制造多晶硅的方法

文档序号:4920198阅读:180来源:国知局
制造多晶硅的方法
【专利摘要】本发明涉及一种制造多晶硅的方法。根据本发明,可以防止在硅棒的生长过程中发生熔融,并且能够以最小的能耗短期内制造具有较大直径的多晶体硅棒。
【专利说明】制造多晶硅的方法
【技术领域】
[0001]本发明涉及一种制造多晶硅的方法。
【背景技术】
[0002]多晶体硅,通常称为多晶硅,是用于光伏和半导体产业的基本原料,且随着这些产业的近期发展,对多晶硅的需求迅速增长。
[0003]制造多晶硅的方法是通过硅沉积过程(或化学气相沉积)所表示的,该过程是从原材料硅烷气体中生产多晶硅固体相。
[0004]根据硅沉积过程,通过在高温环境下氢还原和热分解从硅烷原料气体中产生硅细颗粒,并且所生成的硅细颗粒以多晶体的形式沉积在棒或颗粒的表面上。例如,已知的有使用化学气相沉积反应器的西门子沉积法和使用流化床反应器的沉积方法。
[0005]在硅沉积过程中,作为提高多晶体硅生长速率的方法之一有一种方法是提高原料供给量。然而,过量供给原料气体并不是优选的,因为降低贡献给沉积反应的原料气体的比例,造成减少多晶体硅的沉积量(产率)。
[0006]同时,随着硅棒的增长,应用于西门子沉积法的硅棒应该保持适于多晶体硅沉积的表面温度,并且因对流导致棒的中心与表面之间的温度差增大。因此,当棒增长到一定程度,并且棒的中心部分的温度达到多晶体硅的熔点时,可能容易发生熔融。因此,存在的问题在于所述棒不能增长至具有大的直径,例如150毫米或更大。
[0007]所以,为了增长棒的直径而不发生棒的熔融已提出许多方法。但是,反应产量仍然比较低,且存在不便之处例如反应器结构的改变。因此,需要开发一种改善这些缺陷的技术。

【发明内容】

[0008]技术目标
[0009]因此,本发明提供了一种制造多晶硅的方法,其中,在硅棒增长过程中防止了熔融,并且可以在反应器结构不经修改并且消耗最小的能量短时间内制造出直径为150毫米或更大的多晶体硅棒。
[0010]技术方案
[0011]根据本发明的一种实施方式,本发明所提供的是一种制造多晶硅的方法,其包括以下步骤:
[0012]在设置有热娃棒的反应器中使包含二氯硅烷和三氯硅烷的原料气体与还原气体反应以在硅棒上沉积多晶体硅;和
[0013]在多晶硅的沉积步骤中根据反应进程调节原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比。
[0014]根据本发明的另一种实施方式,可以调节所述制造方法使在沉积步骤的任一点处原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10摩尔%以上。[0015]同时,根据本发明的另一种实施例,可以进行多晶硅的沉积步骤使原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10至65摩尔%直到下述公式的过程进行至20至50%之间的任一点;并且自上述点起直到反应终止使在原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为小于10摩尔%:
[0016][公式]
[0017]过程的进展率(%) = { (Dt-D0) / (De-D0) } X 100
[0018]其中Dtl是反应如娃棒的直径,De为反应终止后娃棒的直径,以及Dt是在反应的任一点处硅棒的直径(Dtl ^ Dt ^ De)。
[0019]根据本发明的另一种实施方式,可以进行多晶硅的沉积步骤使原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比小于10摩尔%直到上述公式的过程进行至50至95 %之间的任一点处;并且自上述点起直到反应终止使在原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10至65摩尔%。
[0020]根据本发明的另一种实施方式,可以进行多晶硅的沉积步骤使原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10至65摩尔%直到上述公式的过程进行至20至50%的任一点(第一点);
[0021]自上述点(第一点)起直 至上述公式的过程进行至50至95%的任一点(第二点)使在原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为小于10摩尔% ;以及
[0022]自上述点(第二点)起直至反应终止使在原料气体中所包含的二氯硅烷与三氯娃烷的摩尔比为10至65摩尔%。
[0023]根据本发明的另一种实施方式,可以调整多晶硅的沉积步骤,根据反应进程使原料气体中所包含的二氯硅烷与三氯硅烷的平均摩尔比为10摩尔%以上。本文中,优选可以在整个步骤调节沉积步骤使原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10摩尔%以上。
[0024]同时,根据本发明的另一种实施方式,可以进行多晶硅的沉积步骤以保持硅棒的中心温度低于多晶硅的熔点。
[0025]同时,所述原料气体可以被预先加热到50至500°C并供给到反应器。
[0026]所述还原气体可以是氢气(H2)。
[0027]进一步地,所述还原气体与原料气体的摩尔比可以是1:1至1:40。
[0028]硅棒的表面温度可以保持在1000至1200°C。
[0029]通过沉积步骤生产的硅棒可以具有140至200mm的最终直径。
[0030]有益效果
[0031]根据本发明的制造多晶硅的方法可以用于防止在硅棒生长过程中发生熔融并且以能量消耗最小地在短期内制造出直径为150_或更大的多晶硅棒,因而本发明的方法在生产力和能效方面是有优势的。
【专利附图】

【附图说明】
[0032]图1是西门子型化学气相沉积反应器的横截面图,该反应器可以应用于根据本发明的一种实施方式的制造方法。
[0033](附图标记)[0034]10:基板12:进气口
[0035]14:出气口20:钟形反应器
[0036]20a:室盖20b:钟罩
[0037]22:多晶硅棒23:气密法兰
[0038]24:棒丝24a, 24b:垂直棒丝
[0039]24c:水平棒丝26:多晶硅棒沉积
[0040]27:棒的支撑件 28:电的馈入装置
[0041]29:电极35:反应室
【具体实施方式】
[0042]在下文中,将根据本发明的一种实施方式说明制造多晶硅的方法。
[0043]为了开发制造多晶硅的方法本发明的发明人已进行了许多研究,并且他们发现根据硅沉积过程中的反应进度控制原料气体中所包含的硅烷化合物的组成,使得在反应的初期提高棒的生长速率,并在反应的后期阶段防止棒熔化,从而制造出具有更大直径的棒。此外,他们发现,通过使用上述方法而没有改变反应器能够以能耗最小地方式提高多晶硅的产率,从而完成了本发明。
[0044]根据本发明的一种实施方式,本发明所提供的是一种制造多晶硅的方法,其包括以下步骤:
[0045]在设置有热娃棒的反应器中使包含二氯硅烷和三氯硅烷的原料气体与还原气体反应以在硅棒上沉积多晶硅;和在多晶硅的沉积步骤中根据反应进程调节原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比。
[0046]首先,根据本发明,多晶硅的沉积步骤可以在设置有热硅棒的反应器中进行。
[0047]所述反应器可以是应用于西门子沉积法或类似的方法中的钟罩反应器。其结构没有特别的限制,只要它设置有热硅棒,并且可以使用如图1中所示的反应器。
[0048]图1是西门子型化学气相沉积(CVD)反应器的横截面图,该反应器可以应用于根据本发明的一种实施方式的制造方法,其中一般是使用气密法兰23将钟形反应器20固定在基板10上,内部设置有一个或多个反应室35,并且所述钟形反应器20包括室盖20a和钟罩20b,并且在两者之间有冷却剂流过。
[0049]同时,在基板10上设置有进气口 12和出气口 14。原料气体经过连接到含有硅的气体源的进气口 12流进反应室35,CVD反应之后的气体通过出气口 14被排放到反应室35之外。此外,两个电的馈入装置28从基板10的外侧延伸到反应室35中,并且其每个端部被连接到由石墨制成的电极29上,例如,同时被棒支撑件27支撑。
[0050]在反应室35中,设置有一组或多组棒丝24。具体地说,一组棒丝24形成U形棒,其具有在反应器35内间隔地分开设置的两个垂直棒丝24a、24b和连接所述两个垂直棒丝的顶端部分的水平棒丝24c。而且,通过电极29和电的馈入装置28将所述两个垂直棒丝24a和24b的每一个底端部分连 接到外部电源,从而所述一组棒丝24形成一个完整的电路。在这个西门子CVD反应器装置中,电流经过电的馈入装置28和电极29流向棒丝24用于CVD过程,并且向反应室35供应原料气体。然后,加热棒丝24,在反应室35内原料气体中所包含的氯硅烷化合物发生热分解。[0051]这样,在氯硅烷化合物分解之后通过化学气相沉积(CVD)在炽热的棒丝24上生成多晶硅,硅以多晶体形式沉积在所述硅棒的表面上,并且沉积的多晶硅棒26增大直到具有理想的直径,在该点处关闭反应器装置,从反应室35清除该过程气体,然后打开反应器20以收集多晶硅棒22。
[0052]同时,在根据本发明的制造多晶硅的方法中,原料气体可以包括二氯硅烷(下文中,简称“DCS”)和三氯硅烷(下文中,简称“TCS”)。
[0053]在以前制造多晶硅的方法中,考虑到硅的沉积温度,主要使用TCS (SiHCl3+H2 — Si+SiHCl3+SiCl4+HCl+H2)或甲硅烷(SiH4 —Si+H2)作为原料气体。也就是说,四氯硅烷(SiCl4)作为原料气体受限制,因为它存在一些问题,例如硅的高沉积温度(约1150°C或更高)和生产出具有高沸点的副产物。DCS几乎不用作原料气体,因为它显示了比TCS或甲硅烷更低的产率(如产量)。如果使用的话,将DCS以与TCS混合物形式使用(典型地是以DCS与TCS的摩尔比5摩尔%或更少的形式混合)。
[0054]然而,本发明的发明人的研究表明,当DCS和TCS的混合物被用作原料气体,同时根据反应的进程调节原料气体中所包含的DCS与TCS的摩尔比,特别是,在多晶硅沉积步骤中的任一点处将原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比调节至10摩尔%以上,可以控制硅棒的生长速率至最佳值,并且可以进一步提高棒的最大生长直径。
[0055]即,本发明的发明人的研究表明,在反应的初期,将DCS与TCS的摩尔比提高至10摩尔%以上以提闻棒的生长速率。另外,在反应的后期,为使TCS热解,提闻娃棒的中心温度接近多晶硅的熔点(约1414°c )。在这一方面,发现当DCS与TCS的摩尔比提高至10摩尔%以上时,可以防止棒熔融,并且也可以诱导硅棒更有效地生长。同时还发现,通过结合在反应的初期和后期的方法,或由根据反应进程调节DCS与TCS的摩尔比为10摩尔%以上,可以更好地提高生产率。
[0056]在下文中,将说明根据本发明的每种实施方式的制造方法。
[0057]如上所述,根据本发明的一种实施方式,所提供的是一种制造多晶硅的方法,包括以下步骤:在设置有热硅棒的反应器中使含有二氯硅烷和三氯硅烷的原料气体与还原气体反应以在硅棒上沉积多晶硅;以及在多晶硅的沉积步骤中根据反应进程调节原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比。
[0058]在这方面,在沉积步骤中的任何点处,将原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比调节到10摩尔%以上。
[0059]具体地,根据本发明的一种实施方式,可以进行多晶硅的沉积步骤使原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10至65摩尔%直到下述公式的过程进行至20至50%之间的任一点处;以及
[0060]自上述点起直到反应终止使原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为小于10摩尔%:
[0061][公式]
[0062]过程的进展率(%) = { (Dt-D0) / (De-D0) } X 100
[0063]其中Dtl是反应如娃棒的直径,De为反应终止后娃棒的直径,以及Dt是在反应的任何点处,硅棒的直径(D0 ^ Dt ^ De)。
[0064]也就是说,如上述实施方式,在反应的初期,娃棒具有相对小的直径和表面积,且反应速率慢(直到该过程进行到20至50%的任何点处;优选地到25至45%的任何点,更优选地到30至40 %的任何点),将DCS与TCS的摩尔比调节到10至65摩尔0Z0,优选地到10至60摩尔%,更优选地到15至55摩尔%,以提高包含在原料气体中的DCS的摩尔比,从而提闻娃棒的生长速率。
[0065]在这方面,为了发挥提高硅棒生长速率的最小效应,优选的是原料气体中所包含的DCS与TCS的摩尔比为10摩尔%以上。另外,由于沉积于硅的DCS的沉积产量低于TCS,混合过量的DCS会降低生产率。为了避免这个问题,原料气体中所包含的DCS与TCS的摩尔比优选为65摩尔%以下。
[0066]自上述点起直到反应终止,调节摩尔比到小于10摩尔优选地是大于2摩尔%小于10摩尔%,更优选地是2至8摩尔%,以通过TCS诱导硅棒的有效生长。
[0067]在此,使用设置在反应器中的棒直径测量装置可以测量硅棒的直径。在所述棒直径测量装置中,例如,通过气相色谱或类似的仪器分析废气的组成,并从与DCS和TCS的供应量的累积量的关系中,可以获得所沉积的多晶硅的重量,以通过该重量计算出棒的直径。
[0068]同时,娃棒在其表面应保持其表面温度在适合多晶娃沉积的预设温度范围。但是,随着棒的增长,由于对流导致棒的中心温度和表面温度之间的差值增大。因此,在以前的方法中,随着棒的增长,中心温度达到硅的熔点(约1414°C )从而导致棒的熔融。因此,限制该棒不能成长至具有较大的直径(例如,150mm或更大)。
[0069]然而,本发明人发现,在硅棒生长至一定程度的反应的后期阶段提高DCS与TCS的摩尔比,以实现该棒的额外增长,由于与TCS相比,DCS可以在相对低的温度下沉积到硅里,因此没有额外提高硅棒的中心温度,在低温下通过DCS热解发生了硅沉积。 [0070]根据本发明的一种实施方式,可以进行多晶硅的沉积步骤以使原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比小于10摩尔%,直至上述公式的过程进展到50至95%的任一点处;以及自上述点起直到反应终止使原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10至65摩尔%。
[0071]也就是说,如同上述实施方式,由于上述原因在反应后期提高硅棒的中心温度是困难的,在到反应的后期之前(即,直到该过程进行到50至95%的任何点处,优选地是到60至90 %的任何点处,更优选地是到70至85 %的任何点处),可以将DCS与TCS的摩尔比调节到小于10摩尔% (优选地是小于10摩尔%大于2摩尔%,更优选地是2至8摩尔% )。
[0072]进一步地,自上述点起至到反应终止,可以将DCS与TCS的摩尔比提高到10至65摩尔%,优选地是10至60摩尔%,更优选地是15至55摩尔%,以在反应后期诱导硅棒的额外生长。
[0073]在这方面,在多晶硅沉积步骤的后期阶段硅棒的中心温度与表面温度之间的差值可提高。在根据本发明的制造方法中,测量硅棒的中心温度以调节DCS与TCS的摩尔比。即,根据上述实施方式,当硅棒的中心温度(Ts)达到接近多晶体硅的熔点(约1414°C)时,测量硅棒的中心温度,以增加原料气体中所包含的DCS与TCS的摩尔比到10至65摩尔%,优选地10至60摩尔%,更优选地15至55摩尔%。通过这个过程,即使没有升高硅棒的中心温度,仍然可以通过DCS的热解在低温下发生硅沉积,从而导致棒的进一步增长。
[0074]同时,如上所述,显然可以在单个反应器中同时进行在多晶硅的沉积步骤的初期通过增加DCS与TCS的摩尔比提高棒生长速率的方法,或在该步骤的后期通过增加DCS与TCS的摩尔比诱导棒的进一步生长的方法,从而更高地提高生产率。
[0075]根据本发明的另一种实施方式,可以进行多晶硅的沉积步骤,使原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10至65摩尔%直到上述公式的过程进行至20至50%的任一点(第一点)处;
[0076]自上述点(第一点)起直至该过程进行至50至95%的任一点(第二点)处,使原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比小于10摩尔% ;以及
[0077]自上述点(第二点)起直至反应终止,使原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10至65摩尔%。
[0078]也就是说,在反应初期,棒具有相对小的表面积并且反应速率慢(直到上述过程进行到20至50 %的任何点处,优选地是到25至45 %的任何点处;更优选地是到30至40 %的任何点处),将DCS与TCS的摩尔比提高到10至65摩尔%,优选地是10至60摩尔%,而且更优选地是15至55摩尔%以提高原料气体中所包含的DCS的摩尔比例,从而大大增加了硅棒的生长速率。
[0079]此后,在达到反应的后期阶段之前(即,该过程进行到50至95 %的任一点,优选地是到60至90%的任一点,更优选地是70至85%的任一点处),可以调节DCS与TCS的摩尔比到小于10摩尔% (优选地是小于10摩尔%大于2摩尔%,并且更优选地是2至8摩尔% )。
[0080]进一步地,自上述点起直到反应终止,可以将DCS与TCS的摩尔比增加到10至65摩尔%,优选地到10至 60摩尔%,更优选地到15至55摩尔%,从而即使在反应的后期仍
使硅棒进一步生长。
[0081]同时,根据本发明的另一种实施方式,根据反应进程可以调节沉积步骤使原料气体中所包含的二氯硅烷与三氯硅烷的平均摩尔比为10摩尔%以上。
[0082]即,根据上述实施方式的制造方法是在整个沉积步骤中将DCS与TCS的平均摩尔比调节到10摩尔%以上的方法。因此,当硅棒的中心温度保持在低于多晶硅的熔点时,可以以较高的能效将硅棒的最终直径增大到200_或更大。
[0083]在这方面,根据反应进程调节原料气体中所包含的DCS与TCS的摩尔比。也就是说,将平均摩尔比调节到10摩尔%或更高,优选地是10至60摩尔%,更优选地是15至55摩尔%,最优选地25至55摩尔%,从而获得最佳的生产率。
[0084]对于生产率的提高,有利的是在整个沉积步骤,将原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比调节到10摩尔%以上,优选地是20摩尔%以上,更优选地是30摩尔%以上,从而在上述范围内调节平均摩尔比。
[0085]在此处,根据反应进程对摩尔比进行调节,同时贯穿整个反应中的平均摩尔比保持在上述范围内,因此根据反应进程摩尔比的变化没有特别限制。
[0086]同时,根据上述实施方式在每一种制造方法中,优选的是在预定的温度下将硅棒的中心温度(Tc)调节到比多晶硅的熔点更低的温度,以避免所述棒的熔化。
[0087]也就是说,随着棒的生长,硅棒应该保持适于在其表面上沉积多晶硅的表面温度,并且由于对流造成该棒中心与表面之间的温度差增大。因此,为了避免硅棒熔化,优选的是将棒的中心温度控制到低于多晶硅的熔点(优选地低于1414°C )。
[0088]另外,根据上述实施方式的每一种制造方法中,硅棒的表面温度可以保持在1000至1200°C,优选地是1050至1200°C,更优选地是1050至1150°C。
[0089]即,对于从含有DCS和TCS的原料气体在硅棒表面上充分沉积多晶硅和生产具有足够大直径的所述棒,有利的是将硅棒的表面温度维持在上述范围内。在这一方面,使用辐射温度计通过观察玻璃可以测量硅棒的表面温度。
[0090]同时,在根据上述实施方式的每一种制造方法中,优选的是将包含DCS和TCS的原料气体预热并供应到该反应器。
[0091]当供应预热的原料气体时,可以减少由于对流传热造成的从硅棒表面传递到原料气体的热量。所以,通过抑制棒中心部分的温度的升高可以更好地提高反应效率。在这方面,原料气体的预热温度没有特别地限制。但是,根据本发明的一种实施方式,考虑到预热效果,有利的是将温度调节到50至500°C,优选地75至400°C,更优选地100至300°C。
[0092]根据本发明,在多晶硅的沉积步骤中所用的还原气体可以是氢气(H2)。
[0093]在此,还原气体与原料气体的摩尔比可以被调节到1:1至1:40,优选地1:1至1:30,更优选地1:1至1:20。也就是说,为了诱导硅棒快速生长而不会以气相从原料气体沉积多晶硅,优选地是在上述范围内调节还原气体与原料气体的摩尔比。
[0094]通过本发明的制造方法所形成的娃棒可具有最终直径140至220mm,优选地150至210mm,更优选地150至200mm。
[0095]如同之前的方法,即,当DCS不被用作原料气体或者是基于原料气体总量其以5摩尔%或更少的比例使用的情况下,关于硅棒的中心温度,将硅棒的最终直径增大到150_或更大是有限制的。然而,基于根据本发明的制造方法,即使使用含有TCS和DCS的原料气体,根据反应进程调节其摩尔比,使得在低得多的温度下诱导多晶硅的沉积并将硅棒的最终直径稳定地增大到140至220mm。
[0096]同时,如上述实施方式,根据反应进程和硅棒的中心温度的变化通过调节原料气体中所包含的DCS与TCS的摩尔比促进硅棒生长的方法可以应用到西门子沉积法,也可以用于流化床反应器的方法。本领域的技术人员将理解到的是,所有的上述方法可以很容易地应用于此,因此,其说明没有特别的限制。
[0097]在下文中,为了更好的理解提供了优选的实施例。但是,下面的实施例是仅仅旨在说明性目的之用,本发明并不受这些实施例的限制。
[0098]实施例1
[0099]使用具有如图1所不的结构的反应器生广多晶娃。
[0100]在此,在反应器内部安装的硅棒(初始直径约7mm)数量共计54,并将反应器内的压力调整到大约6巴绝对压力。
[0101]二氯硅烷(DCS)和三氯硅烷(TCS)被包含在原料气体中,并将氢气(H2)和原料气体以氢气(H2)与原料气体的摩尔比为大约1:8的比例混合。将原料气体预加热至大约175°C,以及硅棒表面每平方毫米原料气体的供应量是大约2.0X 10_7 (摩尔/秒/mm2)。
[0102]设定电流值以维持硅棒的平均表面温度在大约1150°C。当硅棒的直径变成大约150mm,确定该 过程进行到100%,并且对用于硅沉积和生产所需要的能耗进行测量。
[0103]本文中,多晶硅是根据反应进程制造的。也就是说,直到下式的过程达到约20%,将原料气体中所包含的DCS与TCS的摩尔比调节到大约20摩尔%,并且之后直至反应完成将原料气体中所包含的DCS与TCS的摩尔比调节到大约5摩尔%。[0104][公式]
[0105]过程的进展(%) = { (Dt-D0) / (De-D0) } X 100
[0106]其中Dtl是反应前硅棒的直径(实施例1中棒的起始直径为大约7mm),De为反应终止后硅棒的直径(实施例1中棒的最终直径为150_),以及Dt是在反应的任何点处硅棒的
直径(D0 ^ Dt ^ De)。
[0107]在这方面,下述表1示出了根据反应进程包含在原料气体中的氯硅烷的摩尔比(DCS/TCS),而表2示出了直到反应终止每单位小时硅的产量(kg/h)和每单位产量的能耗(kWh/kg)。
[0108]实施例2
[0109]以与实施例1相同的方式并在相同的条件下根据反应进程制造多晶硅,除了直到所述过程达到约50%,将包含在原料气体中的DCS与TCS的摩尔比调节为约50摩尔%,并且之后直到反应完成,将包含在原料气体中的DCS与TCS的摩尔比调节为约5摩尔%之外。
[0110]实施例3
[0111]以与实施例1相同的方式并在相同的条件下根据反应进程制造多晶硅,除了直到所述过程达到约40%,将包含在原料气体中的DCS与TCS的摩尔比调节为约65摩尔%,并且之后直到反应完成,将包含在原料气体中的DCS与TCS的摩尔比调节为约5摩尔%之外。
[0112]实施例4
[0113]以与实施例1相同的方式并在相同的条件下根据反应进程制造多晶硅,除了直到所述过程达到约80 %,将包含在原料气体中的DCS与TCS的摩尔比调节为约5摩尔%,并且之后直到反应完成,将包含在原料气体中的DCS与TCS的摩尔比调节为约20摩尔%之外。
[0114]实施例5
[0115]以与实施例1相同的方式并在相同的条件下根据反应进程制造多晶硅,除了直到所述过程达到约50 %,将包含在原料气体中的DCS与TCS的摩尔比调节为约5摩尔%,并且之后直到反应完成,将包含在原料气体中的DCS与TCS的摩尔比调节为约50摩尔%之外。
[0116]实施例6
[0117]以与实施例1相同的方式并在相同的条件下根据反应进程制造多晶硅,除了直到所述过程达到约95 %,将包含在原料气体中的DCS与TCS的摩尔比调节为约5摩尔%,并且之后直到反应完成,将包含在原料气体中的DCS与TCS的摩尔比调节为约65摩尔%之外。
[0118]实施例7
[0119]以与实施例1相同的方式并在相同的条件下根据反应进程制造多晶硅,除了直到所述过程达到约20%,将包含在原料气体中的DCS与TCS的摩尔比调节为约20摩尔%,直到所述过程达到约80%,将包含在原料气体中的DCS与TCS的摩尔比调节为约5摩尔%,并且之后直到反应完成,将包含在原料气体中的DCS与TCS的摩尔比调节为约20摩尔%之外。
[0120]实施例8
[0121]以与实施例1相同的方式并在相同的条件下根据反应进程制造多晶硅,除了直到所述过程达到约50%,将包含在原料气体中的DCS与TCS的摩尔比调节为约50摩尔%,直到所述过程达到约95%,将包含在原料气体中的DCS与TCS的摩尔比调节为约5摩尔%,并且之后直到反应完成,将包含在原料气体中的DCS与TCS的摩尔比调节为约20摩尔%之外。
[0122]实施例9
[0123]以与实施例1相同的方式并在相同的条件下根据反应进程制造多晶硅,除了按照如下表1所示的过程进展调节DCS与TCS的摩尔比之外。
[0124]比较例I
[0125]以与实施例1相同的方式并在相同的条件下根据反应进程制造多晶硅,除了在整个反应中使用DCS与TCS的摩尔比为大约5摩尔%的原料气体之外。
[0126]表1
[0127]
【权利要求】
1.一种制造多晶硅的方法,包括以下步骤: 在设置有热硅棒的反应器中使包含二氯硅烷和三氯硅烷的原料气体与还原气体反应以在硅棒上沉积多晶硅;和 在多晶硅的沉积步骤中根据反应进程调节包含在原料气体中的二氯硅烷与三氯硅烷的摩尔比。
2.根据权利要求1所述制造多晶硅的方法,其中在沉积步骤的任一点处使原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比被调节到10摩尔%或更高。
3.根据权利要求1所述制造多晶硅的方法,其中进行沉积步骤使在原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10至65摩尔%直到下述公式的过程进行到20至50%的任一点;并且 自上述点起直到反应终止使在原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比小于10摩尔%: [公式] 过程的进展率) = {(DT-D0)/(De-D0)I XlOO 其中Dci是反应前娃棒的直径,De为反应终止后娃棒的直径,以及Dt是在反应的任一点的硅棒的直径(D0 ≤ Dt ≤De)。
4.根据权利要求1所述制造多晶硅的方法,其中进行沉积步骤使在原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比小于10摩尔%直到下述公式的过程进行到50至95 %的任一点;并且 自上述点起直到反应终止使在原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10至65摩尔%: [公式] 过程的进展率(%) = {(DT-D0)/(De-D0)I XlOO 其中Dci是反应前娃棒的直径,De为反应终止后娃棒的直径,以及Dt是在反应的任一点的硅棒的直径(D0 ≤ Dt ≤De)。
5.根据权利要求1所述制造多晶硅的方法,其中进行沉积步骤使在原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10至65摩尔%直到下述公式的过程进行到20至50%的任一点(第一点);并且 自上述点(第一点)起直到该过程进行到50至95%的任一点(第二点)处使在原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比小于10摩尔% ; 自上述点(第二点)起直到反应终止使在原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10至65摩尔%: [公式] 过程的进展率(%) = {(DT-D0)/(De-D0)I XlOO 其中Dci是反应前娃棒的直径,De为反应终止后娃棒的直径,以及Dt是在反应的任何点的硅棒的直径(D0 ≤ Dt≤ De)。
6.根据权利要求1所述制造多晶硅的方法,其中调节沉积步骤使根据反应进展在原料气体中所包含的二氯硅烷与三氯硅烷的平均摩尔比为10摩尔%以上。
7.根据权利要求6所述制造多晶硅的方法,其中调节沉积步骤使在整个步骤中原料气体中所包含的二氯硅烷与三氯硅烷的摩尔比为10摩尔%以上。
8.根据权利要求1所述制造多晶硅的方法,其中进行沉积步骤使得硅棒的中心温度维持在低于多晶娃的熔点。
9.根据权利要求1所述制造多晶硅的方法,其中将原料气体预热到50至500°C并供给到反应器。
10.根据权利要求1所述制造多晶硅的方法,其中所述还原气体是氢气(H2)。
11.根据权利要求1所述制造多晶硅的方法,其中所述还原气体与原料气体的摩尔比为 1:1 至 1:40。
12.根据权利要求1所述制造多晶硅的方法,其中使所述硅棒的表面温度维持在1000至 1200。。。
13.根据权利要求1所述制造多晶硅的方法,其中通过沉积步骤制备的硅棒具有140至220mm的最终直径。
【文档编号】B01J19/24GK103998657SQ201280062655
【公开日】2014年8月20日 申请日期:2012年9月26日 优先权日:2011年12月19日
【发明者】柳贤澈, 朴济城, 李东昊, 金恩贞, 安贵龙, 朴成殷 申请人:韩化石油化学株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1