用于处理废气的PGM催化剂的制作方法

文档序号:12215337阅读:549来源:国知局
用于处理废气的PGM催化剂的制作方法与工艺
发明背景A.)应用领域:本发明涉及可以用于处理废气的催化剂、系统和方法,该废气作为烃燃料燃烧的结果而产生,例如由柴油发动机所产生的废气。B.)相关技术描述:多数燃烧废气的最大部分包含相对无害的氮气(N2)、水蒸气(H2O)和二氧化碳(CO2);但是废气也包含了相对小部分的有害和/或有毒物质,例如来自不完全燃烧的一氧化碳(CO)、来自未燃烧燃料的烃(HC)、来自过高燃烧温度的氮氧化物(NOx)和颗粒物质(主要是烟灰)。为了减轻释放到大气中的废气对于环境的影响,令人期望的是消除或者降低这些不期望的组分的量,优选通过并不产生其他有害或有毒物质的方法。最难以从车辆废气中除去的组分之一是NOx,其包括一氧化氮(NO)、二氧化氮(NO2)和/或一氧化二氮(N2O)。贫燃烧废气(例如由柴油发动机所产生)中NOx向N2的还原是特别有问题的,因为该废气包含了足以促进氧化反应而不是还原反应的氧。但是,柴油废气中的NOx可以通过通常称作选择性催化还原(SCR)的非均相催化方法来还原。SCR方法包括在催化剂存在下和借助于还原剂将NOx转化成单质氮(N2)和水。在SCR方法中,在废气流与SCR催化剂接触之前,将气态还原剂(例如氨)加入到废气流中。将还原剂吸收到催化剂上,当气体穿过催化基材或从其上经过时,发生NOx还原反应。使用氨的化学计量SCR反应的化学方程式是:2NO+4NH3+2O2→3N2+6H2O2NO2+4NH3+O2→3N2+6H2ONO+NO2+2NH3→2N2+3H2O从二十世纪七十年代中期以来,已经报道了铂族金属(PGM)基还原催化剂(Bosch,CatalysisToday,1988年,第369页)在低温表现出优异的NOx还原活性。但是,这些催化剂对于N2具有非常差的选择性,典型地小于50%(BuenosLopez等人,AppliedCatalysisB,2005年,第1页)。在低温(例如约150℃-约250℃),对于N2的低选择性与形成显著量的N2O有关;而在高温(例如大于约350℃),低选择性与NH3(期望的还原剂)氧化成NOx有关。与使用NH3还原剂的NOx还原系统有关的另一常见问题是未反应的氨的释放,也称作“氨逃逸”。逃逸会在催化剂温度没有处于反应的最佳范围内或者当过多的氨注入到过程中时发生。另外的氧化催化剂典型地安装在SCR系统下游来降低这种逃逸。该催化剂典型地包含PGM组分,其处于该催化剂仅充当氧化催化剂的单催化剂构造中,或者处于该催化剂的分区或分层兼有氧化性和还原性功能二者的双催化剂构造中。PGM据称已经通过初始润湿而掺入到MCM-41(一种孔尺寸为20-30埃的中孔沸石)中用于烃SCR。由于孔尺寸大,已经观察到这些催化剂没有形状选择性。Park等人研究了这种现象,并且推断出如果Pt通过典型的初始润湿方法掺入到ZSM-5和10-环中孔径沸石的孔中,则可以预期某些选择性(例如NOx转化率和N2产率)。但是,通过这种方法制造的催化剂表现出相同的NOx转化率和N2产率。所以,典型的初始润湿方法不能实现高的PGM交换或者通过填充晶体结构本身的空隙空间而掺入到分子筛晶体结构的壁上或者壁内。(Park等人,FromZeolitestoPorousMOFmaterials-the40thAnniversaryofInternationalZeoliteConference,2007)。常规PGM基催化剂的这些缺点限制了它们的实际应用。所以,对于以下PGM基分子筛催化剂存在着持续的未满足的需要:可以提供在低温时高的NOx还原效率、高的N2选择性和降低的NH3逃逸。技术实现要素:申请人已经出乎意料地发现,在约150℃-约300℃的温度,特别是在包括约150℃-约250℃的温度,在贫燃烧废气中的NOx的选择性催化还原过程中,将PGM掺入到小孔分子筛的多孔网络中实现了对于N2特别好的选择性。考虑到发现PGM基NOx还原催化剂差的选择性与PGM物类固有的活性有关,而无关载体材料(例如Al2O3、二氧化硅、分子筛),这个结果是令人惊讶的。常规的负载技术(例如浸渍或者溶液离子交换)非常适于将贱金属包埋到载体材料中。但是PGM不能通过相同的方法掺入到分子筛中,而不发生大量的金属沉积到分子筛表面上而非孔内。据信,这种表面PGM促进N2O形成和因此降低了对于N2的选择性。例如,在150-250℃的温度,具有表面PGM的标准小孔分子筛中对于N2的产率远低于50%。与常规的PGM催化剂相比,申请人已经发现使用例如这里所述的那些技术包埋有PGM的分子筛(即大部分的PGM掺入到分子筛的孔网络中),所形成的催化剂实现了对于N2的远远更高的选择性。在本发明中,包埋有PGM的催化剂的N2选择性大于50%,并可以大于90%,甚至大于约98%。此外,本发明的催化剂还在350℃以上的温度实现了特别好的氨氧化。因此,该催化剂可以起到低温NOx还原和高温氨氧化的双重作用。这种双重功能性在还包含上游常规的SCR催化剂的废气系统中特别有价值,其典型地具有至少250℃的点火温度。在该系统中,本发明的PGM催化剂在相对冷的条件过程中(例如发动机启动时)充当SCR;在废气系统加热后,该PGM催化剂的功能变成为氨逃逸催化剂。对于单个催化剂来说,在200℃以下的温度非常高的NOx转化率和高的N2选择性以及在高温时非常高的NH3氧化是一种罕见的特征组合,在其他已知的废气处理催化剂中是不存在的。因此,提供了一种催化剂,其包含:(a)小孔硅铝酸盐分子筛材料,该材料包含多个具有表面和多孔网络的晶体;和(b)至少一种铂族金属(PGM),其中相对于位于所述表面上的PGM,大部分所述PGM包埋入所述多孔网络中。(该催化剂,具有或者不具有此处所述的其他特征,也称作“PGM催化剂”。)根据本发明的另一方面,提供了一种催化剂制品,其包含位于基材(例如壁流式或者流通式蜂窝状整料)上的PGM催化剂,优选作为修补基面涂层。根据本发明的另一方面,提供了一种处理排放物的方法,其包括:(a)在约150℃-约650℃的温度将含有NOx和氨的贫燃废气流与PGM催化剂接触;和(b)在约150℃-约300℃的温度将至少一部分所述NOx还原成N2和H2O,并在约250℃-约650℃的温度氧化至少一部分所述氨。根据本发明的另一方面,提供了一种处理排放物的方法,其包括:(a)将含有CO和NO的贫燃废气流与PGM催化剂接触;和(b)氧化所述CO和NO的至少一种以分别形成CO2和NO2,其中将NO氧化为NO2产生了NO:NO2体积比是约4:1-约1:3的废气流。根据本发明仍然的另一方面,提供了一种处理废气的系统,其包括:(a)还原剂源;(b)上游SCR催化剂;和(c)下游PGM催化剂;其中所述还原剂源、上游SCR催化剂和下游催化剂彼此流体连通,并且经排列使得流过该系统的废气流在接触上游SCR催化剂之前接触还原剂源,和在接触下游PGM催化剂之前接触该SCR催化剂。本发明的实施方案包括:1.一种催化剂,其包含:a.小孔硅铝酸盐分子筛材料,其包含多个具有表面和多孔网络的晶体;和b.至少一种铂族金属(PGM),其中相对于位于所述表面上的PGM,大部分所述PGM包埋在所述多孔网络中。2.实施方案1的催化剂,其中所述硅铝酸盐分子筛的二氧化硅与氧化铝之比是约8-约150,和碱含量不大于约5重量%,基于该硅铝酸盐分子筛的总重量。3.实施方案2的催化剂,其中所述催化剂包含约0.01-约10重量%的PGM,相对于分子筛的重量。4.实施方案2的催化剂,其中所述催化剂包含约0.1-约1重量%的PGM,相对于分子筛的重量。5.实施方案2的催化剂,其中该小孔分子筛材料包含多个平均晶体尺寸为约0.01-约10微米的晶体。6.实施方案2的催化剂,其中该小孔分子筛材料包含多个平均晶体尺寸为约0.5-约5微米的晶体。7.实施方案5的催化剂,其中该小孔分子筛材料具有选自以下的骨架:ACO、AEI、AEN、AFN、AFT、AFX、ANA、APC、APD、ATT、CDO、CHA、DDR、DFT、EAB、EDI、EPI、ERI、GIS、GOO、IHW、ITE、ITW、LEV、KFI、MER、MON、NSI、OWE、PAU、PHI、RHO、RTH、SAT、SAV、SIV、THO、TSC、UEI、UFI、VNI、YUG和ZON。8.实施方案7的催化剂,其中所述骨架选自CHA、RHO、LEV、AEI、ANA、LTA、DDR、PAU、UEI和SOD。9.实施方案2的催化剂,其中所述PGM选自铂、钯和铑。10.实施方案2的催化剂,其中至少约75%的所述PGM包埋在所述多孔网络中,基于分子筛中总的PGM。11.实施方案2的催化剂,其中至少约90%的所述PGM包埋在所述多孔网络中,基于分子筛中总的PGM。12.实施方案2的催化剂,其中包埋在多孔网络中的PGM相对于表面上的PGM之比是约4:1-约99:1。13.实施方案2的催化剂,其中所述表面基本上没有所述PGM。14.实施方案2的催化剂,其中大部分PGM分散在整个所述分子筛中。15.实施方案2的催化剂,其中包埋在所述多孔结构中的所述PGM是交换的PGM或者游离的PGM离子。16.实施方案2的催化剂,其中所述多孔网络包含内表面壁,其中包埋在所述多孔结构中的大部分所述PGM是在所述内表面壁上的交换的PGM。17.实施方案2的催化剂,其中所述多孔网络包含空隙孔体积,其中包埋在所述多孔结构中的大部分所述PGM是在所述空隙孔体积中的游离的PGM离子。18.一种催化剂制品,其包含位于基底上的实施方案1的催化剂。19.实施方案18的催化剂制品,其中所述基底是蜂窝状整料。20.实施方案18的催化剂制品,其中所述基底是壁流式过滤器。21.实施方案18的催化剂制品,其中所述的基底是流通式整料。22.一种处理排放物的方法,其包括:a.在约150℃-约650℃的温度使含有NOx和氨的贫燃废气流与实施方案1的催化剂接触;和b.在约150℃-约250℃的温度将至少一部分所述NOx还原成N2和H2O,和在约300℃-约650℃的温度氧化至少一部分所述氨。23.实施方案22的方法,其中所述还原在约150℃-约250℃的温度对于N2的选择性为至少约90%。24.实施方案22的方法,其中所述还原在约150℃-约650℃的温度的N2O选择性小于约10%。25.实施方案22的方法,其中所述氧化在约350℃-约650℃的温度的转化率为至少约95%。26.一种处理排放物的方法,其包括:a.使含有CO和NO的贫燃废气流与实施方案1的催化剂接触;b.氧化所述CO和NO的至少一种以分别形成CO2和NO2,其中所述氧化NO形成NO2产生了NO:NO2体积比是约4:1-约1:3的废气流。27.一种用于处理废气的系统,其包括:a.还原剂源;b.上游的SCR催化剂;和c.下游的实施方案1的催化剂;其中所述还原剂源、上游的SCR催化剂和下游的催化剂彼此流体连通,并且经排列以使得流过该系统的废气流在接触上游的SCR催化剂之前接触还原剂源,和在接触下游的SCR催化剂之前接触SCR催化剂。28.实施方案27的系统,其中所述还原剂源是NOx吸收剂催化剂。29.实施方案27的系统,其中在约350℃-约650℃的温度,所述上游的SCR催化剂的NOx转化效率大于所述下游的催化剂,和在约150℃-约250℃的温度,所述下游的催化剂的NOx转化效率大于所述上游的SCR催化剂。30.实施方案27的系统,其中所述下游的催化剂当在约150℃-约250℃的温度接触所述废气流时选择性还原NOx,和当在约350℃-约650℃的温度接触所述废气流时氧化含氮还原剂。附图说明图1是根据本发明的一个实施方案的催化剂制品的示意图;图2是根据本发明的一个实施方案的壁流式过滤器的示意图,该过滤器具有涂覆有常规SCR催化剂区的入口和涂覆有PGM催化剂区的出口;和图3是根据本发明的一个实施方案的壁流式过滤器的示意图,该过滤器具有涂覆有烟灰氧化催化剂的入口和涂覆有分层排列的常规SCR催化剂和PGM催化剂的出口。具体实施方式在一个优选的实施方案中,本发明涉及一种催化剂,其用于改进环境空气质量,特别是用于改进由柴油和其他贫燃发动机所产生的废气排放物。通过在宽范围的操作温度降低贫燃烧废气中的NOx和/或NH3逃逸浓度来至少部分地改进废气排放物。有用的催化剂是在氧化性环境(即,SCR催化剂和/或AMOX催化剂)中选择性还原NOx和/或氧化氨的那些。该催化剂也可以用于氧化其他废气系统组分,例如CO和NO。根据一个优选的实施方案,提供了一种催化剂组合物,其包含包埋有PGM的小孔分子筛材料。作为此处使用的,“包埋有PGM”表示例如当形成分子筛时,处于分子筛的至少一部分孔网络中的PGM,包括在孔网络内壁表面上、在晶体骨架中和/或在孔隙(例如晶体笼)中的PGM。占据晶体结构骨架内的空隙空间的PGM可以在分子筛合成过程中原位形成。例子包括在合成过程中PGM直接掺入到分子筛的孔中(Kecht等人,Langmuir,2008年,第4310页;Chen等人,AppliedCatalystA:General358,2009年,第103-09页),每篇的公开内容在此引入作为参考。在一个具体的例子中,在合成过程中,可以通过加入铂源(例如双(乙二胺)氯化铂(II))到小孔硅铝酸盐分子筛的溶胶凝胶前体中,以将铂掺入到小孔分子筛(例如RHO)中。在另一例子中,PGM源(例如硝酸铂或硝酸钯)可以用于产生PGM-四亚乙基五胺(TEPA)络合物,其也可以用于合成具有CHA骨架的小孔硅铝酸盐分子筛。网络内的PGM也可以通过某些非溶液离子交换或者同晶取代来实现。一种这样的技术是将PGM固态离子交换到分子筛孔内(Quinones等人,MaterialsLetters,2009年,第2684页),其在此引入作为参考。驻留在孔网络表面上的PGM典型地来自于PGM和孔内的表面之间的弱结合键(例如在酸性位上)。原位合成和交换/取代技术的组合可以用于提高PGM包埋入分子筛催化剂的量。作为此处使用的,“分子筛”表示具有孔网络的材料,其具有产生自材料的晶体或者准晶体骨架的一种或多种均匀孔尺寸,并且包括硅铝酸盐(例如沸石、硅铝磷酸盐、铝磷酸盐及其作为混合相材料的组合。分子筛骨架是在它的主要四面体原子“T-原子”(例如Al和Si)的几何排列方面来限定的。骨架中的每个T-原子通过氧桥连接到相邻的T-原子上,并且这些或者类似的连接重复以形成晶体结构。将特定骨架类型的代码赋予已经建立的结构,该结构满足IZAStructureCommission的规则。四面体物类的互连形成了晶胞内壁,其反过来又限定了空隙孔体积。分子多孔骨架具有几个立方纳米量级的体积和直径为几个埃量级的晶胞开口(也称作“孔”或“孔穴”)。孔在骨架内排列,从而产生一个或多个通道,其延伸穿过骨架(孔网络),因此产生了限制不同的分子或者离子物类进入或者穿过分子筛的机制,基于通道和分子或离子物类的相对尺寸。分子筛的尺寸和形状影响它们的催化活性,这部分是因为它们对反应物施加了空间影响,控制了反应物和产物的接触。例如,小分子(例如NOx)可以典型地进入和离开晶胞和/或可以扩散穿过小孔分子筛(即,具有最大环尺寸为8个四面体原子的骨架的那些)的通道,而较大的分子(例如长链烃)则不能。此外,分子筛部分或者完全脱水会导致晶体结构与分子尺寸的通道交错。晶胞开口可以通过它们的环尺寸来定义,这里例如术语“8环”指的是由8个四面体配位的硅(或者铝)原子和8个氧原子构成的封闭回路。已经发现,具有小孔骨架的分子筛(即,含有最大为8的环尺寸)对于SCR应用特别有用。在一个实施方案中,小孔分子筛选自下面的骨架类型代码:ACO、AEI、AEN、AFN、AFT、AFX、ANA、APC、APD、ATT、CDO、CHA、DDR、DFT、EAB、EDI、EPI、ERI、GIS、GOO、IHW、ITE、ITW、LEV、KFI、MER、MON、NSI、OWE、PAU、PHI、RHO、RTH、SAT、SAV、SIV、THO、TSC、UEI、UFI、VNI、YUG和ZON。合适的小孔分子筛示例性的例子在表1中给出。表1:用于本发明的小孔分子筛表2给出了小孔分子筛,其具体可用于处理贫燃内燃机废气(例如车辆废气)中的NOx。表2:用于处理贫燃内燃机废气的优选的小孔分子筛。骨架结构代表性材料CHASAPO-34AlPO-34SSZ-13LEV插晶菱沸石Nu-3LZ-132SAPO-35ZK-20ERI毛沸石ZSM-34Linde类型TDDR十-十二面体硅石3Rδ-1KFIZK-518-冠-6[Zn-Ga-As-O]-KFIEABTMA-EPAUECR-18MER麦钾沸石AEISSZ-39GOO古柱沸石YUG汤河原沸石GISP1VNIVPI-9RHORho可以理解这些分子筛包括合成晶体或者赝晶体材料,其通过它们所限定的骨架而彼此同位型(同晶体)。例如,在本发明中有用的具体的CHA同位型包括但不限于DAF-5、LZ-218、LindeD、LindeR、Phi、SAPO-34、SAPO-44、SAPO-47、SSZ-13、SSZ-62、UiO-21和ZK-14,并且SAPO-34和SSZ-13是最优选的。作为此处使用的,术语“SSZ-13”表示US4,544,538(Zones)中所述的硅铝酸盐及其任意类似物。作为此处使用的,就CHA同位型而言,术语“类似物”表示这样的分子筛,其具有相同的拓扑结构和基本相同的经验式,但是通过不同的方法合成和/或具有不同的物理特征,例如原子在CHA骨架内的不同分布,原子元素在分子筛中的不同隔离(例如氧化铝梯度),不同的晶体特征等。有用的硅铝酸盐包含非铝的骨架金属,优选过渡金属或者PGM(也称作金属取代的硅铝酸盐)。作为此处使用的,就硅铝酸盐骨架而言,术语“金属取代的”表示该骨架具有一个或多个被取代的金属所代替的铝或者硅骨架原子。相反,术语“金属交换的”表示具有骨架外金属离子的分子筛,术语“金属包埋的”表示与分子筛晶体的外表面相对的分子筛内的骨架外金属离子。金属取代的硅-铝磷酸盐(也称作MeAPSO)分子筛同样具有骨架,其中已经植入了取代的金属。在优选的实施方案中,分子筛材料包含多个分子筛晶体,该晶体的平均晶体尺寸大于约0.01μm,优选是约0.01-约10μm,例如约0.1-约10μm、约0.5-约5μm、约0.1-约1μm、约1-约5μm和约2-约5μm。该催化剂组合物中的晶体可以是单个晶体、晶体聚集体或者二者的组合。作为此处使用的,晶体表面表示晶体外表面或者晶体聚集体外表面。晶体尺寸(在此也称作晶体直径)是晶体的面的一个边缘的长度。例如,菱沸石晶体的形态是通过菱形(但是大致是立方体)面来表征的,其中所述面的每个边缘长度大致相同。晶体尺寸的直接测量可以使用显微镜方法(例如SEM和TEM)来进行。例如,通过SEM测量包括以高的放大倍率(典型的1000×至10000×)检查材料的形态。SEM方法可以通过将代表性部分的分子筛粉末分配到合适的固定件上,以使得单个粒子沿着1000×到10000×放大倍率的视野合理地均匀分布来进行。从这个群体,检查了无规单个晶体的统计学上有效的样品(例如50-200),并且测量和记录了平行于直尺的水平线的单个晶体的最长尺寸。(明显大的多晶聚集体的粒子不应当包括在测量中。)基于这些测量,计算了样品晶体尺寸的算术平均值。还可以使用其他用于测量平均粒度或者晶体尺寸的技术,例如激光衍射和散射。氧化铝和二氧化硅在硅铝酸盐分子筛中的相对量可以通过二氧化硅-氧化铝摩尔比(SAR)来表征。优选的硅铝酸盐分子筛的SAR是约2-约300,例如约4-约200和约8-约150。在某些实施方案中,硅铝酸盐分子筛的SAR是约10-约50,例如约10-约40、约15-约30、约20-约40、约10-约20和约20-约25。在某些其他实施方案中,硅铝酸盐分子筛的SAR是约5-约10。分子筛的二氧化硅-氧化铝之比可以通过常规的分析来测定。这个比率意在尽可能接近地代表分子筛晶体的刚性原子骨架中的比率,不包括粘合剂中、或者通道内的阳离子形式或者其他形式的硅或者铝。可以理解,在分子筛已经与粘合剂材料结合之后,直接测量分子筛的二氧化硅-氧化铝之比是极其困难的。因此,二氧化硅-氧化铝之比在上文中是以亲体分子筛中的二氧化硅-氧化铝之比来表达的,即,在该分子筛与其他催化剂组分结合之前所测量的用于制备催化剂的分子筛。本发明的分子筛优选的碱含量小于5重量%,基于分子筛的总重量。作为这里使用的,碱含量包括碱金属和碱土金属的总重量,例如以阳离子形式存在于分子筛中的钠、钾、钙和镁。在某些实施方案中,碱含量小于约3重量%,例如小于2重量%、小于1重量%、小于0.5重量%和小于0.1重量%,基于分子筛的总重量。作为此处使用的,“PGM”表示传统的铂族金属,即,Ru、Rh、Pd、Os、Ir、Pt以及其他通常用于类似催化应用中的金属,包括Mo、W和贵金属(例如Au和Ag)。优选的PGM包括Ru、Rh、Pd、Os、Ir、Pt、Pd和Au,并且Pt、Rh和Pd是更优选的,Pd和Pt是特别优选的。在某些实施方案中,PGM包含两种或更多种金属,例如Pt和Pd;Pt、Pd和Rh;Pd和Rh;Pd和Au;或者单个金属,例如Pt、Pd或Rh。对于使用了两种或更多种金属的组合的实施方案来说,每种金属与其他金属之比没有具体限定。在某些实施方案中,该催化剂包含了相对于催化剂中存在的其他PGM占大部分的Pt,基于PGM的总重量。在某些实施方案中,该催化剂包含了相对于催化剂中存在的其他PGM占大部分的Pd,基于总PGM重量。在某些包含Pt和Pd的实施方案中,Pt:Pd的相对重量比是约50:50-约90:10,例如约50:40-约80:20,或者约60:40-约70:30。在某些实施方案中,该催化剂包含相对于分子筛载体的重量为0.01-约10重量%的PGM。例如,该催化剂可以包含0.05-约5重量%的PGM,约0.1-约1重量%的PGM,约0.2-约0.5重量%的PGM,约0.5-约1重量%的PGM或者约1-约3重量%的PGM。为了实现N2相对于N2O的高选择性,优选将催化剂中的大部分PGM包埋到分子筛晶体内,而非位于晶体表面上。在某些实施方案中,至少约75重量%的PGM包埋到所述多孔网络中,基于分子筛材料之内和之上的总PGM。例如,在某些实施方案中,至少约80重量%、至少约90重量%、至少约95重量%或者至少约99重量%的PGM包埋到所述多孔网络中,基于分子筛材料之内和之上的总PGM。在某些实施方案中,基本上全部的PGM包埋到分子筛中,并且推断出晶体表面基本没有PGM。用基本没有PGM来表示PGM的量(如果有的话)是最小的,并因此在可以通过常规的商业技术可以测出的程度上不影响材料的相关催化性能。在某些实施方案中,通过SEM成像(即,光谱映射)测量,该催化剂晶体没有外部PGM。虽然难以定量测量本发明的包埋到小孔中的PGM的性质和量,但是包埋的PGM的相对量可以通过性能(例如N2选择性)来推断出。典型地,在150-250℃的温度,在具有表面PGM的标准小孔分子筛中,对于N2的选择性远低于50%。在本发明中,包埋有PGM的催化剂的选择性或性能大于50%,优选大于约60%、大于约70%、大于约80%、大于约90%、大于约95%或者大于约98%,这归因于此处所述的孔内包埋的PGM。在某些实施方案中,包埋到分子筛的多孔网络中的PGM相对于晶体表面上的PGM之比是约4:1-约99:1,例如约10:1-约99:1、约20:1-约99:1或者约50:1-约99:1。在某些实施方案中,包埋到多孔结构中的PGM是交换的PGM和/或游离的PGM离子。在某些实施方案中,包埋到多孔结构中的大部分或者基本全部的PGM是在内表面壁上的交换的PGM。在某些实施方案中,包埋到多孔结构中的大部分或者基本全部的PGM是在所述空隙孔体积中的游离的PGM离子。除了PGM之外,分子筛材料还可以包含一种或多种过渡金属,例如铜、镍、锌、铁、钨、钼、钴、钛、锆、锰、铬、钒、铌以及锡、铋和锑。这些另外的金属优选作为骨架外金属存在。优选的过渡金属是贱金属,优选的贱金属包括选自铬、锰、铁、钴、镍和铜及其组合的那些。在一个优选的实施方案中,骨架外金属的至少一种是铜。其他优选的骨架外金属包括铁,特别是与铜相组合的铁。过渡金属可以通过任何常规方法加入到本发明的分子筛中,包括离子交换、喷雾干燥、初始润湿等。优选该过渡金属以一定量存在,并且通过不影响分子筛中PGM的浓度的技术来加入。在某些实施方案中,该过渡金属的存在浓度是约0.1-约10重量%,更优选约0.5-约10重量%,例如约1-约5重量%或者约2-约3重量%,基于分子筛的重量。用于本发明的催化剂可以为修补基面涂层的形式,优选适于涂覆基底的修补基面涂层,该基底例如金属或陶瓷流通式整料基底或者过滤式基底,包括例如壁流式过滤器或者烧结的金属或部分过滤器。因此,本发明的另一方面是一种修补基面涂层,其包含此处所述的催化剂组分。除了催化剂组分之外,修补基面涂层组合物可以进一步包含选自氧化铝、二氧化硅、(非沸石)二氧化硅-氧化铝、天然存在的粘土、TiO2、ZrO2和SnO2的粘合剂。其他修补基面涂层添加剂包括稳定剂和促进剂。这些另外的组分不必催化所需反应,而是代之以例如通过提高它的运行温度范围,提高催化剂的接触表面积,提高催化剂到基底上的附着性等,以改进催化材料的有效性。对于修补基面涂覆的SCR应用来说,典型的PGM负载量是约20g/ft3-约300g/ft3,更优选约50g/ft3-约200g/ft3,例如约50g/ft3-约100g/ft3或者约100g/ft3-约150g/ft3。修补基面涂覆的SCR催化剂组分的总量将取决于具体的应用,但是可以包含约0.1-约15g/in3、约1-约7g/in3、约1-约5g/in3、约2-约4g/in3或者约3-约5g/in3的SCR催化剂。用于SCR催化剂的优选的修补基面涂层负载量是约0.1-约0.5g/in3或约0.3-约3.5g/in3。在一个实施方案中,提供了一种包括基底的制品,在该基底上沉积有催化剂。该涂覆方法可以通过本身已知的方法来进行,包括公开在EP1064094中的那些,其在此引入作为参考。优选的基底,特别是用于移动应用的基底,包括壁流式过滤器(例如壁流式陶瓷整料)和流过式基底(例如金属或者陶瓷泡沫或者纤维过滤器)。除了堇青石、碳化硅、氮化硅、陶瓷和金属之外,可以用于基底的其他材料包括氮化铝、氮化硅、钛酸铝、α-氧化铝、莫来石(例如针状莫来石)、铯榴石、热喷涂材料(thermet)(例如Al2OsZFe、Al2O3/Ni或者B4CZFe),或者包含其任意两种或更多种的部分的复合材料。优选的材料包括堇青石、碳化硅和钛酸铝。用于移动应用的优选的基底是具有所谓的蜂窝状几何形状的整料,其包含多个相邻的、平行的通道,其中每个通道典型地具有正方形横截面。蜂窝形状提供了大的催化表面,并且具有最小的整体尺寸和压力降。该过滤器基底的实际形状和尺寸以及性能(例如通道壁厚、孔隙率等)取决于所关注的具体应用。在某些实施方案中,该基底具有至多约700个通道(胞室)/平方英寸横截面(“cpsi”),例如约100-约400cpsi或者约25-约300cpsi。在可接受的背压,过滤器平均孔尺寸、孔隙率、孔互连率和修补基面涂层负载量的具体组合可以相组合来实现所需的微粒过滤和催化活性水平。孔隙率是多孔基底中空隙空间的百分比的度量,并且与废气系统中的背压有关:通常,孔隙率越低,背压越高。优选该多孔基底的孔隙率是约30-约80%,例如约40-约75%、约40-约65%或者约50-约60%。孔互连率是作为基底的总空隙体积的百分比来测量的,并且是孔、空隙和/或通道结合来形成贯穿多孔基底(即,从入口面到出口面)的连续通路的程度。与孔互连率形成对比的是,闭孔体积和具有仅到基底一个表面的管道的孔的体积之和。优选该多孔基底的孔互连率体积是至少约30%,更优选至少约40%。多孔基底的平均孔尺寸对于过滤也是重要的。平均孔尺寸可以通过任何可接受的手段来测定,包括通过水银孔率法。多孔基底的平均孔尺寸应当是足够高的值,以促进低背压,同时通过基底本身、通过在基底表面上促进烟灰饼层或者通过二者的组合来提供足够的效率。优选的多孔基底的平均孔尺寸是约5-50μm,例如约10-约40μm、约20-约30μm、约10-约25μm、约10-约20μm、约20-约25μm、约10-约15μm和约15-约20μm。在其他实施方案中,过滤器的平均孔尺寸是约10-约200nm。用于本发明的壁流式过滤器优选的效率至少是70%、至少约75%、至少约80%或者至少约90%。在某些实施方案中,该效率将是约75-约99%、约75-约90%、约80-约90%或者约85-约95%。在这里,效率是相对于烟灰和其他类似尺寸化的粒子的,和相对于通常在常规的柴油废气中发现的微粒浓度。例如,柴油废气中的微粒的尺寸可以是0.05微米-2.5微米。因此,该效率可以基于该范围或子范围,例如0.1-0.25微米、0.25-1.25微米或者1.25-2.5微米。用于堇青石过滤器的优选的孔隙率是约60-约75%。在某些实施方案中,该催化剂形成了挤出类型的催化剂。在某些实施方案中,该催化剂在基底上的涂覆量足以还原NOx和/或足以氧化穿过基底的废气流中所包含的氨或者进行其他功能,例如将CO转化成CO2。这里所述的催化剂可以促进还原剂(优选氨)与氮氧化物的低温反应,以相对于氧和氨的竞争反应而选择性地形成单质氮(N2)和水(H2O),以及用氧来氧化氨或者将氨还原成N2。在某些实施方案中,常规的SCR催化剂和PGM催化剂是例如在两个分开的基底上或者在单个基底上作为区域或层来串联使用的。优选常规SCR催化剂位于PGM催化剂上游,相对于废气流流过催化剂的典型方向。常规SCR催化剂优选是无PGM的催化剂。有用的常规SCR催化剂的例子包括包含分子筛(例如BEA、CHA、ZSM-5等)的那些,其用过渡金属(例如铜或者铁)助催化,或者包含在高表面积载体(例如氧化铝)上的钒或者钒/钨。参见图1,显示了本发明的一个实施方案,其包括基底10(例如流通式整料),其具有相对于废气流13经过基底的方向的入口14和出口15。该入口包括常规SCR催化剂区14,而该基底出口包括PGM催化剂区15。作为此处使用的,术语“区”表示在基底之内和/或之上的明显不同的催化区域。例如,区可以是其中渗透有催化剂的基底区域,或者位于在基底之上和/或内部的催化剂层。该区可以是与其他区完全分开的分散区域,可以与其他区相邻或者重叠,或者可以部分融合到其他区中。术语“入口”表示废气典型地从外部源流入其中的基底的侧面、面、表面、通道和/或部分。术语“出口”表示废气典型地从其离开过滤器的基底的侧面、面、表面、通道和/或部分。就催化区和基底的取向而言,表述“在入口上”和“在出口上”表示包括作为区或者层位于基底面上和/或基底壁内(即,在基底壁的孔内)的催化剂。图2显示了一种壁流式过滤器20,其具有入口通道23和出口通道24,其通过气体渗透性壁27和非气体渗透性入口盖25和出口盖26限定。具有流动方向29的废气经由一个或多个入口通道23进入过滤器20,经过将入口和出口通道分开的气体渗透性壁27,然后经由出口通道24离开过滤器。进入入口通道的废气典型地包含烟灰、NOx,优选还包含含氮还原剂(例如NH3),其用于通过SCR反应将NOx转化成其他气体。在经过气体渗透性壁之前,在废气与常规SCR区21接触的入口处捕集废气中的至少一部分的颗粒物质。常规SCR区促进了例如在约250℃-约650℃或者约300℃-约650℃的高温的高温SCR反应。随着废气经过常规SCR催化剂区,至少一部分NOx与NH3在SCR催化剂存在下反应,其中将NOx还原成N2和其他气体。随着气体经过过滤器壁,它与PGM催化剂22接触,这促进了例如在约150℃-约300℃或者约150℃-约250℃的低温SCR反应,和例如在250℃-约650℃、约300℃-约650℃或者约350℃-约650℃的高温AMOX反应。在某些实施方案中,两个区在入口和出口之间汇集,而在其他实施方案中,它们在空间上是分开的。在入口和出口上的区可以作为过滤器基底表面上的涂层存在,或者可以扩散或渗透到全部或者一部分过滤器基底中。在一个特别优选的实施方案中,常规SCR催化剂区和PGM催化剂区渗透到壁流式过滤器的壁的相对侧中。即,通过使常规SCR催化剂从壁的入口通道侧渗入该壁中产生常规SCR催化剂区,并且通过使PGM催化剂从壁的出口通道侧渗入该壁中产生PGM催化剂区。参见图3,显示了一种壁流式过滤器30,其具有入口通道33和出口通道34,其通过气体渗透性壁37和非气体渗透性入口盖35和出口盖36限定。具有流动方向39的废气经由一个或多个入口通道33进入过滤器30,经过将入口和出口通道分开的气体渗透性壁37,然后经由出口通道34离开过滤器。进入入口通道的废气典型地包含烟灰、NOx,优选还包含含氮还原剂(例如NH3),其用于通过SCR反应将NOx转化成其他气体。随着废气经过气体渗透性壁,在废气与烟灰氧化区31接触的入口处捕集废气中的至少一部分颗粒物质。该烟灰氧化区促进了氧化反应,其中烟灰的固体碳质粒子被转化成气体(例如CO2和水蒸气),其然后经过气体渗透性过滤器壁。分层的催化剂布置位于过滤器壁的出口侧上,该催化剂布置包含常规SCR催化剂和本发明的PGM催化剂,其中该常规SCR催化剂作为层位于过滤器壁之间,该PGM催化剂作为层位于SCR催化剂层之上,以使得流经过滤器的废气在PGM催化剂层之前接触常规SCR催化剂层。随着废气经过分层的催化剂32,在宽的温度范围(例如150-650℃)将至少一部分NOx还原成N2和其他气体,并且通过PGM催化剂在大于约250℃的温度氧化逃逸过常规SCR催化剂层的氨。根据本发明的另一方面,提供了一种用于还原废气中的NOx化合物和/或氧化NH3的方法,其包括将气体与此处所述的催化剂组合物接触足够的时间,以降低气体中NH3和/或NOx化合物的水平。在一个实施方案中,用还原剂在至少约150℃的温度还原氮氧化物。在另一个实施方案中,用还原剂在约150℃-约650℃的温度还原氮氧化物。在一个具体的实施方案中,SCR反应的温度范围是约150-约300℃。在约150-约300℃和特别是约150℃-约250℃的温度,在SCR反应中对于N2的选择性是至少约50%,例如至少约75%、至少约90%、至少约95%或者约100%。在相同的温度范围内,使用此处所述的包埋有PGM的小孔分子筛催化剂的NOx向N2和H2O的转化率是至少约50%、至少约75%、至少约85%、至少约90%或者至少约95%,特别是在用于柴油机催化剂的商业开发的常规测试条件下更是如此,该条件包括例如气体时空速率是约5,000h-1-约500,000h-1,任选的约10,000h-1-约200,000h-1。在某些实施方案中,在类似的测试条件下,与SAR为30并且含有2.4重量%的交换的铜的硅铝酸盐菱沸石催化剂相比,此处所述的包埋有PGM的小孔分子筛催化剂具有更高的或者基本类似的(即,在10%内)的NOx转化率。本发明的方法可以包含以下步骤的一个或多个:(a)积聚和/或燃烧与催化过滤器的入口接触的烟灰;(b)在与此处所述的包含包埋有PGM的小孔催化剂的壁流式过滤器接触之前,将含氮还原剂引入废气流;(c)在NOx吸附剂催化剂上生成NH3,优选使用该NH3作为下游SCR反应中的还原剂;(d)将废气流与柴油氧化催化剂(DOC)接触,以将烃基可溶性有机馏分(SOF)和/或一氧化碳氧化成CO2和/或将NO氧化成NO2,其还可以用于氧化颗粒物过滤器中的颗粒物质;和/或减少废气中的颗粒物质(PM);(e)在还原剂存在下将废气与一种或多种流通式SCR催化剂装置接触,以降低废气中的NOx浓度;和(f)在将废气排放到大气中之前、或者在废气进入/再次进入发动机前使该废气经过再循环回路之前,使废气与优选在常规SCR催化剂下游的ASC催化剂接触,以氧化大部分(如果不是全部)的氨。用于SCR方法的还原剂(也称作还原试剂)广泛地表示促进废气中的NOx还原的任何化合物。用于本发明的还原剂的例子包括氨、肼或者任何合适的氨前体(例如尿素((NH2)2CO)、碳酸铵、氨基甲酸铵、碳酸氢铵或者甲酸铵)和烃(例如柴油燃料)等。特别优选的还原剂是氮基的,并且氨是特别优选的。在另外一个实施方案中,可以通过位于SCR催化剂上游的NOX吸附剂催化剂(NAC)、贫NOX阱(LNT)或者NOX存储/还原催化剂(NSRC)来提供全部或者至少一部分氮基还原剂(特别是NH3)。在本发明中有用的NAC组分包括碱性材料(例如碱金属、碱土金属或者稀土金属,包括碱金属的氧化物、碱土金属的氧化物及其组合)和贵金属(例如铂)和任选的还原催化剂组分(例如铑)的催化剂组合物。在NAC中有用的碱性材料的具体类型包括氧化铯、氧化钾、氧化镁、氧化钠、氧化钙、氧化锶、氧化钡及其组合。贵金属优选以约10-约200g/ft3,例如20-60g/ft3存在。可选地,催化剂的贵金属特征在于平均浓度,其可以为约40-约100g/ft3。在某些实施方案中,该NAC包含此处公开的PGM催化剂。在某些条件下,在周期性富燃再生事件中,NH3可以在NOx吸附剂催化剂上产生。NOx吸附剂催化剂下游的SCR催化剂可以改进整个系统的NOx还原效率。在该组合的系统中,SCR催化剂能够存储在富燃再生事件中从NAC催化剂释放的NH3,并利用所存储的NH3来选择性还原一些或全部在正常的贫燃运行条件过程中逃逸过NAC催化剂的NOx。该方法可以对源自燃烧过程(例如源自内燃机(无论是移动式还是固定式)、燃气轮机和燃煤或燃油的动力装置)的气体进行。该方法还可以用于处理来自工业过程的气体,例如炼油(来自炼油加热器和锅炉)、炉、化学加工工业、炼焦炉、市政废物处理设备和焚化炉等。在一个具体的实施方案中,该方法用于处理来自车辆贫燃内燃机(例如柴油机、贫燃汽油机或者由液态石油气或天然气驱动的发动机)的废气。根据另一方面,本发明提供一种用于车辆贫燃内燃机的废气系统,该系统包括用于运送流动废气、含氮还原剂源、此处所述的PGM催化剂的管道。该系统可以包括控制器,该控制器用于仅当确定PGM催化剂能够例如在150℃以上,以所需效率或者该效率以上催化NOx还原时,将含氮还原剂计量加入到流动废气中。通过控制装置来确定可以辅以一种或多种合适的指示发动机条件的传感器输入,该条件选自:废气温度、催化剂床温度、加速器位置、废气在系统中的质量流量、歧管真空、点火时间、发动机速度,废气的λ值、注入到发动机中的燃料量、废气再循环(EGR)阀的位置和由此EGR的量以及推进压力。在一个具体的实施方案中,根据废气中的氮氧化物的量来控制计量,该量直接(使用合适的NOx传感器)或者间接测量,例如使用存储在控制装置中的预先关联的查询表或者地址表,将任意一种或多种上述的指示发动机输入条件与预测的废气中的NOx含量相关联。可以支配含氮还原剂的计量,以使得进入SCR催化剂的废气中存在以1:1NH3/NO和4:3NH3/NO2计算的理论值的60%-200%的氨。该控制装置可以包括预先编程的处理器,例如电子控制设备(ECU)。在另一实施方案中,提供包埋有PGM的小孔分子筛作为用于将废气中的一氧化氮氧化成二氧化氮的氧化催化剂,该氧化催化剂可以位于将含氮还原剂计量加入到废气中的位置的上游。在一个实施方案中,使该氧化催化剂适于产生进入SCR催化剂的气体流,其NO与NO2体积比是约4:1-约1:3,例如在氧化催化剂入口250℃-450℃的废气温度。该氧化催化剂优选涂覆到流通式整料基底上。在一个实施方案中,至少一种铂族金属是铂、钯或者铂和钯二者的组合。该PGM催化剂可以进一步用于氧化废气中的其他组分,包括将一氧化碳转化成二氧化碳。在另一实施方案中,本发明的PGM催化剂可以用于汽油或者其他富燃发动机中的三效催化剂(TWC)。在另一方面,提供了一种车辆贫燃发动机,其包括本发明的废气系统。该车辆贫燃内燃机可以是柴油机、贫燃汽油机或者由液化石油气或天然气驱动的发动机。实施例实施例1:制备包埋有PGM的小孔沸石(RHO)通过将3.06g氢氧化钠和12.38gH2O混合入设计来安装到酸性消化容器(ParrInstrumentCompany)的45ml的PTFE杯中,以制备第一溶液。将2.79g的氢氧化铝加入到该第一溶液中。搅拌形成的混合物,直到获得均匀溶液。将2.56g的氢氧化铯溶液(50wt%)加入到形成的混合物中。然后,一旦该氢氧化铯溶液已经掺入,则加入0.134g的双(乙二胺)氯化铂(II)。搅拌该混合物直到均匀,将14.72g的AS-40Ludox缓慢加入并掺入该混合物中。将该混合物在100℃加热1天。通过过滤回收固体。所回收材料的组成如下:合成的Pt-RHO包含0.17wt%的Pd,并且XRD分析证实了该沸石包含RHO骨架。SEM成像显示,通过光谱映射没有外部Pt,不过Cs存在于晶体表面上。预示性实施例2:制备PGM包埋入的小孔沸石(CHA)氧化铝源和碱将合并和溶解在水中。然后将加入硝酸铂,随后加入四亚乙基五胺(TEPA)。然后将该混合物搅拌约1小时,然后将逐滴加入二氧化硅源(例如硅溶胶),同时连续搅拌。将形成的凝胶再搅拌3小时,然后将转移到特氟龙衬里的不锈钢高压釜中,在这里它将在140℃加热约4天。将对该产物进行回收、过滤、清洗,然后在80℃干燥约24小时。形成的产物将经由SEM测试,以确认铂包埋到CHA骨架中。将重复这个程序,除了将用硝酸钯代替硝酸铂,和形成的产物将经由SEM测试,以确认钯包埋到CHA骨架中。预示性实施例3:催化性能(N2选择性/NOx转化率/NH3氧化)将测试上面的实施例1和2中所生产的包埋有PGM的分子筛粉末的N2选择性/NOx转化率/NH3氧化。每个粉末样品的一部分将在500℃水热老化2小时,另一部分的粉末样品将在800℃水热老化16小时。新鲜粉末和老化粉末的样品将曝露于模拟的柴油发动机废气,该废气将与氨合并来产生氨与NOx比(ANR)为1和空速为50,000/小时的物流。用于NOx转化的催化剂能力将在约150℃-约300℃的温度确定。用于NH3转化的催化剂能力将在约250℃-约550℃的温度确定。该结果将显示,在类似的测试条件下,与SAR为30和含有2.4重量%的交换的铜的硅铝酸盐菱沸石催化剂相比,该PGM催化剂具有更高的或者基本类似的(即,在10%内)的N2选择性、NOx转化率和/或NH3氧化。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1