薄膜式结构磁流体-声表面波集成磁传感器的制作方法

文档序号:6150831阅读:172来源:国知局
专利名称:薄膜式结构磁流体-声表面波集成磁传感器的制作方法
技术领域
本发明涉及磁传感器的生产及应用领域,尤其涉及薄膜式结构磁流体-声 表面波集成磁传感器。
背景技术
目前,随着信息产业、工业自动化、电力电子技术、交通运输、医疗仪器、 办公自动化、家用电器等飞速发展和电子计算机应用的普及,需要大量传感器 将被测非电参量转换成可与计算机兼容的电讯号,这就为磁传感器的快速发展 提供了机会,形成了相当可观的磁传感器产业。
传统的磁传感器多为基于磁阻效应的磁敏电阻或巨磁电阻加工制成测量 磁场的磁传感器。包括最早的基于霍尔效应的霍尔效应器件,基于载流子畴磁 场调制的载流子畴器件,基于磁敏电阻的各向异性的金属膜磁敏器件,基于巨 磁阻抗或巨磁感应效应的巨磁阻抗传感器,基于磁致伸縮效应的磁致伸縮传感
器,基于法拉第电磁感应效应的磁电感应传感器,基于材料的B-H饱和特性的 磁通门磁强计,基于核磁共振的核磁共振磁强计,基于法拉第效应或磁致伸縮 的磁光传感器等。
声磁传感器基于材料的磁致伸縮效应,当对其施加交变磁场激励信号,并 且交变激励信号的频率与材料的固有频率相等时,材料将产生磁力共振,接收 装置检测到材料由于共振而产生的声波信号,并经过处理得到声磁传感器的共 振频率及响应幅值,从而反映磁场变化。用声表面波举件进行磁场测量的方法, 目前是以超磁致伸縮材料为间接媒质,将超磁致伸縮材料受外磁场变化产生的 应力转化为谐振器的频率、幅值变化,进而通过测量声表面波谐振器频率幅值 的变化来测量外磁场变化。
4上述各种磁传感器测量磁场强度范围受其各自原理限制,即使是超磁致伸 縮材料制成的磁传感器反应灵敏度也不够高,实时性不够好,且上述磁传感器 均不易实现无源无线的信号激励和收发控制。发明内容本发明的目的在于通过磁流体膜在外加磁场变化时有明显的粘度变化,即 磁流体对声表面波产生的粘性负载效应明显变化而改变声表面波延迟线的延迟时间,即外磁场变化改变声表面波传播的波速;使外磁场强度变化与SH-SAW 器件延迟时间变化建立起对应关系,可以精确,实时地测量磁场强度变化,即 形成磁传感器。为了达到上述目的,本发明提出薄膜式结构磁流体-声表面波集成磁传感 器,本发明是通过以下技术方案实现的本发明所涉及的薄膜式结构磁流体-声表面波集成磁传感器,包括-所述装置包括压电基片、两个叉指换能器IDT、磁流体薄膜及两组天线, 所哮叉指换能器位于压电基片的两端,所述磁流体填注于压电基片表面中间的 浅槽中形成磁流体薄膜,并将具有磁流体薄膜的浅槽进行封装,所述天线分别 连接于叉指换能器IDT的两条汇流条上。所述传感器的基片材料为石英晶体,采用36°Y切割X方向传播的加工方 式,使得基片表面激发水平剪切声表面波SH-SAW。所述传感器在压电基片表面将叉指换能器IDT加工成指条宽度为四分之一 水平剪切声表面波波长的等周期和等指长的叉指电极;所述传感器的叉指换能 器材料为金属铜。所述磁流体薄膜位于传感器两叉指换能器之间的浅槽中,浅槽厚度小于水 平剪切声表面波波长,使得传感器通过磁流体薄膜粘度变化导致的声波波速变 化对外磁场强度变化进行测量。所述传感器是利用磁流体的粘性负载效应对声表面波波速产生影响,从而 影响延迟线延迟时间实现被测磁场变化的测量,该磁-声耦合发生在微米数量 级,使得传感器测量精度较高,且所述的磁传感器采用的磁流体膜对外磁场变 化响应无延时,以实现实时监测。
所述传感器的两组天线分别连接于IDT的两条汇流条上接收和发送射频信 号,以实现水平剪切声表面波的激发及波速变化后声波转换为电磁波的发射。 所述传感器还能实现无源无线的磁场强度变化检测。
本发明提供的技术方案的有益效果是
1、 .温度特性好(温度系数为零),传播损耗小(声表面波有效的机电耦合 系数大),加工容易且成本低廉;
2、 有效测量静磁场和交变、高频磁场强度变化,零迟滞,精度高;
3、 该传感器可实现无源无线的磁场强度测量,尤其对于不宜采用电源或 需遥测的传感系统较之传统的有源有线传感器更为适用;
4、 器件小、稳定,适合集成到微型检测系统中。


图1为薄膜式结构磁流体-声表面波集成磁传感器的二维立体结构示意图; 图2为薄膜式结构磁流体-声表面波集成磁传感器的平面结构俯视图; 图3为薄膜式结构磁流体-声表面波集成磁传感器的传感原理图。
具体实施例方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明
实施方式作进一步地详细描述
本实施例提供了薄膜式结构磁流体-声表面波集成磁传感器。
参见图1与图2分别为薄膜式结构磁流体-声表面波集成磁传感器的二维
立体结构及平面结构俯视图,该传感器包括压电基片2、两个叉指换能器(IDT)4、磁流体Ji膜3及两组天线l,其中,两个叉指换能器4分别位于压电基片2 两端,磁流体薄膜3位于压电基片2中间的浅槽中并进行封装,两组天线l分 别连接于两个IDT的两条汇流条上。该传感器可实现无源无线高精度实时的磁 场强度测量,通过天线接受射频信号在输入IDT上激发水平剪切声表面波,由 于磁流体对外磁场变化的零迟滞响应,瞬时改变声表面波延迟线的延迟时间, 即磁流体的粘度变化改变声波波速,再将波速变化后的声波经IDT转换为电磁 波由天线发射出去,根据延迟时间与磁场强度变化的对应关系,即可准确测量 出磁场变化。
结合原理图3进一步描述压电基片2,材料为石英晶体。石英晶体制作的 声表面波器件,除具有频带宽度窄、稳定度高的特点,还具有零温度系数切割, 传播损耗小的特点,并且加工工艺成熟。为避免声纵波在与基片垂直方向的能 量衰减,使基片表面激发水平剪切声表面波SH-SAW,采用36° Y切割X方 向传播的加工方式。由于接收端压电基片的逆压电效应,在输入端IDT上的交 变电压使得基片表面产生交替的形变,该形变以弹性机械振动的形式,即水平 剪切声表面波的形式传播,再经发送端压电基片的压电效应将声波的机械振动 转变为基片的周期性形变,从而在输出端IDT上产生交变输出电压。
结合原理图3进一步描述叉指换能器4,材料为金属铜,加工于压电基片 两端,在基片表面形成指条宽度为四分之一水平剪切声表面波波长的等周期和 等指长叉指电极。器件一边的IDT接受天线输入的电信号激发出声信号,器件 另一边的IDT将声信号变换为电信号从天线输出,其中的延迟时间长短反映了 磁流体粘度变化对声波的影响,即外磁场变化对声波波速的影响。
结合原理图3进一步描述磁流体薄膜3,位于传感器两叉指换能器之间的 浅槽中,.浅槽厚度小于水平剪切声表面波波长,填注形成磁流体薄膜后进行封 装。磁流体材料是由纳米强磁性粒子、基液以及表面活性剂三者混合而成的一 种稳定胶状溶液。该流体在静态时无磁吸引力,当外加磁场作用时,才表现出有磁性。磁流体薄膜在外磁场强度变化时粘度发生变化,对在基片表面传播的 水平剪切声表面波产生的粘性负载效应发生变化,从而影响声波波速产生时间 延迟。结合原理图3进一步描述天线1,两组天线分别连接于叉指换能器IDT的两 条汇流条上。其中接收天线通过接收到特定频率的射频信号(射频激励信号频 率与石英基片的固有频率和IDT的中心频率严格相同)在输入IDT上激发的水平 剪切声表面波,经磁流体薄膜延迟后,声波经输出IDT转换为电磁波信号通过 发送天线发送出去。虽然通过实施例描绘了本发明,本领域普通技术人员知道,本发明有许多 变形和变化而不脱离本发明的精神,本发明的申请文件的权利要求包括这些变 形和变化。
权利要求
1、薄膜式结构磁流体-声表面波集成磁传感器,其特征在于,所述装置包括压电基片、两个叉指换能器IDT、磁流体薄膜及两组天线,所述叉指换能器位于压电基片的两端,所述磁流体填注于压电基片表面中间的浅槽中形成磁流体薄膜,并将具有磁流体薄膜的浅槽进行封装,所述天线分别连接于叉指换能器IDT的两条汇流条上。
2、 根据权利要求1所述的薄膜式结构磁流体-声表面波集成磁传感器,其 特征在于,所述传感器的基片材料为石英晶体,采用36。Y切割X方向传播的 加工方式,使得基片表面激发水平剪切声表面波SH-SAW。
3、 根据权利要求1所述的薄膜式结构磁流体-声表面波集成磁传感器,其 特征在于,所述传感器在压电基片表面将叉指换能器IDT加工成指条宽度为四 分之一水平剪切声表面波波长的等周期和等指长的叉指电极;所述传感器的叉 指换能器材料为金属铜。
4、 根据权利要求1所述的薄膜式结构磁流体-声表面波集成磁传感器,其 特征在于,所述磁流体薄膜位于传感器两叉指换能器之间的浅槽中,浅槽厚度 小于水平剪切声表面波波长,使得传感器通过磁流体薄膜粘度变化导致的声波 波速变化对外磁场强度变化进行测量。
5、 根据权利要求l或4所述的薄膜式结构磁流体-声表面波集成磁传感器, 其特征在于,所述传感器是利用磁流体的粘性负载效应对声表面波波速产生影 响,从而影响延迟线延迟时间实现被测磁场变化的测量,该磁-声耦合发生在 微米数量级,使得传感器测量精度较高,且所述的磁传感器采用的磁流体膜对 外磁场变化响应无延时,以实现实时监测。
6、 根据权利要求1所述的薄膜式结构磁流体-声表面波集成磁传感器,其 特征在于,所述传感器的两组天线分别连接于IDT的两条汇流条上接收和发送射频信号,以实现水平剪切声表面波的激发及波速变化后声波转换为电磁波的 发射。
7、根据权利要求l所述的薄膜式结构磁流体-声表面波集成磁传感器,其 特征在于,所述传感器还能实现无源无线的磁场强度变化检测。
全文摘要
本发明公开了薄膜式结构磁流体-声表面波集成磁传感器,包括压电基片、两个叉指换能器IDT、一层磁流体薄膜及两组收发电磁波信号的天线,所述两个叉指能换能器IDT分别位于基片的两端;所述磁流体薄膜填注在传感器表面两个叉指换能器之间的浅槽中并封装;两组收发外界射频信号的天线,分别连接在两个IDT的两条汇流条上。该传感器可实现无源无线高精度实时的磁场强度测量,通过天线接收射频信号在IDT上激发水平剪切声表面波,由于磁流体对外磁场变化的零迟滞响应,瞬时改变声表面波延迟线的延迟时间,即磁流体的粘度变化改变声波波速,再将波速变化后的声表面波经IDT转换为电磁波由天线发射出去,根据延迟时间与磁场强度变化的对应关系,即可准确测量出磁场变化。
文档编号G01R33/02GK101504446SQ20091007927
公开日2009年8月12日 申请日期2009年3月6日 优先权日2009年3月6日
发明者宏 刘, 刘桂雄, 张沛强 申请人:华南理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1