一种室内空气净化储光光触媒微球及制备方法与流程

文档序号:11506385阅读:327来源:国知局
本发明涉及环保产品领域,尤其涉及一种室内空气净化储光光触媒微球及制备方法。
背景技术
:2010年之前,中国空气净化器市场主要用于工业去污染和医用等专业领域,市场规模相对较小,增长缓慢。2010之后,由于雾霾天气严重,中国空气净化器开始用于民用市场。从2013年开始,空气净化器市场呈现爆发式增长,到2016年行业发展逐渐回归理性,上半年空气净化器销量达226万台,销售额为53亿元,据中投顾问产业研究中心预测,到2020年,市场规模可达340亿元。我国目前大约有1000家以上的空气净化器企业,从长远来看,中国空气净化器市场需求庞大。目前,在我国,随着人民生活水平的提高和大量室内装修化工原料的使用,大量有机污染物也随之进入室内,现有技术中,为改善室内空气环境,大量新颖的绿色环保净化材料不断出现。其中光触媒表现出较佳的空气净化功能,经过可见光或紫外光激发后,光触媒粒子表面产生活性物质,可对目标物进行氧化或还原反应,具有污染物去除、空气净化、水质净化、除臭、抗菌、除尘、防雾等环境净化的效能。目前光触媒的主要成分是二氧化钛,在太阳光或照明光源中的紫外线照射下能够产生电荷,与空气中的水分子及氧分子发生反应,产生负氧离子和氢氧自由基,这些物质具有较强的氧化能力,可破坏细菌的细胞壁,使细菌的细胞质流失而死亡,还能凝固病毒的蛋白质,抑制病毒的生长,并捕捉空气中的各种浮游细菌。然而在实际中,光触媒必须将纳米颗粒固定于某些基材表面,如磁砖、玻璃、墙壁、金属、塑料等表面。室内光线并不明显的地方光触媒难以发挥作用。另外,光触媒难以大颗粒存在发挥作用,影响了其应用范围,通常只能以涂料涂层存在。中国专利cn201210426113.9涉及一种新型光触媒空气净化液及其制作方法,在二氧化钛中植入过渡金属离子,形成一含有掺杂过渡金属离子的二氧化钛光触媒,令该二氧化钛光触媒可被可见光催化,其特征在于:使用的二氧化钛光触媒溶液与含有电气石粉的金属氧化物混合粉末混合,制成发生负离子的二氧化钛光触媒复合溶液,添入含有电气石粉的金属氧化物混合粉末的量占二氧化钛光触媒复合溶液的11%-15%。本发明提供的光触媒对光谱感应区间比传统感应区间增大,可以接受更宽范围光谱的感应,因此在强光线或弱光线的作用下,都可以产生强烈催化降解功能,能有效地降解空气中有毒有害气体,能有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理。该光触媒空气净化液中不包含任何具备吸附特性的物质,且其本身就为液体状,因此其不具备吸附能力,对空气中毒害物质的处理范围较小。也不具备在无光条件下继续进行光催化反应的特性。中国专利cn201410252388.4公开了一种用于降解甲醛的纳米球状多孔弱光光触媒、制备方法及其应用,该光触媒按重量百分比计包括以下原料:钛源0.2%~30%、醇类溶剂60%~99%、水解抑制剂0.005%~0.01%、含金属离子的去离子水0.005%~0.01%、含羟基中强酸10%~40%、含无机分散剂的去离子水1%~5%,该含羟基中强酸内含有sio2晶种;该光触媒为纳米颗粒透明溶胶液,且其粒径分布在10~30nm之间,表面为球状多孔状分布,比表面积大且平均达300m2/g以上。该光触媒生产制备条件温和、生产安全风险小、易实现量产、弱光催化净化、稳定性高,重点针对目前成熟光触媒产品制备条件苛刻、太阳光利用率低、空气净化降解效率低、基材表观影响大、施工不便等问题加以解决。该产品不具备吸附特性,且无光条件下继续进行光催化反应。中国专利cn201410459239.5公开了一种光触媒材料,主要由高锰酸钾3~7g、硅藻土1~5g、碳酸氢钙8~12份、二氧化硅4~10g、硅胶4~10g、三氧化二铁2~6g、乙烯2~8g、聚氨酯9~11g、硝酸银3~8g、液晶材料3~5g和聚乙烯蜡2~5g制备而成。本材料在空气中不易氧化,使用时间较长。并且感光性更强,可以减少材料的浪费,提高使用寿命,给电子器件提供更好的原料。本发明以高锰酸钾、二氧化硅、硝酸银和三氧化二铁为光催化物质、以硅藻土为吸附材料,无论是光催化反应,还是产品的吸附效果,都具有效率低下的弊端。中国专利cn201510328205.7涉及一种环保无毒的硅藻泥涂料;具体技术方案为:光触媒硅藻泥,包括以下原料,具体按照以下重量份数配制:纤维素1~5份,植物胶粉0.5~3份,纳米晶须硅0.5~3份,聚乙烯醇0.5~3份,纳米二氧化钛1~3份,硅藻土80~95份,将以上原料充分混合后制得成品,本发明的硅藻土含量高达90%左右,可以保证涂料喷涂后的最大吸附量,本发明将有害物质吸附后,分解有害物质,转换成干净空气后再释放出来,环保无毒,本发明为白色粉末,几乎不含甲醛,牢固柔和,粘附在墙壁上后不易脱落,性价比高,施工方便。该技术方案中包含了二氧化钛和硅藻土,具备了吸附和分解毒害物质的功能,但是其缺乏提高光敏感度或补光的技术特征,因此不适用与弱光或无光的环境中。中国专利cn201610612687.3公开了一种可擦洗硅藻土光触媒喷涂液,其技术方案的要点是,配料由硅藻土、酸化后的凹凸棒石粘土、高粘凹凸棒石粘土、纳米二氧化钛、白炭黑、纳米载银抗菌粉、纳米氧化镁、纳米二氧化锆、纳米氧化铝、纳米氧化锌、聚乙烯醇、聚乙二醇、聚二甲基硅氧烷和水组成。先将配料进行搅拌、分散、乳化、研磨,然后再次分散、均质和研磨,罐装为可擦洗硅藻土光触媒喷涂液。可擦洗硅藻土光触媒喷涂液适用于喷涂在建筑物或装饰材料表面,在光的照射下,可以持续不断的吸附和降解甲醛、氨、苯等污染物,并具有极强的杀菌、除臭、防霉和净化空气的功能;喷涂在建筑物或装饰材料表面的薄膜,经过长时间的使用后会呈现出饱和状态,可用抹布擦洗干净。该技术方案中,起到光触媒作用的是氧化镁、二氧化锆、氧化铝、二氧化钛、氧化锌,酸化后的凹凸棒石粘土起到了吸附作用,也还包括其他有机物质。本发明与之相比,在材料构成上有很大不同,也解决了该发明不涉及的几乎问题:本发明中涉及的光触媒可在无光和弱光的条件下依旧可以发挥出很好的技术效果。综上所述,现有的光触媒空气净化产品虽然种类众多,但是以二氧化钛为主要原料的光触媒产品来说,其大多存在共同的缺点:目前的光触媒空气净化产品多是以涂层或膜状依附于其他物品,其对空气中毒害气体、物质的吸附、分解效果较差。另外,现有的光触媒空气净化产品本身不具备发光特性,这就导致其在弱光和无光条件时的作用受到限制,无法发挥出净化空气的功能。特别是室内阴暗处,光触媒的效能答复衰减。技术实现要素:针对现有光触媒产品在弱光、无光环境下效能减弱的不足,本发明旨在提出一种室内空气净化储光光触媒微球及制备方法。本发明中的光触媒产品大颗粒微球,产品微孔道多、比面积大、吸附和光催化效果好,特别是使用方便、适应性强,能够在无光或者弱光的条件下发挥作用。一种室内空气净化储光光触媒微球,其特征是由如下原料按重量份制备而成:纳米级二氧化钛55~70份氧化锌量子点15~30份无机银盐5~10份储光材料2~8份硅藻土5~10份活性炭3~15份所述储光光触媒微球直径为1.5毫米~2.1毫米;所述储光光触媒微球为多孔道微球,孔道直径80纳米~110纳米,微球比表面积90~270平方米/克。纳米级二氧化钛是一种罪常见的光触媒,在光照射下,光触媒能吸收相当于带隙能量以下的光能,使其表面发生激励而产生电子和空穴。这些电子和空穴具有很强的还原和氧化能力,能与水或容存的氧反应,产生氢氧根自由基和超级阴氧离子。这些空穴和氢氧根自由基的氧化能大于120kcal/mol,具有很强的氧化能力,几乎能将所有构成有机物分子的化学键切断分解。因此可以将各种有害化学物质、恶臭物质分解或无害化处理,达到净化空气、抗污除臭的作用。二氧化钛作为光触媒,可以有效地降解甲醛、苯、甲苯、二甲苯、氨、tvoc等污染物,并具有高效广谱的消毒性能,能将细菌或真菌释放出的毒素分解及无害化处理。此外,还具备持续时间长、安全、高效、无副作用的特点。氧化锌的能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,也常用于荧光剂和光敏材料。其在本发明中的作用是加强产品的光敏性能、延长使用寿命。储光材料的作用在于在光照充足时快速吸收、并在无光若是光线较弱时缓慢释放光亮。在本发明中,其储光性质可以在环境光线较差时,提供光线,从而保证光触媒能正常吸附、分解空气中毒害物质。从而提高产品使用效率,克服现有技术的不足。硅藻土和活性炭在本发明中都主要起了吸附剂的作用。作为较为常用的空气净化剂,活性炭单独使用时的吸附性强,缺点是吸附效果衰减速度过快,且易饱和。而硅藻土的吸附效果略差,但作用时间更长。因此,本发明中的吸附剂中既包含硅藻土,也有活性炭。二者优势互补、相互协同,既能保证良好的吸附功能,又有相当长的使用寿命。本发明提供的储光光触媒微球显著的优势是大颗粒微球,使用方便,适应性强,对空气中的气相有机污染物具有极强的吸附性和催化氧化性,其吸附有机物后,内置的储光材料在微孔发光,在光触媒界面将有机物降解。另外,即使在无光的夜晚和暗处,同样因储光材料的光使得有机物在光触媒界面降解。本发明同时提供一种制备如上所述的一种室内空气净化储光光触媒微球的制备方法,具体包括以下步骤:(1)将纳米级二氧化钛粉末置于无水乙醇中进行剧烈搅拌,得到稳定的二氧化钛悬浮液;(2)在步骤(1)得到的二氧化钛悬浮液中加入储光材料,充分搅拌,使储光材料完全分散于悬浮液中;(3)在步骤(3)得到的悬浮液中加入无机银盐,搅拌混合均匀,形成均匀透明的溶胶;(4)将步骤(4)制备的溶胶放入高压釜中,在180℃的条件下,处理3~5小时,自然冷却至室温,再进行超声波振荡,将产物过滤、洗涤,在真空条件下干燥,得到富含储光材料的多孔道、高比表面的微球;(5)将硅藻土和活性炭用无水乙醇调匀,其中固液体积之比为1:5;将步骤(4)制备的微球浸入调配好的硅藻土、活性炭的无水乙醇混合液中,加入氧化锌量子点,搅拌3小时,再次进行微波震荡;(6)将步骤(5)微波震荡处理的混合液过滤、干燥,在800℃的马弗炉中煅烧10min,得到本发明所述的室内空气净化储光光触媒微球。进一步的,步骤(2)所述的储光材料是稀土磷酸盐储光材料。进一步的,步骤(3)所述的无机银盐是硝酸银、碳酸银、硫酸银中的一种。一种室内空气净化储光光触媒微球及制备方法,与现有技术相比,其突出的特点和优异的效果在于:1、创造性的将储光材料引入光触媒,制备大颗粒微球,通过辅助硅藻土、活性炭,对空气中的气相有机污染物具有极强的吸附性和催化氧化性,其吸附有机物后,内置的储光材料在微孔发光,在光触媒界面将有机物降解。另外,即使在无光的夜晚和暗处,同样因储光材料的光使得有机物在光触媒界面降解。2、通过引入氧化锌量子点,其能带隙和激子束缚能较大,透明度高,有优异的常温发光性能,加强产品的光敏性能、延长使用寿命。3、本发明制备方法原料易得,工艺易控,适合批量规模化生产。具体实施方式以下通过具体实施方式对本发明作进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。实施例1一种室内空气净化储光光触媒微球,其特征是有如下原料按重量份制备而成:纳米级二氧化钛55份氧化锌量子点20份无机银盐5份储光材料2份硅藻土10份活性炭3份所述的储光材料是稀土磷酸盐储光材料。所述的无机银盐是硝酸银。具体包括以下步骤:(1)将纳米级二氧化钛粉末置于无水乙醇中进行剧烈搅拌,得到稳定的二氧化钛悬浮液;(2)在步骤(1)得到的二氧化钛悬浮液中加入储光材料,充分搅拌,使储光材料完全分散于悬浮液中;(3)在步骤(3)得到的悬浮液中加入无机银盐,搅拌混合均匀,形成均匀透明的溶胶;(4)将步骤(4)制备的溶胶放入高压釜中,在180℃的条件下,处理3~5小时,自然冷却至室温,再进行超声波振荡,将产物过滤、洗涤,在真空条件下干燥,得到富含储光材料的多孔道、高比表面的微球;(5)将硅藻土和活性炭用无水乙醇调匀,其中固液体积之比为1:5;将步骤(4)制备的微球浸入调配好的硅藻土、活性炭的无水乙醇混合液中,加入氧化锌量子点,搅拌3小时,再次进行微波震荡;(6)将步骤(5)微波震荡处理的混合液过滤、干燥,在800℃的马弗炉中煅烧10min,得到本发明所述的室内空气净化储光光触媒微球。实施例2一种室内空气净化储光光触媒微球,其特征是有如下原料按重量份制备而成:纳米级二氧化钛70份氧化锌量子点30份无机银盐5份储光材料5份硅藻土10份活性炭3份所述的储光材料是稀土磷酸盐储光材料。所述的无机银盐是碳酸银。具体包括以下步骤:(1)将纳米级二氧化钛粉末置于无水乙醇中进行剧烈搅拌,得到稳定的二氧化钛悬浮液;(2)在步骤(1)得到的二氧化钛悬浮液中加入储光材料,充分搅拌,使储光材料完全分散于悬浮液中;(3)在步骤(3)得到的悬浮液中加入无机银盐,搅拌混合均匀,形成均匀透明的溶胶;(4)将步骤(4)制备的溶胶放入高压釜中,在180℃的条件下,处理3~5小时,自然冷却至室温,再进行超声波振荡,将产物过滤、洗涤,在真空条件下干燥,得到富含储光材料的多孔道、高比表面的微球;(5)将硅藻土和活性炭用无水乙醇调匀,其中固液体积之比为1:5;将步骤(4)制备的微球浸入调配好的硅藻土、活性炭的无水乙醇混合液中,加入氧化锌量子点,搅拌3小时,再次进行微波震荡;(6)将步骤(5)微波震荡处理的混合液过滤、干燥,在800℃的马弗炉中煅烧10min,得到本发明所述的室内空气净化储光光触媒微球。实施例3一种室内空气净化储光光触媒微球,其特征是有如下原料按重量份制备而成:纳米级二氧化钛70份氧化锌量子点15份无机银盐10份储光材料8份硅藻土10份活性炭10份所述的储光材料是稀土磷酸盐储光材料。所述的无机银盐是硫酸银。具体包括以下步骤:(1)将纳米级二氧化钛粉末置于无水乙醇中进行剧烈搅拌,得到稳定的二氧化钛悬浮液;(2)在步骤(1)得到的二氧化钛悬浮液中加入储光材料,充分搅拌,使储光材料完全分散于悬浮液中;(3)在步骤(3)得到的悬浮液中加入无机银盐,搅拌混合均匀,形成均匀透明的溶胶;(4)将步骤(4)制备的溶胶放入高压釜中,在180℃的条件下,处理3~5小时,自然冷却至室温,再进行超声波振荡,将产物过滤、洗涤,在真空条件下干燥,得到富含储光材料的多孔道、高比表面的微球;(5)将硅藻土和活性炭用无水乙醇调匀,其中固液体积之比为1:5;将步骤(4)制备的微球浸入调配好的硅藻土、活性炭的无水乙醇混合液中,加入氧化锌量子点,搅拌3小时,再次进行微波震荡;(6)将步骤(5)微波震荡处理的混合液过滤、干燥,在800℃的马弗炉中煅烧10min,得到本发明所述的室内空气净化储光光触媒微球。所得储光光触媒微球直径为1.5毫米~2.1毫米;所得储光光触媒微球为多孔道微球,孔道直径80纳米~110纳米,微球比表面积100平方米/克。实施例4一种室内空气净化储光光触媒微球,其特征是有如下原料按重量份制备而成:纳米级二氧化钛60份氧化锌量子点25份无机银盐8份储光材料5份硅藻土5份活性炭15份具体包括以下步骤:(1)将纳米级二氧化钛粉末置于无水乙醇中进行剧烈搅拌,得到稳定的二氧化钛悬浮液;(2)在步骤(1)得到的二氧化钛悬浮液中加入储光材料,充分搅拌,使储光材料完全分散于悬浮液中;(3)在步骤(3)得到的悬浮液中加入无机银盐,搅拌混合均匀,形成均匀透明的溶胶;(4)将步骤(4)制备的溶胶放入高压釜中,在180℃的条件下,处理3~5小时,自然冷却至室温,再进行超声波振荡,将产物过滤、洗涤,在真空条件下干燥,得到富含储光材料的多孔道、高比表面的微球;(5)将硅藻土和活性炭用无水乙醇调匀,其中固液体积之比为1:5;将步骤(4)制备的微球浸入调配好的硅藻土、活性炭的无水乙醇混合液中,加入氧化锌量子点,搅拌3小时,再次进行微波震荡;(6)将步骤(5)微波震荡处理的混合液过滤、干燥,在800℃的马弗炉中煅烧10min,得到本发明所述的室内空气净化储光光触媒微球。将实施例4得到的室内空气净化储光光触媒微球进行性能测试。测试方法如下:在两个体积均为1立方米的透明有机玻璃实验箱内分别加入0.45毫克甲醛气体、甲苯0.5毫克、氨气80毫克。在第一个实验箱内放入有200克二氧化钛涂层的锡箔(记为实验箱1);在第二个箱内放入200克根据实施例4中第二个技术方案所描述的室内空气净化储光光触媒微球(记为实验箱2),。完全密封实验箱,将实验箱置于室内,保证试验箱受到完全相同的光照条件:接受光照12小时后,将实验箱移入黑室内。每间隔24小时测定实验箱内的各气体浓度,记录实验结果如下所示:时间实验箱1实验箱224小时0.42毫克/立方米0.39毫克/立方米48小时0.39毫克/立方米0.32毫克/立方米72小时0.37毫克/立方米0.20毫克/立方米96小时0.35毫克/立方米0.11毫克/立方米试验箱2在无光条件下,依然具有良好的光催化降解性。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1