自动变速器及自动变速器的制造方法与流程

文档序号:14202372阅读:276来源:国知局
自动变速器及自动变速器的制造方法与流程

本发明涉及车辆用的自动变速器,尤其是具备电子控制单元的自动变速器及其制造方法。



背景技术:

一般而言,搭载于车辆的自动变速器具备:包含离合器或制动器等油压致动器或齿轮等旋转元件的变速机构,用以采用电磁阀等来控制对前述油压致动器的油压给排或向前述旋转元件的润滑油供给等的油压控制机构,和用以对该油压控制机构进行电子控制的电子控制单元。

如此的自动变速器中,例如专利文献1中公开了:配设于油压控制机构(阀体)的上表面的电子控制单元和传感器单元,与油压控制机构一起配置于变速器壳体内的变速机构下方。该电子控制单元具有盒状的外形,构成为接受来自传感器单元所包含的、用以检测变速机构的旋转元件的旋转速度的转速传感器等的信号,根据该车辆的运转状态等通过缆线向油压控制机构的电磁阀输出控制信号。

现有技术文献:

专利文献:

专利文献1:日本特开2011-185363号公报。



技术实现要素:

发明要解决的问题

然而,如此的以往的自动变速器中,变速机构由较多旋转元件构成,自动变速器的形状作为整体成为圆筒状,因此若其外侧配设盒状的电子控制单元,则在该部位变速器壳体向外方鼓起。其结果是,自动变速器自身整体上容易大型化,关于自动变速器的车辆搭载性有改善的余地。

因此,本发明是以谋求具有电子控制单元的自动变速器小型化为课题。

解决问题的手段

为解决上述问题,根据本发明的自动变速器及其制造方法,以如下构成的结构为特征。

首先,本申请的第一发明的特征在于,

是在变速器壳体内配设有包含旋转元件的变速机构、用以控制该变速机构的油压控制机构、和用以电子控制该油压控制机构的电子控制单元的自动变速器,

所述电子控制单元以其内周面沿所述变速机构的外周面在周向延伸的形式形成。

第二发明的特征在于,在前述第一发明中,

所述油压控制机构以其内周面沿所述变速机构的外周面在周向延伸的形式形成。

第三发明的特征在于,在前述第二发明中,

所述油压控制机构的轴向一方端部设有在周向排列的多个油压电磁阀,

所述电子控制单元与所述油压电磁阀相邻配置。

第四发明的特征在于,在前述第二或第三发明中,

所述油压控制机构与所述变速器壳体形成为一体。

第五发明的特征在于,在前述第一至第四发明中,

检测所述旋转元件的转速的转速检测部一体地形成于所述电子控制单元。

第六发明的特征在于,在前述第五发明中,

所述变速器壳体具有中间壁,

所述电子控制单元配设于所述中间壁的轴向一方侧的容纳空间。

第七发明的特征在于,在前述第六发明中,

所述容纳空间内配设有所述变速机构的输入离合器,

所述转速检测部包含检测所述输入离合器的输入侧旋转元件的转速的传感器。

第八发明的特征在于,在前述第六或第七发明中,

所述旋转元件包含支持于中间壁的输出部件,

所述转速检测部包含检测所述输出部件的转速的传感器。

第九发明,是一种自动变速器的制造方法,该自动变速器在变速器壳体内配设有包含旋转元件的变速机构、用以控制该变速机构的油压控制机构、和用以电子控制该油压控制机构的电子控制单元,其特征在于,

所述电子控制单元以其内周面沿所述变速机构的外周面在周向延伸的形式形成,

该制造方法具有如下的成型工序:通过三维层压成型法使所述油压控制机构以其内周面沿所述变速机构的外周面在周向延伸的形式成型。

发明效果

首先,根据第一发明的自动变速器,电子控制单元以其内周面沿变速机构的外周面在周向延伸的形式形成,因此与具有盒状的外形的电子控制单元配设于成为圆筒状的外形的变速机构的外侧的以往的自动变速器相比,能够将自动变速器整体在径向紧凑地构成,藉此,提高自动变速器的车辆搭载性。

又,根据第二发明,油压控制机构以其内周面沿变速机构的外周面在周向延伸的形式形成,因此与具有盒状的外形的油压控制机构与电子控制单元配设于成为圆筒状的外形的变速机构的外侧的以往的自动变速器相比,能够将自动变速器整体在径向紧凑地构成,藉此,进一步提高自动变速器的车辆搭载性。

又,根据第三发明,油压控制机构的轴向一方端部设有在周向排列的多个油压电磁阀,电子控制单元与油压电磁阀相邻配置,因此能够不通过缆线而容易地进行多个油压电磁阀对电子控制单元的连接。

又,根据第四发明,油压控制机构与变速器壳体形成为一体,因此与这些部分采用单独部件而分别形成的情况相比,能够削减部件数及装配时间。

又,根据第五发明,检测旋转元件的转速的转速检测部一体地形成于电子控制单元,因此与转速检测部作为与电子控制单元独立的部件而设置的以往的自动变速器相比,包含转速检测部的电子控制单元能够容易地向变速器壳体内安装。

又,根据第六发明,电子控制单元配设于变速器壳体内的中间壁的轴向一方侧的容纳空间,因此能够有效利用变速器壳体内的空间容纳电子控制单元。

又,根据第七发明,作为转速检测部,具有检测配设于中间壁的轴向一方侧的容纳空间内的输入离合器的输入侧旋转元件的转速的传感器,因此与检测输入侧旋转元件的转速的传感器作为与电子控制单元独立的部件而设置的以往的自动变速器相比,能够将包含传感器的电子控制单元容易地向变速器壳体内安装。

又,根据第八发明,作为转速检测部,具有检测支持于中间壁的输出部件的转速的传感器,因此与检测输出部件的转速的传感器作为与电子控制单元独立的部件而设置的以往的自动变速器相比,能够将包含传感器的电子控制单元容易地向变速器壳体内安装。

此外,根据第九发明的自动变速器的制造方法,与具有盒状的外形的电子控制单元及油压控制机构配设于成为圆筒状的外形的变速机构的外侧的以往的自动变速器相比,能够通过三维层压成型法制造具有沿变速机构的外周面在周向延伸的内周面的油压控制机构,因此能够使组装有该油压控制机构的自动变速器整体在径向紧凑地构成,其结果是提高自动变速器的车辆搭载性。

又,油压控制机构通过三维层压成型法成型,因此无需考虑金属模具的脱模,因而在油压控制机构的油路设计中,不会受到以往那样不得不使所有油路在全长上在表面开口等制约。因此,在油路的形状和布局方面获得较高自由度,同时由此也提高油压控制机构的形状自由度和变速器壳体内的布局的自由度。

附图说明

图1是从轴向驱动源侧观察根据本发明第一实施形态的自动变速器的大致内部构造的图;

图2是示出该自动变速器的内部构造的上半部的图1的a-a线剖视图;

图3是示出该自动变速器的内部构造的下半部的图1的a-a线剖视图;

图4是示出该自动变速器的内部构造的上半部的图1的b-b线剖视图;

图5是示出该自动变速器的内部构造的下半部的图1的b-b线剖视图;

图6是示出该自动变速器的电子控制单元单体的立体图;

图7是示出该电子控制单元单体的俯视图及侧视图;

图8是从轴向驱动源侧观察根据本发明第二实施形态的自动变速器的大致内部构造的图;

图9是示出该自动变速器的内部构造的上半部的图2的a-a线剖视图;

图10是示出该自动变速器的内部构造的下半部的图2的a-a线剖视图;

图11是示出该自动变速器的内部构造的上半部的图2的b-b线剖视图;

图12是示出该自动变速器的内部构造的下半部的图2的b-b线剖视图;

图13是示出该自动变速器的电子控制单元单体的立体图;

图14是示出该电子控制单元单体的俯视图及侧视图。

具体实施方式

以下,参照附图关于根据本发明的自动变速器的构成说明各实施形态。

[第一实施形态]

首先,参照图1~图7说明根据本发明的第一实施形态的自动变速器1。

图1是从轴向驱动源侧观察根据第一实施形态的自动变速器1的大致内部构造的图,图2及图3是示出该自动变速器1的内部构造的图1的a-a线剖视图,图4及图5是示出该自动变速器1的内部构造的图1的b-b线剖视图,图6是示出该自动变速器的电子控制单元单体的立体图,图7是示出该电子控制单元单体的俯视图及侧视图。

[自动变速器的整体构成]

如图1~图5所示,自动变速器1,在变速器壳体2内具备:包含旋转元件的变速机构30,用以控制该变速机构30的阀体100,和用以电子控制该阀体100的电子控制单元200。

自动变速器1例如应用于前置发动机前轮驱动车等发动机横置式汽车,变速机构30配设于在车身宽度方向延伸的轴心上。

另外,虽省略图示,在车身宽度方向中变速机构30的例如右侧,配设有转矩变换器和发动机等驱动源。以下,为便于说明,关于车身宽度方向(变速机构30的轴心方向),将驱动源侧(图2~图5的右侧、相当于“解决问题的手段”一栏“轴向一方侧”)作为前侧,驱动源相反侧(图2~图5的左侧、相当于“轴向另一方侧”)作为后侧进行说明。

如图2~图5所示,变速机构30具备:沿其轴心延伸的输入轴14,和与该输入轴14在同一轴线上配置的作为输出部的副轴驱动齿轮(counterdrivegear)18。

变速机构30的输入轴14,例如,与作为转矩变换器的输出部的涡轮轴一体构成,通过转矩变换器连结于驱动源。藉此,转矩变换器的输出旋转通过输入轴14输入至变速机构30。

如图1所示,自动变速器1还具备设有啮合于前述副轴驱动齿轮18的副轴从动齿轮(counterdrivengear)93的副轴92。副轴92,在比输入轴14靠近车身后方侧上,与输入轴14平行地配置。副轴92上,还设有比副轴从动齿轮93小径的最终驱动齿轮(finaldrivegear)94。

车轴96配设于副轴92的车身后方侧的斜下方,在与该车轴96同一轴线上所配设的差动装置(未图示)的差速器环齿轮(differentialringgear)95啮合有前述最终驱动齿轮94。差速器环齿轮95比最终驱动齿轮94大径,藉此,变速机构30的输出旋转减速传递至差动装置,输入该差动装置的动力以成为与行驶状况相应的旋转差的形式传递至左右的车轴96。

[变速器壳体]

如图2~图5所示,变速器壳体2具有:构成外周壁的箱主体3,安装于箱主体3的前侧的端部的油泵壳体4,和闭塞箱主体3的后侧的开口端部的端盖5。

箱主体3整体上形成为大致筒状,以包围变速机构30的形式配置。箱主体3具备从其内周面向径向内侧突出的壁部3a。壁部3a在轴向上比第一离合器cl1及第二离合器cl2靠后侧配置。壁部3a沿与轴向呈直角的面配置。

在箱主体3的前侧的开口端部,设有与容纳转矩变换器的变换器壳体6接合的接合面3b,该接合面3b上,形成有螺孔3d的座部3c在周向隔开间隔形成多个。而且,藉由螺入螺孔3d的螺栓25,箱主体3和变换器壳体6相互结合。

油泵壳体4以将变换器壳体6的转矩变换器容纳空间和箱主体3的变速机构30的容纳空间隔开的形式配设。油泵壳体4的外周端部,藉由例如螺栓26固定于箱主体3的前侧端部。在油泵壳体4的前侧容纳有机械式油泵。

端盖5,藉由例如螺栓28结合于箱主体3的后侧端部。

[变速机构]

如图2~图5所示,本实施形态的自动变速器1为有级式变速器,变速机构30具备:第一行星齿轮组pg1、第二行星齿轮组pg2、第三行星齿轮组pg3(以下简称为“齿轮组”);第一离合器cl1、第二离合器cl2;和第一制动器br1、第二制动器br2、第三制动器br3。

第一行星齿轮组pg1、第二行星齿轮组pg2、第三行星齿轮组pg3以在输入轴14的轴线上从前侧按该顺序排列的形式配设,构成输入轴14与副轴驱动齿轮18之间的动力传递路径。这些齿轮组pg1、pg2、pg3,配置于比副轴驱动齿轮18靠后侧。

第一离合器cl1、第二离合器cl2,配设于在输入轴14的轴线上比副轴驱动齿轮18靠前侧。第一离合器cl1、第二离合器cl2,以第一离合器cl1位于第二离合器cl2的外侧的形式径向重叠设置。这些第一离合器cl1、第二离合器cl2,作为断接(断开-连接)输入轴14和齿轮组pg1、pg2之间的输入离合器发挥机能。

第一制动器br1、第二制动器br2、第三制动器br3以在输入轴14的轴线上从前侧按该顺序排列的形式配设。这些制动器br1、br2、br3,配设于在轴向比副轴驱动齿轮18靠后侧,且在径向上第一行星齿轮组pg1、第二行星齿轮组pg2、第三行星齿轮组pg3的外侧。

对以上的摩擦接合元件cl1、cl2、br1、br2、br3的油压的给排,藉由通过电子控制单元200控制电磁阀150、滑阀160来进行,上述的摩擦接合元件被选择性地接合,以此形成与档位变换、车辆的运转状态相应的变速级。

以上仅仅说明了变速机构30的构成的一例,变速机构30的具体的构成并不特别限定于此。

[阀体]

本实施形态中的油压控制装置的阀体100容纳于变速器壳体2内。

如图2~图6所示,阀体100具备在变速机构30的轴心方向延伸的筒状部101,该筒状部101以包围变速机构30的第一~第三齿轮组pg1、pg2、pg3及第一~第三制动器br1、br2、br3的形式配置。

本实施形态中,阀体100其筒状部101的前侧端部通过螺栓27固定于变速器壳体2的箱主体3的壁部3a。

阀体100具备从筒状部101的前侧端部的内周面向径向内侧延伸的环状的纵壁部104,在该纵壁部104的内侧嵌合有轴承19。藉此,副轴驱动齿轮18,介由轴承19和使内侧筒部106、纵壁部104及筒状部101一体化而成的阀体100,旋转自如地支持于变速器壳体2。

在阀体100的筒状部101的前侧,多个电磁阀150和滑阀160在周向相邻配置。为此,在筒状部101,装有电磁阀150的电磁阀用的阀插入孔120、装有滑阀160的滑阀用的阀插入孔120(未图示)沿筒状部101的内周在周向隔开间隔配置。又,在筒状部101,设有与这些阀插入孔120连通的油路110。

全部的阀插入孔120的轴心方向平行于变速机构30的轴心方向。又,全部的阀插入孔120向轴向的前侧开口。藉此,在阀插入孔120的内周面精加工时,能够对于全部的阀插入孔120从相同方向进行加工,并且,在向阀插入孔120安装阀150、160时,能够将全部的阀150、160从相同方向插入。另外,阀插入孔120的数量、配置为任意。

在此,电磁阀150具备:容纳线圈的圆筒状的电磁部152,和比电磁部152小径且从电磁部152向轴向延伸的圆筒状的小径部154。电磁阀150,以小径部154插入于阀插入孔120的状态组装于阀体100。

电磁阀150,从阀体100的筒状部101向前侧突出配置。电磁阀150的电磁部152,容纳在比筒状部101靠前侧的箱主体3的内侧空间。在箱主体3内,电磁部152与副轴驱动齿轮18、第一及第二离合器cl1、cl2不干涉地配置于它们的径向外侧。

电磁阀150及滑阀160与阀体100的油路110等一起构成油压控制回路(未图示)。该油压控制回路,通过电磁阀150、滑阀160的动作来控制对如下部分的油的给排:构成变速机构30的离合器cl1、cl2、制动器br1、br2、br3的油压室、离心平衡室,变速机构30中齿轮的啮合部分、轴承部分等这样的变速器壳体2内的被润滑部,及转矩变换器的被润滑部、锁止离合器(lockupclutch)(未图示)的油压室等。

可采用线性电磁阀(linearsolenoidvalve)或开关电磁阀(on-offsolenoidvalve)作为电磁阀150。线性电磁阀,例如作为对供给至摩擦接合元件cl1、cl2、br1、br2、br3的油压室的油压进行直接控制的阀使用,开关电磁阀,例如作为使向滑阀160的控制端口的油压供给路径进行开闭的阀使用。

[阀体的制造方法]

上述的阀体100,采用3d打印机,采用三维层压成型法形成,以使除了阀插入孔120、油路110、111、112、113、114等空洞部外的所有部分一体相连。

三维层压成型法中具体的打印方式并不特别限定,但作为阀体100的材料采用铝等金属的情况下,例如能采用在铺满金属粉末的层的任意位置照射电子束或激光,以此使该照射部分烧结而成型之后,重复进行铺满下一层这样的动作的粉末烧结层压成型法。

又,作为阀体100的材料采用树脂的情况下,也可采用粉末烧结层压成型法,但采用树脂材料的情况下,与金属材料相比能够采用较多打印方式,例如喷墨打印方式等,可采用与需求相应的打印方式。

根据三维层压成型法的阀体100的成型,在阀插入孔120的轴心和筒状部101的轴心沿上下方向配置的姿势下,沿朝向上方的层压方向进行。又,此时的阀体100的朝向为例如使阀插入孔120朝下方开放且活塞缸108朝上方开放的方向。

装有阀150、160的阀插入孔120是借助于通过三维层压成型法在阀体100成型时形成下孔后、在该下孔的内周面实施精加工而形成。但也可以是,通过三维层压成型法成型时在阀体100不形成下孔,仅通过成型后进行的机械加工形成阀插入孔120。

[电子控制单元]

如图1所示,整体上形成为以变速机构30的轴心为中心在周向延伸的圆弧状的电子控制单元200,以包围变速机构30的形式配置。又,如图2所示,电子控制单元200在纵壁部104(阀体100)的轴向前侧的容纳空间s内与电磁阀150相邻配置。

电子控制单元200具备:主体部201,其内周面沿着变速机构30的、本实施形态中位于纵壁部104的轴向前侧的第一离合器cl1的离合器鼓轮(clutchdrum)31的外周面在周向延伸;和连接器202,其从该主体部201的外周面201f的中央向径向外侧延伸。

主体部201具有用以控制自动变速器1的变速动作的,安装有至少具备cpu、rom、ram等电子部件的微型计算机的电子回路基板(未图示),该电子回路基板和与其电性连接的转速传感器203、204一起通过树脂成型而形成为一体。作为树脂成型所用的树脂材料,采用例如环氧树脂等具有绝缘性且对于高温的工作油具有耐油性的材料。

如图6及图7所示,主体部201在其后侧具有向径向内侧延伸的凸缘部201a。在主体部201的内周面201b的中央,用以检测变速机构30的输入转速的第一转速传感器203的检测部向内径侧突出设置,在主体部201的凸缘部201a的内周面201c的中央,用以检测变速机构30的输出转速的第二转速传感器204的检测部向内径侧突出设置。

这些转速传感器203、204,是采用检测伴随被测定物的旋转而变化的磁通量从而检测被测定物的旋转速度、旋转角等的霍尔器件的电磁读取式传感器(electromagneticpickupsensor)。如图5所示,第一转速传感器203,其检测部隔着间隙与离合器鼓轮31的外周面相向配置,以检测第一离合器cl1的离合器鼓轮31的转速。又,第二转速传感器204,隔着间隙与副轴驱动齿轮18的齿面相向配置,以检测副轴驱动齿轮18的转速。

又,如图5所示,主体部201构成为,输入有来自检测流经阀体100的内部的工作油的温度的油温传感器205的信号、来自检测由变速杆(未图示)产生的换挡位置(档位,range)的换挡位置传感器(未图示)的信号等。

此外,在主体部201的后侧端面201d,在周向隔开间隔形成有多个使电磁阀150的电磁部152在轴向从后侧可插入的插入孔201e。该插入孔201e构成为电磁阀150的电磁部152插入时与内藏的电子回路基板电性连接。藉此,能够通过多个电磁阀150进行变速控制。

如图5所示,为了电力的供给、信号的发送接收,电子控制单元200以如下形式配置:用以与自动变速器1的外部机器电性连接的连接器202向径向外侧贯通变速器壳体2。

具有上述的构成的电子控制单元200,组装于变速器壳体2时,预先使电磁阀150插入主体部201的插入孔201e而连接。在该状态下倾斜电子控制单元200并将连接器202嵌合于变速器壳体2的插通孔,同时将各电磁阀150的小径部154插入电磁阀150的阀插入孔120,将主体部201组装于变速器壳体。

[第二实施形态]

参照图8至图14对根据第二实施形态的自动变速器进行说明。另外,第二实施形态中,与第一实施形态相同的构成元件标以相同的符号并省略其说明。

如图8所示,第二实施形态中电子控制单元300也与第一实施形态同样,作为整体形成为以变速机构30的轴心为中心在周向延伸的圆弧状,主体部301沿着第一离合器cl1的离合器鼓轮31的外周面在周向延伸,在纵壁部104(阀体100)的轴向前侧的容纳空间s内与电磁阀150相邻配置,但主体部301的形状、电磁阀150相对该主体部301的连接方向,连接器302相对于主体部301的朝向与第一实施形态不同。

如图13、图14所示,圆弧状的主体部301具有将大致均匀厚度的平板弯曲为圆弧状的形状,相较于第一实施形态,轴向的高度及径向的厚度被抑制。

该主体部301构成为可使多个电磁阀150朝向轴向相互平行地在其外周面301b上在周向隔开间隔配置。构成为相对于主体部301从轴向前侧使电磁阀150的电磁部152抵接,以此将电磁阀150和内藏的电子回路基板电性连接。藉此,能够通过多个电磁阀150进行变速控制。

在主体部301的外周面301b的中央的轴向后侧,一体地设有用以与自动变速器1的外部机器电性连接的连接器302。如图12所示,在变速器壳体2内组装有电子控制单元300时,连接器302以朝向轴向后侧贯通变速器壳体2的形式配置。

主体部301,与第一实施形态同样,电子回路基板与转速传感器303、304一起通过树脂成型而形成为一体。电子控制单元300,用以检测变速机构30的输入转速的第一转速传感器303的检测部从主体部301的内周面301a的中央向径向内侧突出并一体地设置。又,电子控制单元300具备从主体部301的轴向后侧端部的中央向径向内侧延伸的传感器支持部305,在该传感器支持部305的梢端,用以检测变速机构30的输出转速的第二转速传感器304一体地设置。

具有上述构成的电子控制单元300,在安装于变速器壳体2时,首先,将电子控制单元300从轴向前侧轴向插入并组装于变速器壳体2内,其后,将多个电磁阀150分别插入向电子控制单元300的外周面侧开口的阀体100的阀插入孔120,也与电子控制单元300电性连接。

根据上述的电子控制单元300,主体部301的轴向的高度及径向的厚度受到抑制,因此能更有效地谋求自动变速器1小型化。又,能够将电子控制单元300不倾斜地仅轴向插入变速器壳体2内而安装,其后,能够相对于电子控制单元300从轴向前侧连接电磁阀150,因此与将预先插入有电磁阀150的电子控制单元200一边相对于变速器壳体2倾斜一边组装的第一实施形态的电子控制单元200相比,自动变速器1的组装容易。

如以上,根据本实施形态,电子控制单元200、300以其内周面沿变速机构30的外周面在周向延伸的形式形成,因此与具有盒状的外形的电子控制单元200、300配设于成为圆筒状的外形的变速机构30的外侧的以往的自动变速器1相比,能够将自动变速器1整体在径向紧凑地构成,藉此,提高自动变速器1的车辆搭载性。

又,根据本实施形态,阀体100以其内周面沿变速机构30的外周面在周向延伸的形式形成,因此与具有盒状的外形的阀体100与电子控制单元200、300配设于成为圆筒状的外形的变速机构30的外侧的以往的自动变速器1相比,能够将自动变速器1整体在径向紧凑地构成,藉此,进一步提高自动变速器1的车辆搭载性。

又,根据本实施形态,在阀体100的轴向一方端部设有在周向排列的多个电磁阀15,电子控制单元200、300与电磁阀150相邻配置,因此能够不通过缆线而容易进行多个电磁阀150对电子控制单元200、300的连接。

又,根据本实施形态,电子控制单元200、300上一体地形成有检测旋转元件的转速的转速传感器203、204、303、304,因此与转速传感器203、204、303、304作为独立于电子控制单元200、300的部件设置的以往的自动变速器1相比,能够将包含转速传感器203、204、303、304的电子控制单元200、300容易地向变速器壳体2内安装。

又,根据本实施形态,电子控制单元200、300,配设于变速器壳体2内的纵壁部104的轴向前侧的容纳空间s,因此能够有效利用变速器壳体2内的空间容纳电子控制单元200、300。

又,根据本实施形态,由于具有检测配设于纵壁部104的轴向前侧的容纳空间s内的第一离合器cl1的离合器鼓轮31的转速的第一转速传感器203、303,因此与转速传感器作为独立于电子控制单元的部件设置的以往的自动变速器相比,能够将包含第一转速传感器203、303的电子控制单元200、300容易地向变速器壳体2内安装。

又,根据本实施形态,作为转速传感器203、204、303、304,具有检测支持于纵壁部104的副轴驱动齿轮18的转速的第二转速传感器204、304,与转速传感器作为独立于电子控制单元的部件设置的以往的自动变速器1相比,能够将包含第二转速传感器204、304的电子控制单元200、300容易地向变速器壳体2内安装。

此外,根据本实施形态的自动变速器1的制造方法,与具有盒状的外形的电子控制单元及阀体配设于成为圆筒状的外形的变速机构的外侧的以往的自动变速器相比,能够通过三维层压成型法制造具有沿变速机构30的外周面在周向延伸的内周面的阀体100,因此能够使组装有该阀体100的自动变速器1整体在径向紧凑地构成,其结果是提高自动变速器1的车辆搭载性。

又,阀体100通过三维层压成型法成型,因此无需考虑金属模具的脱模,因而在阀体100的油路设计中,不会受到以往那样不得不使所有油路在全长上在表面开口等制约。因此,在油路的形状和布局方面获得较高自由度,并且由此也提高阀体100的形状自由度和变速器壳体2内的布局的自由度。

以上,例举上述实施形态说明本发明,但本发明并不限于上述的实施形态。

例如,以上的实施形态中,以电子控制单元在变速机构的周向的一部分的范围内连续的形式形成为例进行了说明,但本发明中也可以是,电子控制单元以在整个周面环绕的形式形成为完整的筒状。

又,以上的实施形态中,对于电子控制单元200、300的内周面以沿第一离合器cl1的外周面在周向延伸的形式形成的自动变速器1进行了说明,但并不限定于此,例如也可以是,以沿构成变速机构30的其他的机构、例如第一行星齿轮组pg1、第二行星齿轮组pg2、第三行星齿轮组pg3、第二离合器cl2、第一制动器br1、第二制动器br2、第三制动器br3等的外周面在周向延伸的形式形成电子控制单元的内周面。

又,以上的实施形态中,以阀体100与变速器壳体2独立地形成的自动变速器1为例进行了说明,但本发明中也可以是,阀体与变速器壳体一体地形成。由此能够削减自动变速器的部件数及装配时间。

此外,以上的实施形态中,以行星齿轮型的自动变速器1为例进行了说明,但并不限于此,例如,行星齿轮型以外的自动变速器(cvt、amt等)也能应用本发明。

工业应用性

如以上,根据本发明,由于可谋求具有电子控制单元的自动变速器小型化,因而具有较佳地利用于该种自动变速器及搭载有该种自动变速器的车辆的制造产业领域中的可能性。

符号说明

1   自动变速器

2   变速器壳体

18   副轴驱动齿轮(输出部件)

30   变速机构

31   离合器鼓轮(输入侧旋转元件)

100   阀体(油压控制机构)

104   纵壁部(中间壁)

150   电磁阀(油压电磁阀)

200   电子控制单元

203   第一转速传感器(转速检测部)

204   第二转速传感器(转速检测部)

300   电子控制单元

303   第一转速传感器(转速检测部)

304   第二转速传感器(转速检测部)

cl1   第一离合器(输入离合器)

s    容纳空间。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1