一种超分散MoS2/rGO纳米杂化电解水制氢催化剂的制备方法与流程

文档序号:12093825阅读:1034来源:国知局
一种超分散MoS2/rGO纳米杂化电解水制氢催化剂的制备方法与流程

本发明涉及一种超分散MoS2/rGO纳米杂化电解水制氢催化剂的制备方法。



背景技术:

贵金属铂无论在热力学上还是动力学上对析氢反应都有很高的活性,它能够在较低的过电位下以很高的速率产生氢气。同样,昂贵及稀缺的Pt也制约电解水装置的推广。因此,目前电析氢的研究重点,集中于寻找Pt的替代品。在众多的非铂析氢反应电催化剂中,层状过渡金属二硫属化物(TMD),如MoS2、MoSe2、WS2,因其能够在酸性条件下稳定工作,受到科学家们的广泛关注。其中,丹麦科学家(2005)更通过计算化学方法证明了MoS2具有类似固氮化酶中Mo-S团簇的结构和独特的电解水制氢催化活性,但实际的电催化活性与铂仍有较大的差距。

近年来,在纳米碳材料上负载金属纳米结构材料对无机-有机杂化电催化剂的构建起到了关键作用。纳米碳材料,如零维的纳米洋葱碳、一维碳纳米管、二维的石墨烯、三维的组装体及它们杂原子掺杂的形式,都具有独特的纳米结构和优良的物理性能(巨大的比表面积和优秀的电子传导能力),这些都是使其能够作为电催化剂载体材料的先决条件。这些杂化纳米结构在电催化反应中得到了广泛的应用,与纯无机纳米晶体相比,表现出高的活性和高稳定性。尽管通过在纳米碳材料的负载,能使电催化剂催化的活性取得了重大的进步,但仍然有许多问题没有得到有效的解决,如无机材料与碳材料的成键情况、对催化性能增益机理的研究。

强耦合无机-石墨烯杂化材料的合理设计和可控制备是研制高性能催化剂长久而来的挑战。虽然目前有很多方法能将无机纳米颗粒负载到石墨烯复合材料,但如何保证无机颗粒是选择性地在石墨烯含氧集团上成核生长,如何增强这两相之间的相互作用,如何控制无机颗粒的尺寸和分散度,这些问题都是发展石墨烯基杂化材料所需要解决的。对于二硫化钼/二硫化钨-石墨烯杂化材料,由于其前驱体一般为钼/钨酸盐和氧化石墨烯,它们两者在水溶液下均带负电荷,相互排斥,按照传统的方法,很难将二硫化钼/钨负载到石墨烯上。



技术实现要素:

本发明的目的在于提供一种超分散MoS2/rGO纳米杂化电解水制氢催化剂的制备方法。

本发明的技术方案如下:

一种超分散MoS2/rGO纳米杂化电解水制氢催化剂的制备方法,是用钼酸盐、半胱氨酸与氧化石墨烯通过水热合成法得到的。

所述的钼酸盐为碱金属钼酸盐、碱土金属钼酸盐、钼酸铵中的其中一种。

所述的钼酸盐为钼酸钾、钼酸钠、钼酸铵中的其中一种。

所述的钼酸盐与半胱氨酸的摩尔比为1:(27~30)。

所述的钼酸盐与氧化石墨烯的质量比为1:(1~1.2)。

所述的氧化石墨烯是用Hummers法制成的。

所述的Hummers法中所用的石墨粉、浓H2SO4、NaNO3、KMnO4的用量比为1g:23mL:0.5g:3g;Hummers法中低温反应的温度≤20℃,低温反应的时间10~20min;中温反应的温度35~40℃,中温反应的时间为25~35min;高温反应的温度95~98℃,高温反应的时间为10~20min。

所述的石墨粉为鳞片石墨粉、膨胀石墨粉中的其中一种。

所述的水热合成法反应温度为180~220℃;反应时间为22~26h;反应的溶剂为水。

本发明的有益效果是:

1、超分散二硫化钼与石墨烯的杂化材料(UDSL-MoS2-rGO)是通过一步水热法得到的,整个合成过程简单快速,不需要额外的高温加热和硫化过程,仅使用廉价易得的钼酸钠作为钼源,半胱氨酸作为硫源。

2、本发明利用半胱氨酸为连接分子,将钼酸盐前驱固定在氧化石墨烯表面,经过水热合成法,能将尺寸可控的的MoS2纳米片超分散地负载到石墨烯表面,制备出UDSL-MoS2/rGO,同时解决了二硫化钼催化活性位点稀缺和导电性差这两大难题。

附图说明

图1是UDSL-MoS2/rGO的高倍数TEM图;

图2是UDSL-MoS2/rGO在77 K下的氮气吸脱附等温线图;

图3是UDSL-MoS2/rGO、MoS2和氧化石墨的XRD图谱;

图4是催化剂样品在氮气饱和的0.5 M硫酸电解液中的极化曲线;

图5是催化剂样品在氮气饱和的0.5 M硫酸电解液中的塔菲尔曲线。

具体实施方式

一种超分散MoS2/rGO纳米杂化电解水制氢催化剂的制备方法,是用钼酸盐、半胱氨酸与氧化石墨烯通过水热合成法得到的。

优选的,所述的钼酸盐为碱金属钼酸盐、碱土金属钼酸盐、钼酸铵中的其中一种;进一步优选的,所述的钼酸盐为钼酸钾、钼酸钠、钼酸铵中的其中一种;最优选的,所述的钼酸盐为钼酸钠。

优选的,所述的钼酸盐与半胱氨酸的摩尔比为1:(27~30)。

优选的,所述的钼酸盐与氧化石墨烯的质量比为1:(1~1.2)。

优选的,所述的氧化石墨烯是用Hummers法制成的;进一步优选的,所述的氧化石墨烯是用Marcano, D.C.改进的Hummers法制成的,参考文献为Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS nano 2010, 4, 4806–4814.

优选的,所述的Hummers法中所用的石墨粉、浓H2SO4、NaNO3、KMnO4的用量比为1g:23mL:0.5g:3g;Hummers法中低温反应的温度≤20℃,低温反应的时间10~20min;中温反应的温度35~40℃,中温反应的时间为25~35min;高温反应的温度95~98℃,高温反应的时间为10~20min。

优选的,所述的石墨粉为鳞片石墨粉、膨胀石墨粉中的其中一种;进一步优选的,所述的石墨粉为鳞片石墨粉。

优选的,所述的水热合成法反应温度为180~220℃;反应时间为22~26h;反应的溶剂为水;进一步优选的,所述的水热合成法反应温度为为190~210℃;反应时间为23~25h;反应的溶剂为水。

一种超分散MoS2/rGO纳米杂化电解水制氢催化剂的制备方法,包括了氧化石墨烯的合成和UDSL-MoS2/rGO的合成。

进一步说,一种超分散MoS2/rGO纳米杂化电解水制氢催化剂的制备方法,包括了以下步骤:

1)氧化石墨烯的合成:采用Hummers法用石墨粉合成氧化石墨烯;

2)UDSL-MoS2/rGO的合成:用钼酸盐、半胱氨酸与氧化石墨烯通过水热合成法制得。

以下通过具体的实施例对本发明的内容作进一步详细的说明。

实施例

氧化石墨烯的合成:通过改进的Hummers法(Marcano D C et al.,2010)用天然石墨粉合成氧化石墨烯,详细过程如下:首先取2.00g天然鳞片石墨粉用40g NaCl研磨处理15分钟,蒸馏水彻底清洗,70℃下鼓风干燥箱中干燥30分钟。将处理后的石墨粉置于46mL浓H2SO4(98%)中,机械搅拌24小时。在40℃的水浴下,加入1g NaNO3,继续搅拌5min;在冰水浴下,缓慢加入6g KMnO4,不断搅拌,此过程保持混合物的温度不超过20℃。然后,在40℃的水浴下,继续搅拌30min。再将80mL蒸馏水缓慢加入到上述混合物中,此时反应液温度会迅速上升到98℃,搅拌15min。待反应结束后,加入280mL蒸馏水和20mL H2O2 (30%)。室温搅拌5min,用5% HCl和蒸馏水洗涤,直到滤液的pH值达到pH = 5-6。用适量蒸馏水分散并超声30min,得到均匀的氧化石墨烯溶液(3.05mg/mL)。

UDSL-MoS2/rGO的合成:将25mg 的氧化石墨烯超声分散到30mL水中, 加入0.1mmol 钼酸钠和2.8mmol半胱氨酸,在室温下搅拌30分钟后,把得到的溶液转入50mL的不锈钢外壳聚四氟乙烯内衬的高压反应釜中200℃反应24h。自然冷却到室温后,离心分离,沉淀用蒸馏水和乙醇洗至少四次,然后在50℃下真空下干燥。另外,控制了反应体系的pH值,分别在pH=2.5和4下制备出MoS2-rGO-2.5和MoS2-rGO-4做比较分析。

上文中所用的天然鳞片石墨粉为325目,阿法埃莎化学有限公司提供。

以下对本发明所制备得到的UDSL-MoS2-rGO进行形貌表征、结构表征和电性能分析。

一、UDSL-MoS2-rGO纳米杂化材料的形貌表征

附图1-2分别是UDSL-MoS2/rGO的高倍数和低倍数的TEM图。从附图1可见,UDSL-MoS2-rGO具有二维薄片状结构,横向尺寸达到数百纳米,可以归属于rGO的轮廓;厚度较薄,不仅可以清晰地观察到双层薄片之间的堆叠,薄片内部还存在褶皱、弯曲等形貌。UDSL-MoS2-rGO表面还均匀地分布着许多MoS2小薄片边缘,并没有观察到小薄片的整体轮廓,同时在UDSL-MoS2-rGO的边缘还能观察到小薄片的结构,这可以说明MoS2纳米片不是以面对面地与rGO结合,而是与rGO平面成一定的角度。从附图2可见,在2900倍的放大倍数下,MoS2纳米片依然均匀地负载到rGO片层上,观察不到有明显的MoS2与rGO的组分分离或团聚现象,可以说明UDSL-MoS2-rGO中,MoS2纳米片能够超分散地与rGO结合,暗示这种结构可以与高导电性、高比表面的石墨烯有足够的接触,从而充分地暴露MoS2的催化活性中心并增加其电子传输能力,进而增强电催化析氢反应活性。

二、UDSL-MoS2-rGO纳米杂化材料的结构表征

附图3是UDSL-MoS2/rGO、MoS2和氧化石墨的XRD图谱。从附图3可见,UDSL-MoS2/rGO与MoS2相同,其图谱在~33 °和~58 °均有衍射峰,分别能与2H-MoS2(JCPDS Card No.77-1716)的(100)和(110)晶面对应,明显宽化的衍射峰可以归因于UDSL-MoS2/rGO中MoS2具有较小的平面尺寸。MoS2在低角度的衍射峰并不能归属于2H-MoS2,这是由于S-Mo-S层之间的的膨胀造成的,同样的现象在具有面内边缘的MoS2多级结构亦有观察到,然而对于UDSL-MoS2/rGO,这两处的衍射峰严重宽化,由于其对应于MoS2晶体中的(002)和(004)的层间距,与MoS2层间的堆叠直接相关,佐证了UDSL-MoS2/rGO中MoS2纳米片具有单层的结构。同时UDSL-MoS2/rGO的XRD图谱中,观察不到GO(~10°)和石墨(~26°)的衍射峰,表明GO在反应环境中已经被还原成rGO,超分散的MoS2纳米片能有效防止rGO间的重新堆叠。

三、UDSL-MoS2-rGO纳米杂化材料对氢析出反应的电化学性能研究

电化学性能测试在IM6ex电化学工作站(Zahner,德国)上进行,采用传统的三电极体系,光谱纯石墨棒(99.999%)作为对电极,Hg|HgSO4(饱和K2SO4)作参比电极。制备催化剂悬浮液的方法是:取3mg催化剂分散于1mL异丙醇和水体积比为1:1的混合溶液中,至少超声处理30min形成均一浆液,然后将一定体积的催化剂匀浆移取到预先抛光好的玻碳电极上,工作电极上催化剂的最佳负载量为0.305μg·cm-2,待其完全干燥后移取2µL 0.05wt% Nafion溶液滴在电极上来固定催化剂。所制备的电极在进行电化学测试前均干燥过夜。

所有的电化学测试均在0.5M H2SO4电解质溶液中进行,测试时连续不断的通入高纯氮气,电位均通过仪器自带的Thale软件进行IR降补偿。通过线性扫描伏安法进行极化曲线的测量,以0.2V为起始电位,以1mV s-1的速率扫描至-0.3V。在标准三电极系统中测定电催化剂的电催化活性,为了排除Pt对催化剂的潜在增益效应,将辅助电极替换成光谱纯石墨棒,进行测试时,均提前在0.5M H2SO4溶液中通入N2使其饱和并将电解液恒温至25℃。

附图4是催化剂样品在氮气饱和的0.5M硫酸电解液中的极化曲线。从附图4可见,在较低的过电位后,UDSL-MoS2/rGO的阴极电流密度急剧上升,在250mV处达到~ -249mA·cmgeo-2,分别是MoS2/rGO-2.5(~ -121 mA·cmgeo-2)的2.06倍和MoS2/rGO-4(~ -38 mA·cmgeo-2)的6.55倍。

把极化曲线转换成塔菲尔曲线(η-log j图),如附图5所示。从图中可见,UDSL-MoS2/rGO达到不同电流密度值所需的过电位均低于MoS2/rGO-2.5和MoS2/rGO-4,表明其具有最优的电催化析氢性能。通过对塔菲尔曲线的直线段进行线性拟合,该拟合直线的斜率即为塔菲尔斜率。UDSL-MoS2/rGO(~35mV·dec-1)具有可以与比Pt(~33mV·dec-1)相媲美的塔菲尔斜率,远低于商业化的MoS2微米片(93mV·dec-1),同时亦是MoS2基电析氢催化剂中所报道的最低值。值得注意的是,塔菲尔斜率是电催化剂的固有属性之一,是由析氢反应过程中的决速步骤决定的。

综上所述,本发明利用半胱氨酸为连接分子,将钼酸盐前驱固定在氧化石墨烯表面,经过水热合成法,能将尺寸可控的MoS2纳米片超分散地负载到石墨烯表面,制备出UDSL-MoS2/rGO,同时解决了二硫化钼催化活性位点稀缺和导电性差这两大难题。电催化析氢结果表明,UDSL-MoS2/RGO的Tafel斜率仅为~35 mV dec-1是目前非铂电析氢催化剂的最低值,十分接近Pt的数值(33mV·dec-1),表明这种强耦合UDSL-MoS2/rGO杂化材料能稳定化超分散的MoS2纳米片,使其展现出优秀的电催化析氢活性。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1