基于低压缸零出力技术的汽驱液态压缩空气储能调峰系统的制作方法

文档序号:23747558发布日期:2021-01-26 16:30阅读:148来源:国知局
基于低压缸零出力技术的汽驱液态压缩空气储能调峰系统的制作方法
基于低压缸零出力技术的汽驱液态压缩空气储能调峰系统
【技术领域】
[0001]
本实用新型属于热能综合利用技术领域,涉及一种基于低压缸零出力技术的汽驱液态压缩空气储能调峰系统。


背景技术:

[0002]
近年来,为应对化石燃料逐渐枯竭以及由其引发的环境问题,以风能、太阳能为代表的可再生能源发电发展迅猛。具有波动性、随机性的可再生能源发电大规模并网,对传统火电机组调峰需求进一步提升。
[0003]
目前,火电机组电出力调节能力提升技术主要有电锅炉储热技术、水罐储热技术、低压缸零出力技术、电化学储能技术等。其中,低压缸零出力技术由于具有投资小、运行方式灵活等优点,近几年在火电机组灵活性改造中应用广泛。但低压缸零出力技术需旁路大量蒸汽,故只适用于热电联产机组,无法在纯凝机组灵活性改造中应用。


技术实现要素:

[0004]
本实用新型的目的在于解决现有技术中的问题,提供一种基于低压缸零出力技术的汽驱液态压缩空气储能调峰系统,本实用新型采用低压缸零出力系统所旁路蒸汽驱动汽轮机带动压缩空气储能系统空气压缩机运转,实现对蒸汽能量的合理消纳利用。从而降低低压缸做功份额,实现机组调峰运行。
[0005]
为达到上述目的,本实用新型采用以下技术方案予以实现:
[0006]
基于低压缸零出力技术的汽驱液态压缩空气储能调峰系统,包括:
[0007]
燃煤发电机组,所述燃煤发电机组的中压缸排汽与液态压缩空气储能系统相连,高压缸、中压缸、低压缸驱动第一发电机发电;
[0008]
液态压缩空气储能系统,所述液态压缩空气储能系统包括汽轮机以及至少一级空气压缩机,汽轮机的汽源来自燃煤发电机组的中压缸排汽;汽轮机驱动空气压缩机,空气压缩机出口连接制冷膨胀机,制冷膨胀机出口连接气液分离装置,气液分离装置的气体出口连接空气压缩机的入口,液体出口连接空气储罐;空气储罐的出口连接升压泵,升压泵出口通过至少一级空气加热器与至少一级空气膨胀机相连;空气膨胀机驱动第二发电机发电。
[0009]
本实用新型进一步的改进在于:
[0010]
所述空气加热器和空气膨胀机的数量相同。
[0011]
所述燃煤发电机组包括高压缸,高压缸的排汽口连接中压缸进汽口,中压缸的排汽口分为两路,第一路连接低压缸进汽口,第二路连接汽轮机的进汽口;低压缸的排汽口连接凝汽器,凝汽器的出口连接机组凝结水系统。
[0012]
所述中压缸通过调节阀与低压缸相连,通过第一阀门与汽轮机相连。
[0013]
所述汽轮机通过第二阀门与乏汽冷却器相连,乏汽冷却器出口连接凝汽器。
[0014]
与现有技术相比,本实用新型具有以下有益效果:
[0015]
本实用新型通过低压缸零出力系统与液态压缩空气储能系统的耦合,提升机组电
出力调节能力,实现机组调峰运行。利用机组蒸汽带动汽轮机驱动储能系统空气压缩机运转,实现蒸汽能量在火电机组与液态压缩空气储能系统之间的传递,从而提升机组电出力调节能力,满足电网调峰需求。与常规液态压缩空气储能系统相比,取消了空气压缩机驱动电机的配置。提升了整体系统运行能效。在电网调度负荷降低时,通过改变中压缸出口蒸汽流程,采用机组蒸汽驱动汽轮机带动液态压缩空气储能系统空气压缩机运转完成储能过程,实现对蒸汽能量的合理消纳。从而降低低压缸做功份额,减小机组发电出力。当电网调度负荷升高时,通过液态压缩空气储能系统释能放电,满足供电负荷需求。
【附图说明】
[0016]
为了更清楚地说明本实用新型实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本实用新型的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
[0017]
图1为本实用新型的热力系统示意图。
[0018]
其中:1-高压缸;2-中压缸;3-低压缸;4-第一发电机;5-凝汽器;6-调节阀;7-第一阀门;8-第二阀门;9-乏汽冷却器;10-汽轮机;11-空气压缩机;12-制冷膨胀机;13-气液分离装置;14-空气储罐;15-升压泵;16-空气加热器;17-空气膨胀机;18-第二发电机。
【具体实施方式】
[0019]
为使本实用新型实施例的目的、技术方案和优点更加清楚,下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本实用新型实施例的组件可以以各种不同的配置来布置和设计。
[0020]
因此,以下对在附图中提供的本实用新型的实施例的详细描述并非旨在限制要求保护的本实用新型的范围,而是仅仅表示本实用新型的选定实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
[0021]
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
[0022]
在本实用新型实施例的描述中,需要说明的是,若出现术语“上”、“下”、“水平”、“内”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该实用新型产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
[0023]
此外,若出现术语“水平”,并不表示要求部件绝对水平,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
[0024]
在本实用新型实施例的描述中,还需要说明的是,除非另有明确的规定和限定,若
出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本实用新型中的具体含义。
[0025]
下面结合附图对本实用新型做进一步详细描述:
[0026]
参见图1,本实用新型基于低压缸零出力技术的汽驱液态压缩空气储能调峰系统,包括燃煤发电机组和液态压缩空气储能系统。
[0027]
燃煤发电机组的中压缸2排汽与液态压缩空气储能系统相连,高压缸1、中压缸2、低压缸3驱动第一发电机4发电;燃煤发电机组包括高压缸1,高压缸1的排汽口连接中压缸2进汽口,中压缸2的排汽口分为两路,第一路连接低压缸3进汽口,第二路连接汽轮机10的进汽口;低压缸3的排汽口连接凝汽器5,凝汽器5的出口连接机组凝结水系统。中压缸2通过调节阀6与低压缸3相连,通过第一阀门7与汽轮机10相连。汽轮机10通过第二阀门8与乏汽冷却器9相连,乏汽冷却器9出口连接凝汽器5。
[0028]
液态压缩空气储能系统包括汽轮机10以及至少一级空气压缩机11,汽轮机10的汽源来自燃煤发电机组的中压缸2排汽;汽轮机10驱动空气压缩机11,空气压缩机11的压缩空气出口连接制冷膨胀机12;制冷膨胀机12出口连接气液分离装置13,气液分离装置13的气体出口连接空气压缩机11的入口,液体出口连接空气储罐14;空气储罐14的出口连接升压泵15,升压泵15出口通过至少一级加热器16与至少一级空气膨胀机17相连;空气膨胀机17驱动第二发电机18发电。
[0029]
本实用新型的工作原理:
[0030]
机组正常模式运行时,打开调节阀6,关闭第一阀门7、第二阀门8。中压缸2出口蒸汽全部进入低压缸3做功,带动第一发电机4发电。低压缸3排汽进入凝汽器5冷凝后回至机组凝结水系统。
[0031]
当电网调度负荷降低,机组需参与调峰时,切换至低压缸零出力模式运行。此时,打开第一阀门7、第二阀门8,中压缸2出口蒸汽分为两路,一路蒸汽通过第一阀门7进入汽轮机10做功,驱动空气压缩机11运转。另一路蒸汽进入低压缸3,通过调整调节阀6开度降低低压缸3进汽流量,使其仅满足低压末端冷却需求。从而降低低压缸3做功份额,减小机组发电出力。
[0032]
中压缸2出口大部分蒸汽进入汽轮机10驱动空气压缩机11运转,汽轮机10排汽进入乏汽冷却器9冷凝后回至机组凝汽器5。空气压缩机11出口的高压空气进入制冷膨胀机12膨胀降温,之后进入气液分离装置13。液态空气存储于空气储罐14中,所分离气态空气回至空气压缩机11入口。完成液态压缩空气储能系统储能过程。
[0033]
当液态压缩空气储能系统释能时,空气储罐14出口液态空气经升压泵15加压后,进入空气加热器16升温,再进入空气膨胀机17做功,带动第二发电机18发电。完成液态压缩空气储能系统释能发电过程。
[0034]
空气压缩机11可为一级或多级。
[0035]
空气加热器16、空气膨胀机17可为一级或多级,且空气加热器16与空气膨胀机17数量对应。
[0036]
以上仅为本实用新型的优选实施例而已,并不用于限制本实用新型,对于本领域
的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1