一种管式复合纳滤膜的制作方法

文档序号:8235315阅读:372来源:国知局
一种管式复合纳滤膜的制作方法
【专利说明】一种管式复合纳滤膜
[0001]本发明专利申请是中国专利申请号201310156264.1的分案申请,原申请的申请日为2013-4-28,申请号为201310156264.1,发明创造名称为一种管式复合纳滤膜及其制备方法。
技术领域
[0002]本发明涉及一种高分子分离膜,具体是指一种管式复合纳滤膜。
【背景技术】
[0003]高分子分离膜根据其孔径大小可以分为微滤膜、超滤膜、纳滤膜和反渗透膜。根据高分子材料来源不同,可以分为由天然高分子材料制备的高分子分离膜和由合成聚合物制备的高分子分离膜。天然高分子材料主要为醋酸纤维素及其衍生物,而合成聚合物则品种相对较多,主要包括聚砜类合成聚合物、聚酰胺类合成聚合物、聚酯类合成聚合物、聚烯烃类合成聚合物等。高分子分离膜根据结构不同,又可以分为不对称结构分离膜、对称结构分离膜及复合结构分离膜;根据外形可分为平板高分子多孔膜、中空纤维高分子多孔膜和管状高分子多孔膜。不同的高分子多孔膜,依其孔径、材质等不同,具有不同的用途。
[0004]纳滤膜是孔径介于反渗透膜和超滤膜之间的一种分离膜,由于其具有纳米级的膜孔径、膜上多带电荷,允许低分子盐通过而截留较高分子量的有机物和多价离子,具有独特的分离性能、更高的分离精度。与其它分离膜相比,纳滤膜具有膜通量更大、过程渗透压低、选择分离离子、操作压力低、系统的动力要求低等特点。目前,纳滤膜技术已被广泛应用于水软化和苦咸水淡化、饮用水净化、物料分离纯化和浓缩、废水处理和中水回用、清洁生产等领域,取得了很好的经济和社会效益。
[0005]复合纳滤膜是将一层超薄功能层沉积到孔径适当的多孔支撑膜表面而成的复合膜,沉积方式主要有表面涂覆、界面缩聚、就地聚合、界面交联等。复合膜比不对称膜有许多优点,而且还具有机械稳定性、热稳定性及水解稳定性均很好。然而,目前复合纳滤膜其对小分子有机物的截留率较低,对进料液的要求较高,在传统分离工艺应用中,需要多级不同膜分离精度的组合,才能实现较精细的分离筛选,例如对部分一价离子和二价离子等的分离筛选需要多次进行,成本高,并且在一些特别物料的深度分离、净化、溶缩应用中不够理雄
V QjN O

【发明内容】

[0006]本发明的目的在于提供一种管式复合纳滤膜,相比传统技术,对进料液的处理要求低,分离筛选无需多级组合,具有分离性能优异、节约成本、节省能耗等特点。
[0007]为了达成上述目的,本发明的解决方案是:
[0008]一种管式复合纳滤膜,呈管状结构,此管状结构由外到内依次包括支撑层、基膜层、界面聚合层及保护层四功能层,其中:
[0009]所述基膜层为聚醚砜超滤膜,该聚醚砜超滤膜的液态制膜液主要由重量比如下的各材料进入反应釜反应制得:16-28%的聚醚砜,0.2-2%的无机纳米级改性材料,57-78%的溶剂,1-10%的致孔剂和0.1-5%的表面活性剂,所述溶剂为N-N 二甲基甲酰胺、N-N 二甲基乙酰胺、N-甲基吡咯烷酮、磷酸三乙酯、环丁砜及二甲基亚砜中的一种或多种;
[0010]所述界面聚合层为聚酰胺复合纳滤膜,聚酰胺复合纳滤膜的液态制膜液由六水合哌嗪水溶液和有机相溶液进行界面聚合反应制得,六水合哌嗪水溶液的浓度为0.5-3%,有机相溶液包括浓度为0.1-2%的均苯三甲酰氯和浓度为0.5-3%的十二水合磷酸钠,有机相溶液的溶剂为正已烷。
[0011]所述致孔剂为无机致孔剂,或者为有机高分子致孔剂,或者为无机致孔剂和有机高分子致孔剂的混合物;所述无机致孔剂为硝酸锂、氯化钠、氯化钙、碳酸钙、硝酸钙、二氧化碳、三氧化二铝及高岭土中的一种或多种;所述有机高分子致孔剂为聚乙二醇、聚氧乙烯、聚乙烯吡咯烷酮、聚乙烯醇及甲基纤维素中的一种或多种;所述表面活性剂为阳离子型表面活性剂、阴离子型表面活性剂、两性型表面活性剂及非离子型表面活性剂中的一种或多种;所述无机纳米级改性材料为二氧化钛、二氧化硅及二氧化锌中的一种或多种;所述支撑层为无纺布层或PET层。
[0012]所述保护层采用浓度为2-10%的PVA水溶液与聚酰胺复合纳滤膜反应并晾干制得。
[0013]所述反应釜反应的温度在60-80 °C。
[0014]采用上述方案后,本发明一种管式复合纳滤膜,采用管式结构,由四个功能层构成,特别是基膜层(聚醚砜超滤膜)、界面聚合层(聚酰胺复合纳滤膜)的组合结构设计,以聚醚砜和无机纳米材料共混改性有管式超滤膜基膜,以六水合哌嗪(P I P)为水相溶液,与均苯三甲酰氯正已烷溶液界面聚合反应成管式聚酰胺复合纳滤膜,制备工艺中采用冻胶制备管式聚醚砜超滤膜,采用卷管焊接与涂膜同步生产管式聚醚砜超滤膜工艺技术。
[0015]所得本发明管式复合纳滤膜具有对一、二价离子有不同选择性分离功能,对小分子有机物有较高的截留率,膜管直径可制备5-20mm不同规格,对进料液的预处理要求较低,可对高溶度、高粒度、高悬浮物的分离很有优势,是其他膜品种(如中空纤维、卷式)无法实现的,对一些特定物料的深度分离、净化、溶缩具有很高的经济价值。因为本发明对进料液的要求非常低,又可一次进行对部分一价离子和二价离子等的分离筛选,缩短了传统分离工艺需要多级不同膜分离精度的组合,可节约成本,节约能耗。本发明能够应用于垃圾渗透液处理、印染废水回收利用、染料回收、抗生素浓缩与纯化上,并实现非常优异的分离功能。
【具体实施方式】
[0016]实施例1
[0017]一种管式复合纳滤膜,呈管状结构,此管状结构由外到内依次包括支撑层、基膜层、界面聚合层及保护层四功能层,其中:
[0018]支撑层为无纺布层或者PET层;
[0019]基膜层为聚醚砜超滤膜,该聚醚砜超滤膜的液态制膜液的原料包括重量比如下的各材料:16%的聚醚砜,0.2%的无机纳米级改性材料,74%的N-N溶剂,9.7%的致孔剂和
0.1 %的表面活性剂;
[0020]界面聚合层为聚酰胺复合纳滤膜,聚酰胺复合纳滤膜的液态制膜液的原料包括六水合哌嗪水溶液和有机相溶液,六水合哌嗪水溶液的浓度为0.5%,有机相溶液包括浓度为
0.1%的均苯三甲酰氯和浓度为0.5%的十二水合磷酸钠,有机相溶液的溶剂为正已烷。
[0021]所述74%溶剂为强极性溶剂,具体为下述一种或多种溶剂的混合物:N-N 二甲基甲酰胺、N-N 二甲基乙酰胺、N-甲基吡咯烷酮、磷酸三乙酯、环丁砜及二甲基亚砜。
[0022]对应管式复合纳滤膜的制备方法,包括以下步骤:
[0023](I)制备构成基膜层的液态制膜液,将上面备制好的原料进入反应釜反应,反应釜反应的温度为60°C,待完全溶解制得液态制膜液;该液态制膜液经过过滤后再有挤丝机挤出,最后进入卷管机内的膜装置,以便于接下来与卷管的同步操作;
[0024](2)制备由支撑层和基膜层构成的管式聚醚砜超滤膜,将片状的支撑层通过卷管及卷管成形,再利用超声波焊接机焊接成管式结构的支撑层,同时将(I)步骤制得的液态制膜液在所述呈管式结构的支撑层的内表面同步进行基膜涂层,之后进入凝胶浴水槽进行冻胶固化,即制得管式聚醚砜超滤膜;将该已成型的管式聚醚砜超滤膜通过纯水漂洗浸泡,将溶剂与致孔剂清洗干净;
[0025](3)界面聚合层的界面聚合步骤,将(2)步骤中制得的管式聚醚砜超滤膜浸入备制好的六水合哌嗪水溶液,使内表面充分浸润(浸润时间为45S),取出后去除管内多余水溶液;之后,将所述浸润过的管式聚醚砜超滤膜浸入备制好的有机相溶液中反应,反应一定时间后取出晾干,即得管式聚酰胺复合纳滤膜;
[0026](4)保护层的制作步骤,将(3)步骤中制得的管式聚酰胺复合纳滤膜浸入抗污染的浓度5%的保护剂PVA水溶液反应,反应8小时后取出晾干,即制得管式复合纳滤膜。
[0027]性能测试(I):操作压力0.4Mpa、室温条件下,对2g/L MgSO4水溶液的通量进行测试,可达38.2L/( m2.η),截留率为90.5%0
[0028]性能测试⑵:取印染废液,经活性污泥反应,采用错流方式,制成内径1mm的管式聚酰胺复合纳滤膜组件,无需预处理,经过增压泵增压,操作压力0.4Mpa,进水电导率为2500 μ s/m,渗透率电导率为500 μ s/m,脱盐率为80%,通量达38.21/ ( m2.η)。由于通道较宽,故无堵塞现象。
[0029]实施例2
[0030]一种管式复合纳滤膜,呈管状结构,此管状结构由外到内依次包括支撑层、基膜层、界面聚合层及保护层四功能层,其中:
[0031 ] 支撑层为无纺布层或者PET层;
[0032]基膜层为聚醚砜超滤膜,该聚醚砜超滤膜的液态制膜液的原料包括重量比如下的各材料:25%的聚醚砜,2%的无机纳米级改性材料,61%的溶剂,10%的致孔剂和2%的表面活性剂;
[0033]界面聚合层为聚酰胺复合纳滤膜,聚酰胺复合纳滤膜的液态制膜液的原料包括六水合哌嗪水溶液和有机相溶液,六水合哌嗪水溶
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1