一种可见光响应型氯氧铋光催化剂及其制备方法与应用

文档序号:10634835阅读:921来源:国知局
一种可见光响应型氯氧铋光催化剂及其制备方法与应用
【专利摘要】本发明公开了一种可见光响应型氯氧铋光催化剂及其制备方法与应用,将氮化硼分散于丙三醇中,室温下超声,获得氮化硼分散液;将五水合硝酸铋加入到氮化硼分散液中,搅拌,形成分散液;然后向分散液中滴加氯化钠溶液,搅拌;将溶液转入微波反应器中,微波下反应15?20min,微波功率为180?200w,反应结束后,清洗、干燥,得到可见光响应型氯氧铋光催化剂。该催化剂用于吸附和光催化降解罗丹明B染料废水,在可见光下具有良好的吸附和光催化降解作用,催化活性稳定,重复利用率高,具有实际应用前景。
【专利说明】
一种可见光响应型氯氧铋光催化剂及其制备方法与应用
技术领域
[0001]本发明属于环境化工光催化水处理技术领域,具体涉及一种可见光响应型氯氧铋光催化剂及其制备方法与应用。【背景技术】
[0002]目前,越来越多的有机染料大量应用于纺织、印染、皮革、食品和日用化学品等产业中。尽管染料的出现使得我们的世界变得五彩缤纷,但是由于其使用量巨大,生产过程中产生的大量含有毒性的工业废水,未经妥善处理直接排入水体将对生态环境造成严重影响。而且部分染料还具有潜在的致癌性,进入食物链后会直接危害人畜健康。传统上,物理-化学方法,电化学法,生物法等被用来进行染料废水的处理。但是具有去除效率低,造成二次污染,费用高的缺点。考虑到环境效益,用可见光降解染料作为一种绿色技术引起越来越高的重视。
[0003]近年来,半导体光催化材料在环境、材料、能源等领域得到了广泛的应用。为了提高太阳能的利用效率,光催化材料必须具备两大条件:适合的可以很好的响应太阳光的带隙以及较低的电子空穴重组率。BN是一种人工合成的非氧化物陶瓷材料,它和C2是等电子体,因此和碳单质具有相似的晶体结构,常见的BN有类似于石墨的六方晶型(h-BN)和类似于金刚石的立方晶型(c-BN)。BN具有耐高温、抗热振、抗氧化、高热导率、高电阻率、高介电性能、自润滑、低密度、良好的加工性、耐化学腐蚀、与多种金属不浸润等优良的物理和化学特性。
[0004]氯氧铋(B1Cl)高度各向异性的层状结构便于光生电子空穴分离,保证了 B1Cl良好的稳定的光催化活性。但是带隙(3.3eV)同样限制了 B1Cl对可见光的利用。因此,如何使 B1Cl得带隙能降低,从而可更加充分有效的利用太阳能成为人们关注的焦点。目前,已有一些增强B1Cl可见光响应的二维B1Cl纳米片,该催化剂的带隙明显减少(3.lleV)。在可见光该催化剂对罗丹明B表现出良好的光催化降解的特性。(Cry sta 1 Growth & des ign, 2011,793-803)Chen等人以三氯化铋和硝酸为原料,在1-赖氨酸调整下制备B1Cl (2.87eV)光催化剂。窄带隙可能是由于纳米花状的形貌及高暴露的(110)晶面。在A多435nm 光源照射50min后,10mg? L1—罗丹明B完全脱色,其降解效率常熟达0.1186 min1—(Catalysis Communicat1ns,2012,23:54-57)。但是两种制备B1Cl的方法均为24小时,时间较长。
【发明内容】

[0005]本发明针对B1Cl光催化剂带隙宽的问题,提供一种可见光响应型氯氧铋光催化剂及其制备方法与应用,催化剂利用氮化硼的量子界限效应与表面效应,使B1Cl光催化吸收光谱拓宽至可见光区,以五水合硝酸铋、丙三醇和氯化钠为原料,通过微波辅助,沉淀,分离,洗涤以及干燥步骤制备得到可见光响应型氯氧铋光催化剂,该方法制备时间明显得到缩短,并且制备出的材料可充分利用太阳能,且能够有效解决环境污染的问题。
[0006]为了实现上述目的,本发明采用的技术方案为:一种可见光响应型氯氧铋光催化剂的制备方法,包括如下步骤:1)将氮化硼分散于丙三醇中,室温下超声,获得氮化硼分散液;2)将五水合硝酸铋加入到步骤1)的氮化硼分散液中,搅拌,形成分散液;然后向分散液中滴加氯化钠溶液,搅拌;3)将步骤2)中的溶液转入微波反应器中,微波下反应15-20min,反应结束后,清洗、干燥,得到可见光响应型氯氧铋光催化剂。
[0007]步骤1)中氮化硼与丙三醇的比例关系为:25?200mg氮化硼分散于36?40mL的丙三醇中。
[0008]步骤2)中氮化硼、五水合硝酸铋与氯化钠的摩尔比为(0.5?4): 19:19。氮化硼具有提高电子传导率的能力,掺杂较少与掺杂过量都会明显影响光催化的降解效果。少量掺杂石墨相BN时,明显提高催化剂在可见光区域的对光的吸收率,但是当掺杂BN过量时,BN会大量掩盖B1Cl微球上面的活性位点,活性位点上面的光电子无法与催化剂上面吸附的污染物接触反应,导致光催化效果变差。优选的氮化硼:五水合硝酸铋:氯化钠的摩尔比为2: 19:19,也就是对应的1%8_8丨0(:1。
[0009]步骤2)中氯化钠溶液的浓度为0.lmol/L。[〇〇1〇] 步骤3)中微波功率为180-200w。[〇〇11] 步骤3)中所述干燥的温度为60-80°C,时间为8?12小时。
[0012]所述制备方法制备得到的可见光响应型氯氧铋光催化剂,外表是花瓣式纳米级的微球,颗粒大小约为〇.7wn,利用微波方法制备的氯氧铋体型更小(微波法制备的大小约为 0.7wn,普通方法制备的大小为l.lwii左右),克服以往制备的氯氧铋体积太大的缺点,并且表面附着石墨相氮化硼片层,更加有利于氯氧铋的光电子空穴分离,更加有利于有机污染物的降解。
[0013]所述可见光响应型氯氧铋光催化剂在降解水中的持续性污染物与染料中的应用。 将可见光响应型氯氧铋光催化剂加入到待降解的水体中,控制反应体系温度在15?25°C,黑暗处吸附平衡后,在可见光源下进行光催化降解反应。所述可见光响应型氯氧铋光催化剂在水体中的浓度为0 ? 2-1 ? Omg/mL,优选为0 ? 8 mg/mL。[〇〇14] 所述氮化硼的制备方法如下:将硼酸与尿素以1: 20的比例溶于36-40mL超纯水, 放入烘箱中60-80°C干燥18-24小时,得到白色的混合物;然后将白色混合物在充满氮气的管式炉中900 °C加热5-7小时,将得到的最终产物研磨备用。[〇〇15]本发明以五水合硝酸铋、丙三醇和氯化钠为原料,通过微波辅助,沉淀,分离,洗涤以及干燥步骤制备得到可见光响应型氯氧铋光催化剂,通过溶剂丙三醇将层状的氯氧铋转化为花边球状,并且微波辅助不仅对于氯氧铋形成球状结构有积极影响,而且还大大缩短了制备时间,将氮化硼掺杂至氯氧铋中,将氯氧铋的带隙减少至3.lleV,从而使其不仅对于紫外光产生响应,同时对可见光也具有响应。
[0016] 利用氮化硼的量子界限效应与表面效应,使B1Cl光催化吸收光谱拓宽至可见光区,该方法制备时间明显得到缩短,并且制备出的材料可充分利用太阳能,且能够有效解决环境污染的问题。[〇〇17]所制备的可见光响应型BNOB1Cl光催化剂可用于降解水中的持续性污染物与染料等有机物。
[0018]有益效果与现有技术相比,本发明具有如下优势:(1)弥补了氯氧铋光催化剂带隙宽,不能充分利用太阳能的缺陷,将氯氧铋的带隙从 3.3 eV减少至3.11 eV,增强了氯氧铋光催化剂对可见光的利用率;(2)采用常规的无机原料作为反应物,原料价廉易得:制备过程简单易行,同时制备方法对环境友好,不产生有毒有害的副产物;(3)可见光响应型氯氧铋光催化剂在可见光下具有良好的光催化活性,且能更加充分高效的利用太阳能,这对于环境治理和绿色能源利用具有重要意义。[〇〇19](4)制备周期短,材料稳定性好。【附图说明】
[0020]图1为实施例1制备的可见光响应型氮化硼@氯氧铋复合光催化剂的SEM图。[0021 ]图2为实施例2制备的可见光响应型氮化硼@氯氧铋复合光催化剂的DRS图。
[0022]图3为实施例2制备的可见光响应型氮化硼@氯氧铋复合光催化剂在不同氮化硼掺杂量下对罗丹明B的降解效果图。
[0023]图4为实施例1制备的可见光响应型氮化硼@氯氧铋复合光催化剂和纯氯氧铋荧光光谱对比图。
[0024]图5为实施例1制备的可见光响应型氮化硼@氯氧铋复合光催化剂在不同浓度下对罗丹明B的降解图。
[0025]图6为实施例1制备的可见光响应型氮化硼@氯氧铋复合光催化剂降解罗丹明B催化剂重复利用图。【具体实施方式】
[0026]实施例1制备氮化硼:硼酸与尿素以质量比1:20的比例溶于40ml超纯水,放入烘箱中80°C干燥 12小时,得到白色的混合物。然后将白色混合物在充满氮气的管式炉中900 °C加热5小时,将得到的最终产物研磨备用。[〇〇27]制备掺氮化硼的氯氧铋:100mg的氮化硼分散于36ml的丙三醇中,室温下超声lh, 获得氮化硼分散液;将〇.4mol的五水合硝酸铋加入36ml含有氮化硼的丙三醇分散液中,在磁力搅拌下分散〇.5h,形成分散液;0.4mol的氯化钠加入4ml的超纯水中,形成氯化钠溶液; 将氯化钠溶液逐滴加入分散液中,磁力搅拌半小时。将上述溶液转入50ml的微波反应器中, 200w的功率下加热15min,反应结束后用无水乙醇与超纯水分别清洗三次,最后在烘箱中60 °C干燥12小时,研磨备用,即制得可见光响应型的1% BNOB1Cl光催化剂。[〇〇28] 采用扫描电子显微镜对制得的可见光响应型的1% BNOB1Cl光催化剂进行电镜扫描得到如图1所示的SEM图,从图1可以看出制得的可见光响应型的1% BNOB1Cl光催化剂为纳米微球,表面有少量石墨相BN覆盖。[〇〇29] 实施例2氮化硼的制备同实施例1。
[0030] 制备掺不同含量氮化硼的氯氧铋:分别取25 mg,50 mg,100 mg和200mg的氮化硼分散于36ml的丙三醇中,室温下超声lh,获得氮化硼分散液;将0.4mol的五水合硝酸铋加入 36ml含有氮化硼的丙三醇分散液中,在磁力搅拌下分散0.5h,形成分散液;0.4mol的氯化钠加入4ml的超纯水中,形成氯化钠溶液;将氯化钠溶液逐滴加入分散液中,磁力搅拌半小时。 将上述溶液转入50ml的微波反应器中,200w的功率下加热15min,反应结束后用无水乙醇与超纯水分别清洗三次,最后在烘箱中60°C干燥12小时,研磨备用,制得氮化硼与氯氧铋质量比分别为0.25%、0.5%、1%和2%的可见光响应型的BNOB1Cl光催化剂,分别记为:0.25% BN@Bi0Cl、0.5% BN@B1Cl、l% BN@B1Cl、2% BNOB1Cl。[〇〇31]采用紫外可见漫反射光谱仪对制得的可见光响应型的BNOB1Cl光催化剂进行电镜扫描,得到如图2所示的DRS图,从图2可以看出制得的可见光响应型的BN@Bi0C1光催化剂相对于纯石墨相氮化碳在可见光区对光的吸收明显增强,因此产生更多光电子与空穴分离,有助于对于污染物的降解。掺杂石墨相氮化硼越多,材料在全光谱对光的吸收能力得到明显增强,这说明掺杂氮化硼的氯氧铋对光能利用明显得到增强,吸收得到的光能越多,光电子-空穴对产生得越多,能够利用的空穴与光电子越多,空穴与光电子进而产生羟基自由基,并且空穴自身也可以氧化有机污染物。[〇〇32] 实施例3采用实施例2制备得到的光催化剂用于氧化处理罗丹明B溶液。降解步骤为:步骤(1):准确称取1 Omg的罗丹明B,将其溶于超纯水中,并定容至1000ml,制得10mg/L 的罗丹明B溶液;步骤(2):用移液管准确移取50ml步骤(1)得到的罗丹明B溶液至反应器中,并加入40mg 0 ? 25% BNOB1Cl,0 ? 5%BN@Bi0Cl,1% BNOB1Cl和2%BN@Bi0Cl,反应体系控制在25 °C,在暗光处先吸附平衡半小时,使其达到吸附脱附平衡;步骤(3):以300w氙灯作为可见光源,将步骤(2)所得溶液在光照下进行光催化降解反应,每间隔5?30min时间取样,并用紫外-可见分光光度法测量罗丹明B吸光度,并计算其转化率。结果见图3。从图3中可以看出在掺杂lwt%的BN时,BNOB1Cl这种复合物的光催化效果是最好的,掺杂较少与掺杂过量都会明显影响光催化的降解效果。BN具有提高电子传导率的能力,少量掺杂石墨相BN时,明显提高催化剂在可见光区域的对光的吸收率,但是当掺杂 BN过量时,BN会大量掩盖B1Cl微球上面的活性位点,活性位点上面的光电子无法与催化剂上面吸附的污染物接触反应,导致光催化效果变差。
[0033]实施例4采用全自动荧光光谱仪对制得的可见光响应型的BNOB1Cl光催化剂进行表征,得到如图4所示的PL图,从图4可以看出制得的可见光响应型的BNOB1Cl光催化剂相对于纯B1Cl 在激发波长下,产生的激发峰更低,因此更加有利于光电子与空穴分离,有助于对于污染物的降解,这是氮化硼具有有效传导光电子能力的效果。
[0034]实施例5采用实施例1制备得到的光催化剂用于氧化处理罗丹明B溶液。降解步骤为:步骤(1):准确称取1 Omg的罗丹明B,将其溶于超纯水中,并定容至1000ml,制得10mg/L 的罗丹明B溶液;步骤(2):用移液管准确移取50ml步骤(1)得到的罗丹明B溶液至反应器中,并分别加入 10mg,20mg,30mg,40mg和50mg掺杂质量分数为1%BN的B1Cl光催化剂(1% BNOB1Cl),反应体系控制在25摄氏度,分别调节催化剂浓度为,在暗光处先吸附平衡半小时,使其达到吸附脱附平衡;步骤(3):以300w氙灯作为可见光源,将步骤(2)所得溶液在光照下进行光催化降解反应,每间隔5?30min时间取样,并用紫外-可见分光光度法测量罗丹明B吸光度,并计算其转化率。结果见图5。从图5中可以看出当催化剂浓度为0.8mg/mL时,催化效果最好,当催化剂浓度为〇.2-0.8mg/mL时,催化剂浓度越高,活性位点越多,产生的自由基越多,能够用于降解有机污染物的自由基越多,降解效果越好。但是当催化剂浓度达到1.〇mg/mL由于催化剂浓度太高,影响催化剂对光的吸收,产生的光电子-空穴对较少,因此反过来抑制了降解效果。
[0035] 实施例6将实施例5中的氮化硼/氯氧铋纳米复合材料(1% BNOB1Cl)离心干燥,分散于50ml浓度为10mg/L的罗丹明B中,放入光反应仪中避光搅拌半小时,达到催化剂与双酚A吸附-解析平衡,以300w的氙灯为光源,进行光降解实验,如此重复两次得到如图6所示的光催化降解重复性曲线图。从图中可以看出光催化活性保持不变。
【主权项】
1.一种可见光响应型氯氧铋光催化剂的制备方法,其特征在于,包括如下步骤:1)将氮化硼分散于丙三醇中,室温下超声,获得氮化硼分散液;2)将五水合硝酸铋加入到步骤1)的氮化硼分散液中,搅拌,形成分散液;然后向分散液 中滴加氯化钠溶液,搅拌;3)将步骤2)中的溶液转入微波反应器中,微波下反应15-20min,反应结束后,清洗、干 燥,得到可见光响应型氯氧铋光催化剂。2.根据权利要求1所述的一种可见光响应型氯氧铋光催化剂的制备方法,其特征在于, 步骤1)中氮化硼与丙三醇的比例关系为:0.675?5 mg氮化硼分散于0.9?lmL的丙三醇中。3.根据权利要求1所述的一种可见光响应型氯氧铋光催化剂的制备方法,其特征在于, 步骤2)中氮化硼、五水合硝酸铋与氯化钠的摩尔比为(0.5?4): 19:19。4.根据权利要求1所述的一种可见光响应型氯氧铋光催化剂的制备方法,其特征在于, 步骤2)中氯化钠溶液的浓度为0.lmol/L。5.根据权利要求1所述的一种可见光响应型氯氧铋光催化剂的制备方法,其特征在于, 步骤3)中微波功率为180-200W。6.根据权利要求1所述的一种可见光响应型氯氧铋光催化剂的制备方法,其特征在于, 步骤3)中所述干燥的温度为60-80 °C,时间为8?12小时。7.权利要求1至6中任意一项所述制备方法制备得到的可见光响应型氯氧铋光催化剂。8.权利要求7所述可见光响应型氯氧铋光催化剂在降解水中的持续性污染物与染料中 的应用。9.根据权利要求8所述的应用,其特征在于,将可见光响应型氯氧铋光催化剂加入到待 降解的水体中,控制反应体系温度在15?25°C,黑暗处吸附平衡后,在可见光源下进行光催 化降解反应。10.根据权利要求8所述的应用,其特征在于,所述可见光响应型氯氧铋光催化剂在水 体中的浓度为0.2-1 ?0 mg/mL。
【文档编号】B01J27/24GK106000437SQ201610331174
【公开日】2016年10月12日
【申请日】2016年5月18日
【发明人】许航, 吴章, 丁明梅, 申昆仑, 崔建峰, 高晓宏, 顾艳梅
【申请人】河海大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1