1822标准。已知,尺寸为O.lnm至(Ujim的颗粒最难分离出。在确定条件下分别最难分离出的颗粒的颗粒尺寸以术语MPPS("最容易穿透粒径")来分级。因此HEPA过滤元件在其关于颗粒尺寸的效率方面借助于测试用气溶胶(Prtifaerosol)来分级。所述测试用气溶胶为所谓的DEHS(癸二酸二辛酯/二(2-乙基己基)癸二酸酯)。虽然由现有技术已知的过滤元件经常展示出越来越好的过滤效率,然而它们可能由对人体健康有害的材料制成。例如已知具有大量玻璃纤维的HEPA过滤元件。玻璃纤维可能会从由其制成过滤元件的层中出来而损害人体组织。此外,已知的用于HEPA过滤元件的层不能亳无困难地打褶,因为玻璃纤维在打褶过程中被强机械加载并容易折断。打褶的过滤元件是低弹性的且易于形成断裂部位。所述断裂部位形成孔洞或穿孔,其不利地对过滤效率具有负面影响。这种过滤器不能再满足HEPA要求,因为不希望的颗粒能穿过所形成的损坏部位。
发明内容因此本发明的目的在于,创造一种用于在HEPA过滤元件中应用的层,所述层能在具有高过滤效率的同时毫无问题地打褶。根据本发明,前述目的通过一具有权利要求1的特征的层来实现。对此所述层包括含聚丙烯纤维的、用于稳定性的第一承载层和含聚丙烯纤维的第二分离层,其中所述分离层的聚丙烯纤维至少部分地静电充电,所述承载层和分离层设计成至少局部没有玻璃纤维的无纺织物。根据本发明可知,应用由聚丙烯纤维制成的无纺织物可实现具有合适的孔隙度的、高弹性的、能打褶的层的设计。此外还可知,减少或不用玻璃纤维可提高所述层的弹性和避免损坏部位。根据本发明可避免由于所述层的过高的脆性(而产生)的断裂部位。最后可知,由聚丙烯纤维制成的无纺织物可毫无问题地这样彼此热连接,使得彼此连接的承载层和分离层可在各个分层几乎不彼此相对移动的情况下实现打褶。由此实现开头所述的目的。在此背景下可具体设想,承载层和分离层都不具有玻璃纤维,即承载层和分离层都无玻璃纤维地形成。通过这种具体实施方案可形成未包含对人体有害的材料的层。承载层能够具有70g/i^至200g/n^的单位面积重量。单位面积重量的选择使所述层能够足够稳定,以便使所述层打褶。此外,单位面积重量的选择可实现非常薄的且高渗透的分离层,所述分离层本身具有仅较小的刚度,对所述层的总刚度没有贡献。承载层的聚丙烯纤维能够静电充电。这种具体实施方案使得承载层能用作预分离器或预过滤器。分离层能够具有10g/m2至80g/m2的单位面积重量。这种区域令人吃惊地被证明特别适合满足HEPA要求。在此孔隙度可根据纤维的纤度来调节。所应用的纤维越纤细,单位面积重量就可以选择得越小,以满足相应过滤级别的要求。在此背景下可设想,分离层具有纳米纤维,所述纳米纤维由聚酰胺、聚丙烯腈或聚碳酸酯制成。此外可设想,将由上述材料制成的纳米纤维的分层涂覆到所述分离层上。纳米纤维使得能够分离出最细微的颗粒,并能显著地提高在此所描述的层的过滤效率。所述层可具有含聚丙烯纤维的第三分层,所述第三分层具有8g/m2的单位面积重量,所述第三分层与承载层一起以夹心的形式包围分离层。这种具体实施方案适合于以熔喷工艺来制造所述层。此外所述第三分层为用于保护分离层不磨损和不放电的保护层。所述第三分层使得空气能没有显著阻力地通过,因此在通过熔喷工艺涂覆分离层时,所述第三分层特别适合作为衬底。在此,分离层的通过熔喷工艺涂覆的聚丙烯纤维通过与第三分层的纤维粘接而与所述第三分层以材料结合的方式相连接。在此背景下,承载层的聚丙烯纤维可包括皮芯纤维,所述皮芯纤维具有由茂金属聚丙烯制成的外皮和由纯聚丙烯制成的芯。这种具体实施方案允许外皮熔化,其中芯在其聚合物结构方面没有损坏。通过熔化外皮,各皮芯纤维不仅能彼此结合而且能与分离层的聚丙烯纤维相结合。十分具体地可以设想,承载层预制地与分离层和第三分层通过超声波焊接相连接。分离层的聚丙烯纤维可设计成具有12jim的平均直径的熔喷纤维。这种具体实施方案使得能实现具有非常小的孔的无纺织物。由于细微的孔隙度,可分离出非常细微的颗粒,从而使所述层满足HEPA要求。第三分层的聚丙烯纤维可逐点地彼此热连接。具体地,第三分层的聚丙烯纤维可通过"点密封(PointSeal)"法彼此连接。在此聚丙烯纤维的各个逐点式的区域^L熔接,并在其聚合物结构方面如此改变,使得所述区域是脆的。但是,不同聚丙烯纤维的彼此熔接的脆的区域仅以逐点的方式存在,从而使第三分层可不破碎地作为平面构型物整体上进行运动和变形。承载层、分离层和第三分层可通过超声波焊接的区域或者激光焊接的区域这样彼此热连接,使得所述层能够打褶。所述超声波焊接或激光焊接的区域能够以线条图样或点图样的形式来设置。由此确保了,在各个焊接区域之间存在可不被破坏地弯曲或折叠的未焊接区域。所述焊接区域由于热加载而经常是脆的。在此背景下可设想,焊接区域这样使全部三个分层彼此连接,使得在各分层中的聚丙烯纤维熔化并彼此熔合成使所述分层相接合的结合部。所述层可具有160g/n^的单位面积重量、0.92mm的厚度,以及在所述层的入流侧与出流侧之间的压差为200Pa时具有315dm3/m2s的透气度。令人吃惊地显示出,具有这个厚度和这个单位面积重量的层在所述压差时为所述透气度。这种层特别适于用在室内空气滤清器中,因为所述室内空气滤清器能够用小的耗电功率来工作。就这点而言,可节约地、成本经济地驱动室内空气滤清器。所述层在待过滤的气态介质的入流速度为15cm/s时能够引起从入流侧到出流侧的最高为100Pa的压力降/压差。这种层以特别的方式适于用在将空气从第一室吸入第二室中的设备中。入流侧到出流侧的小的压力降使得能够节约地驱动所述吸取设备,因为所述吸取设备只须完成少量的工作,就能将待过滤的气态介质吸过所述层。在此背景下可设想,所述压力降在入流速度为5cm/s时小于40Pa、在入流速度为10cm/s时小于80Pa。具有这种特性的层特别适于用在电驱动的过滤器装置中、特别是室内空气滤清器中。所述层在气态介质的入流速度最高为8cm/s时可具有至少为85%的过滤效率。十分具体地可以考虑,将根据欧洲标准DINEN1822的测试用气溶胶DEHS用作气态介质。当这种测试用气溶胶以8cm/s(的速度)撞到所述层的入流侧上时,分离出至少85%的最难分离的颗粒。这些最难分离的颗粒具有一定的颗粒尺寸,即MPPS("最容易穿透粒径,,)。具有这种特性的层适于用在HEPA过滤元件中,因为所述层满足了过滤级别为H10的过滤器的要求。过滤元件可包括一波玟膜(Faltenbalg),其中所述波紋膜由打褶的层制成,所述波紋膜安装在一过滤门中。这种过滤元件适合于作为模块用于室内空气滤清器,因为所述过滤元件可与过滤门一起安装到一已有的布置结构中。如果波紋膜由一在此所述的层制成,则所述过滤元件设计成HEPA过滤元件。所述过滤门具有穿孔的底部,所述底部配设有至少部分环绕的框架,所述框架包围所述波故膜。通过这种具体实施方案,所述波紋膜可粘接到框架中,由此避免了在框架区域中的开口或缝隙。通过在底部中的穿孔确保了,待过滤介质透过穿孔并穿过波紋膜的打褶的层。通过粘接波紋膜防止了待过滤介质流过在波玟膜和框架之间的开口或缝隙。现在给出了以有利的方式实施和改进本发明理论的不同的可能性。对此一方面参照后附的权利要求,另一方面参照随后借助附图对本发明优选实施例的阐述。通过借助附图对本发明优选实施例的阐述,还一般性地阐述了本理论的优选设计方案和改进方案。在附图中图l示出层的示意图,所述层具有三个分层,图2示出一波紋膜的剖视图,所述波紋膜由根据图1的打褶的层制成,图3示出根据图2的波紋膜的俯视图,图4示出一过滤门的俯视图,根据图3的波紋膜安装在该过滤门中,图5示出层的入流侧和出流侧之间的压力降随入流速度变化的曲线图,以及图6以双对数示出待分离的颗粒的穿透率随入流速度变化的曲线图。具体实施例方式图1示出了一用于在过滤元件中应用的层,所述层包括含聚丙烯纤维的、用于稳定性的第一承载层1和含聚丙烯纤维的第二分离层2。分离层2的聚丙烯纤维至少部分地静电充电。承载层1同样可静电充电并用作预分离器或预过滤器。承载层1和分离层2设计成无玻璃纤维的无纺织物。承载层l具有110g/i^的单位面积重量,由聚丙烯纤维制成。承载层1的聚丙烯纤维设计成皮芯纤维,该皮芯纤维具有一由茂金属聚丙烯制成的外皮和一由纯聚丙烯制成的芯。分离层具有36g/n^的单位面积重量,由聚丙烯纤维制成。所述聚丙烯纤维设计成驻极体微纤维。分离层2的聚丙烯纤维通过熔喷工艺涂覆到第三分层3上,该第三分层具有14g/n^的单位面积重量。第三分层3同样由聚丙烯纤维制成,并起一村底保护作用,在该衬底上在熔喷工艺期间涂覆有所述分离层2的聚丙烯纤维。第三分层3具有聚丙烯纤维,所述聚丙烯纤维通过"点密封"法逐点地彼此热连接。第三分层3和承载层1将分离层2以夹心的方式包围在其间。具体地,在之前所述的具体实施例中,承载层1、分离层2和第三分层3只包含聚丙烯纤维而完全不含有玻璃纤维。因此,在此具体描述的层几乎可完全灰化并易于被清除。在具体实施例中描迷的层具有160g/ii^的单位面积重量和0.92mm的厚度。在设定在所述层的入流侧与出流侧之间的压差为200Pa时,该层的透气度为315dm3/m2s。在下面的表格中给出了入流速度、压力降、各MPPS的效率、穿透率以及颗粒尺寸MPPS。所述测量结果通过在具体实施例中所描述的层处的、根据DINEN1822标准的测量得出。表<table>tableseeoriginaldocumentpage9</column></row><table><table>tableseeoriginaldocumentpage10</column></row><table>图5示出了所述层的随入流速度变化的、从入流侧到出流侧的压力降。可从图5中明确地看出,在入流速度为15cm/sec时,压力降最高为110Pa。就这点而言,根据本发明的层表现出用于待过滤介质的、突出的透气度,由此使吸取设备的电机可成本经济地和节约地被驱动。在图5中示出了由测量得出的回归度。可从图5中明确地看出,至少直到入流速度为15cm/sec为止,压力降和入流速度之间都具有线性关系。图6示出了最难分离的颗粒的随入流速度变化的穿透率。从上述表中获悉,在入流速度为1.3cm/sec时,最难分离的颗粒的直径为0.071jim。这显示出穿透率为1.2%。这就是说,在入流速度为1.3cm/sec时,最难分离的颗粒的98.8%能通过根据本发明的层被分离。在入流速度为5.3cm/sec时,89.5%的最难分离的颗粒能被分离。就这点来说,根据本发明的层展显示出^f吏其适合于在HEPA过滤元件中应用的过滤特性。图2示出一波玟膜4,所述波玟膜由在此所迷类型的层制成。使所述层打褶并具有70个双褶。图3示出了波紋膜4的俯视图。波紋膜4配设有条带形元件5,所述条带形元件与折紋背部连接。所述条带形元件5^f吏折紋背部、进而佳:折紋间隔开。由此特别是在穿流时防止折紋粘合或联接。图4示出一过滤门6,根据图3的波故膜4粘接到所述过滤门中。所述过滤门6利用框架7包围波紋膜4,其中在框架7和波紋膜4之间装入粘合剂,以防止形成开口或缝隙。过滤门6具有底部8,在此通过部分地切除波紋膜4而使所述底部露出。所述底部8具有穿孔9,待过滤的介质可经由该穿孔流入。此外,过滤门6具有止动销10,所述止动销可利用室内空气滤清器的容纳部来卡锁定位。由此,过滤门6可与波故膜4一起作为模块来安装。在此所述的层或者在此所述的过滤元件可用作空气滤清器,以便从污染空气中滤掉;敞生物。在此,所述层或过滤元件显示出过滤效率和压力降的特别有利的比率。在此所述的层和在此所述的过滤元件显示出,微纤维不会从所述层中释放到周围空气中。就这点而言,所述层和过滤元件可安装在过敏症患者在其中活动的区域中。疏水性纤维、即聚丙烯纤维的应用防止了细菌、真菌和类似的有害物质在所述层或过滤元件的表面上生长。此外所述层可完全灰化。基于在此所述的特性,所述层特别适合于应用在用于室内空气滤清器的空气过滤元件中或应用在医院中的空气过滤元件中。关于本发明理论的其他有利的设计方案和改进方案,一方面参照说明书的公开部分,另一方面参照所附权利要求。最后要明确地强调,此前纯粹是任意选择的实施例仅用于探讨根据本发明的理论,然而本发明的理论并不局限于所述实施例。权利要求1.一种用于在HEPA过滤元件中应用的层,所述层包括含聚丙烯纤维的、用于稳定性的第一承载层(1)和含聚丙烯纤维的第二分离层(2),其中所述分离层(2)的聚丙烯纤维至少部分地静电充电,所述承载层(1)和分离层(2)设计成至少局部没有玻璃纤维的无纺织物。2.根据权利要求1所述的层,其特征在于,所述承载层(1)具有70g/m2至200g/m2的单位面积重量。3.根据权利要求1或2所述的层,其特征在于,所述承载层(1)的聚丙烯纤维被静电充电。4.根据权利要求1至3中任一项所述的层,其特征在于,所述分离层(2)具有10g/m2至80g/m2的单位面积重量。5.根据权利要求1至4中任一项所述的层,其特征在于,所述层具有含聚丙烯纤维的第三分层(3),所述第三分层具有至少8g/i^的单位面积重量,所述第三分层与所述承载层(1)一起以夹心的形式包围所述分离层(2)。6.根据权利要求1至5中任一项所述的层,其特征在于,所述承载层(1)的聚丙烯纤维包括皮芯纤维,所述皮芯纤维具有由茂金属聚丙烯制成的外皮和由纯聚丙烯制成的芯。7.根据权利要求1至6中任一项所述的层,其特征在于,所述分离层(2)的聚丙烯纤维设计成平均直径为1至2jim的熔喷纤维。8.根据权利要求1至7中任一项所迷的层,其特征在于,所述第三分层(3)的聚丙烯纤维逐点地彼此热连接。9.根据权利要求5至8中任一项所述的层,其特征在于,所述承载层(1)、分离层(2)和第三分层(3)只包含聚丙烯纤维。10.根据权利要求5至9中任一项所述的层,其特征在于,所述承载层(1)、分离层(2)和第三分层(3)通过超声波焊接的区域或激光焊接的区域这样彼此热连接,使得所述层能够打褶。11.根据权利要求1至10中任一项所述的层,其特征在于,所述层具有160g/m2的单位面积重量、0.92mm的厚度,以及在所述层的入流侧与出流侧之间的压差为200Pa时具有315dm3/m2s的透气度。12.根据权利要求1至11中任一项所述的层,其特征在于,在待过滤的气态介质的入流速度为15cm/s时从入流侧到出流侧的最高为100Pa的压力降。13.根据权利要求1至12中任一项所述的层,其特征在于,在气态介质的入流速度最高为8cm/s时至少为85%的过滤效率。14.一种过滤元件,包括波紋膜(4),其中所述波紋膜(4)由才艮据前述权利要求中任一项所述的打褶的层制成,其中所述波玟膜(4)安装在一过滤门(6)中。15.根据权利要求14所述的过滤元件,其特征在于,所述过滤门(6)具有穿孔的底部(8),所述底部配设有至少部分环绕的框架(7),所述框架包围所述波玟膜(4)。全文摘要本发明涉及一种用于在HEPA过滤元件中应用的层,所述层包括含聚丙烯纤维的、用于稳定性的第一承载层(1)和含聚丙烯纤维的第二分离层(2),其中所述分离层(2)的聚丙烯纤维至少部分地静电充电,所述承载层(1)和分离层(2)设计成至少局部没有玻璃纤维的无纺织物。所述层能在具有高过滤效率的同时毫无问题地打褶。文档编号B01D39/16GK101622047SQ200780052011公开日2010年1月6日申请日期2007年12月3日优先权日2007年3月7日发明者A·格赖纳,H·沃席沙卡,J·阿道夫,K·维瑟尔,T-H·江申请人:卡尔弗罗伊登柏格两合公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1