Pd掺杂SnO<sub>2</sub>氧化物半导体CO传感器制备与应用

文档序号:10685221阅读:484来源:国知局
Pd掺杂SnO<sub>2</sub>氧化物半导体CO传感器制备与应用
【专利摘要】一种Pd掺杂SnO2氧化物半导体CO传感器制备方法及其在检测矿井和大气环境中一氧化碳浓度方面的应用,属于气体传感器技术领域。传感器由市售的外表面自带有2个环形金电极的Al2O3绝缘陶瓷管、涂覆在环形金电极和Al2O3绝缘陶瓷管外表面的Pd掺杂SnO2氧化物半导体敏感材料、穿过Al2O3绝缘陶瓷管内部的镍镉合金加热线圈组成。该传感器对较低浓度(检测下限10ppm)的CO具有较好的线性度,这些特点使Pd掺杂SnO2氧化物半导体CO传感器能够很好的应用于大气环境和矿井中CO的检测,进一步可以通过检测一氧化碳浓度判断矿井安全与环境安全。
【专利说明】
Pd掺杂Sn02氧化物半导体CO传感器制备与应用
技术领域
[0001]本发明属于气体传感器技术领域,具体涉及一种Pd掺杂Sn02氧化物半导体C0传感 器制备方法及其在检测矿井和大气环境中一氧化碳浓度方面的应用。
【背景技术】
[0002] -氧化碳(C0)是一种无色、无味和无臭的气体,是大气中含碳量第三的成分,仅次 于C〇2和CH4,是全球碳循环研究中一种重要的气体。在排放源分布不均的情形下,导致全球 大气C0浓度呈明显的时空分布差异,也常被作为温室气体源汇研究中重要的示踪物。1949 年,通过对太阳光谱的研究发现了大气中的C0,利用分光计方法实现了对大气中C0浓度的 首次测量;此后,相关研究机构陆续开展了很多C0浓度观测研究。C0虽然不是温室气体,但 是它能通过与0H自由基发生光化学反应影响大气的氧化能力,从而影响大气C〇2和CH4的浓 度。因此,C0是一种间接的温室气体。间接影响着大气在大气中的浓度的分布和变化,进而 对全球气候产生重大影响。C0对大气中微量气体成分变化影响较大,只有更好地了解了C0 的源汇分布特征,才能更准确地估算其它相关微量气体的时空变化,因此大气C0浓度的观 测研究工作非常必要。
[0003] 20世纪60年代后期,各国科学家开始对流层大气⑶的源汇研究。Robins等(1968) 和Seiler等(1974)第一次做了全球C0分布的分析。研究证实C0浓度在两个半球都随季节变 化。大气C0浓度资料再分析及源汇研究具有非常重要的作用。大气中C0的源主要包括化石 燃料燃烧和生物质燃烧以及CH 4和匪HC的氧化导致全球大气C0浓度呈明显的时空分布差 异。目前测量本底大气C0浓度的方法也有很多,大气C0主要有采样和在线两种观测方式。
[0004] 目前,国内外对低浓度一氧化碳气敏传感器的研究工作都处于起步程度,针对低 浓度一氧化碳气体的专门传感器还没有形成有效的产业化。限制此类传感器实用化的一个 主要因素就是传感器的检测下限较高和灵敏度较低。为了使传感器能够具有低检测下限和 高灵敏度,可以使用高性能的敏感材料来实现。

【发明内容】

[0005] 本发明的目的是提供一种利用一步水热方法制备的Pd掺杂Sn〇2氧化物半导体C0 传感器制备方法及其在检测矿井和大气环境中一氧化碳浓度方面的应用。本发明通过对半 导体材料进行掺杂,可以降低传感器的检测下限,增加传感器的灵敏度,促进此种传感器在 矿井和大气环境中一氧化碳浓度检测的实用化。
[0006] 本发明所得到的传感器除了具有高灵敏度、低检测下限外,并具有良好的重复性。 该传感器的检测下限为lOppm,因此可用于矿井和大气环境中一氧化碳含量的检测,进而判 断矿井和大气环境中的安全。
[0007] 如图1所示,本发明所述Pd掺杂Sn02氧化物半导体C0传感器,由市售的外表面自带 有2个环形金电极(5)的A1 203绝缘陶瓷管(1)、涂覆在环形金电极(5)和A1203绝缘陶瓷管(1) 外表面的半导体敏感材料(2)、穿过A1 203绝缘陶瓷管(1)镍镉合金加热线圈(3)组成;每个环 形金电极(5)上同时带有2条铂线(4),通过测量铂线间的电阻可以获得两个金环形电极间 的电阻,根据灵敏度S的定义公式即S = Ra/Rg,经过计算可得到传感器的灵敏度。其特征在 于:利用Pd掺杂Sn0 2氧化物半导体作为敏感材料,一方面掺入Pd改变了 Sn02纳米空心球的催 化能力,会提供更多的反应活性位点,这会大幅提高气体与敏感材料的反应效率,进而提高 传感器的灵敏度。另一方面Pd和Sn0 2颗粒间会形成大量的异质结,这些异质结的出现会提 供更多的反应活性位点,这两方面都会大幅提高气体与敏感材料的反应效率,进而提高传 感器的灵敏度。此外,管式结构的传感器和氧化物半导体的制作工艺简单,利于工业上批量 生产。
[0008]本发明所述的Pd掺杂Sn02氧化物半导体C0传感器的具体制作过程为:
[0009] (1)首先将42mg 1^11〇3.31120、18〇11^尿素、51111乙醇、51111水搅拌10分钟形成匀质溶 液,一定量PdCh加入到上述溶液使得元素Pd和元素Sn的质量比为3.Owt% ;
[0010] ⑵将⑴混合溶液放入45ml聚四氟乙烯釜中密封,放入150 °C烘箱中24小时,结束 后自然降温到室温,将样品收集用乙醇和去离子水离心后放到培养皿中80°C保持12个小 时,收集样品;
[0011] (3)将上述纳米气体敏感材料在500 °C下煅烧2小时,得到气体敏感材料,将该敏感 材料与去离子水混合成糊状,然后均匀涂覆在市售的外表面自带有2个环形金电极(5)的绝 缘Al 2〇3陶瓷管(1)表面,形成10~40微米的敏感材料薄膜(2),陶瓷管的长为4~4.5mm,外径 为1.2~1.5mm,内径为0.8~1.0_,并使敏感材料完全覆盖环形金电极(5);
[0012] ⑷在红外灯下烘烤15分钟左右,待敏感材料干燥后,把绝缘Al2〇3陶瓷管(1)在400 °C下煅烧2小时;然后将电阻值为30~40 Q的镍镉加热线圈(3)穿过绝缘Al2〇3陶瓷管(1)内 部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到本发 明所述氧化物半导体C0传感器。
[0013] Pd掺杂Sn〇2氧化物半导体一氧化碳传感器的敏感机理是:当氧气分子与传感器接 触时吸附在敏感材料表面,氧气分子从Sn〇2导带中夺取电子,形成(T,如式(1)_(3)。
[0017]当温度低于150°C时发生(1)、(2)反应,吸附的氧分子以(V形式存在;当温度在 150-400°C范围,发生(1)、(2)和(3)反应,Pd掺杂Sn02氧化物半导体一氧化碳传感器的工作 温度在100°C,所以吸附的氧分子以0厂形式存在。当氧化物半导体材料接触空气中的氧气时 能带上弯,并且在表面形成耗尽层,传感器的电阻升高。当传感器与一氧化碳接触时,一氧 化碳会与半导体材料上的(V发生如下反应(4)
[0018] 2C0+02--2C〇2+e- (4)
[0019] 之前被氧分子夺走的电子会释放出来,重新回到Sn〇2的导带中,半导体材料中的 能带上弯程度减小,且之前形成耗尽层消失,传感器的电阻降低。RaS传感器在空气中接触 氧气后的电阻,Rg为传感器接触一氧化碳后的电阻,测量传感器在空气和一氧化碳中的电 阻并通过传感器的灵敏度S定义公式:S=R a/Rg,计算可得到传感器的灵敏度。
[0020] 本发明的优点:
[0021] (1)传感器利用常见的半导体材料Sn〇2,它具有良好的电导率和化学稳定性;
[0022] (2)利用掺杂了 Pd的Sn02可以使传感器的灵敏度显著提高,促进其实用化;
[0023] (3)Pd掺杂Sn02空心球是利用水热方法且一步合成,方法简单,造价低廉利于批量 化的工业生产。
【附图说明】
[0024]图1 :Pd掺杂Sn02氧化物半导体C0传感器的结构示意图;
[0025]图2:对比例、实施例1、实施例2和实施例3中传感器在不同工作温度对lOOppm-氧 化碳的灵敏度对比图。
[0026] 图3:对比例、实施例1、实施例2和实施例3的浓度-灵敏度的标准工作曲线。
[0027] 如图1所示,各部件名称为:A1203绝缘陶瓷管(1),半导体敏感材料(2),镍镉合金线 圈(3),铂线(4)、环形金电极(5);
[0028]图2为对比例和实施例1、2、3所制作的器件对lOOppm-氧化碳的灵敏度随工作温 度的变化曲线。从图中可以看出,对比例的最佳温度在250 °C以上,灵敏度为2.5。实施例2最 佳工作温度为200 °C,此时灵敏度为14.7和;实施例1和实施例3的最佳工作温度为200 °C,此 时的灵敏度分别为4.9和5.4。在最佳工作温度下,实施例2的灵敏度最高,且实施例2的最佳 工作温度比对比例的最佳工作温度低很多,更低的最佳工作温度有利于降低功耗。由此可 见,通过掺杂Pd可以改善敏感材料与一氧化碳的反应效率,进而得到了一个具有高灵敏度 的Pd掺杂Sn〇2氧化物半导体一氧化碳传感器。
[0029] 图3为对比例和实施例1、实施例2、实施例3在最佳工作温度250 °C、200 °C、200°C、 200 °C的一氧化碳浓度-灵敏度的标准工作曲线。灵敏度测试方法:首先将传感器放入气体 箱,通过与传感器连接的电流表测得此时铂线两端的电阻,得到传感器在空气中的电阻值 即R a;然后使用微量进样器向气体箱中注入10~200ppm的一氧化碳,通过测量得到传感器 在不同浓度一氧化碳中的电阻值即R g,根据灵敏度S的定义公式S = Ra/Rg,通过计算得到不 同浓度下传感器的灵敏度,最终得到一氧化碳浓度-灵敏度的标准工作曲线。从图中可以看 出,实施例2传感器的检测下限为lOppm,此时的灵敏度为3.0; -氧化碳浓度为200ppm时,此 时的灵敏度为21.1。实际测量时可通过上述办法测得Ra、Rg,得到灵敏度值后与一氧化碳浓 度-灵敏度的标准工作曲线进行对比,从而得到人体呼吸中的一氧化碳含量。另外,如图所 示(10ppm-200ppm),传感器灵敏度的线性较好,这些特点使Pd掺杂Sn0 2氧化物半导体一氧 化碳传感器能够很好的能够应用于矿井和大气环境中一氧化碳检测。
【具体实施方式】
[0030] 对比例1:
[0031 ]以Sn〇2纳米空心球作为敏感材料制作旁热式一氧化碳传感器,其具体的制作过 程:
[0032] (1)首先将42mg 1^11〇3.31120、18〇11^尿素、51111乙醇、51111水搅拌10分钟形成匀质溶 液;
[0033] (2)将(1)混合溶液放入45ml聚四氟乙烯釜中密封,放入150 °C烘箱中24小时,结束 后自然降温到室温,将样品收集用乙醇和去离子水离心后放到培养皿中80°C保持12个小 时,收集样品;
[0034] (3)将上述纳米气体敏感材料在500 °C下煅烧2小时,得到气体敏感材料,将该敏感 材料与去离子水混合成糊状,然后均匀涂覆在市售的外表面自带有2个环形金电极(5)的绝 缘Al2〇3陶瓷管(1)表面,形成10~40微米的敏感材料薄膜(2),陶瓷管的长为4~4.5mm,外径 为1.2~1.5mm,内径为0.8~1.0_,并使敏感材料完全覆盖环形金电极(5);
[0035] (4)在红外灯下烘烤15分钟左右,待敏感材料干燥后,把绝缘Al2〇3陶瓷管(1)在400 °C下煅烧2小时;然后将电阻值为30~40 Q的镍镉加热线圈(3)穿过绝缘Al2〇3陶瓷管(1)内 部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到本发 明所述氧化物半导体C0传感器。
[0036] 实施例1:
[0037]以反应物中元素Pd/Sn质量比为0.015:1的Pd掺杂Sn02氧化物半导体作为敏感材 料制作旁热式一氧化碳传感器,其具体的制作过程:
[0038] (1)首先将42mg 1^11〇3.31120、18〇11^尿素、51111乙醇、51111水搅拌10分钟形成匀质溶 液,一定量PdCh加入到上述溶液使得元素Pd和元素Sn的质量比为1.5wt% ;
[0039] (2)将(1)混合溶液放入45ml聚四氟乙烯釜中密封,放入150 °C烘箱中24小时,结束 后自然降温到室温,将样品收集用乙醇和去离子水离心后放到培养皿中80°C保持12个小 时,收集样品;
[0040] (3)将上述纳米气体敏感材料在500 °C下煅烧2小时,得到气体敏感材料,将该敏感 材料与去离子水混合成糊状,然后均匀涂覆在市售的外表面自带有2个环形金电极(5)的绝 缘Al 2〇3陶瓷管(1)表面,形成10~40微米的敏感材料薄膜(2),陶瓷管的长为4~4.5mm,外径 为1.2~1.5mm,内径为0.8~1.0_,并使敏感材料完全覆盖环形金电极(5);
[0041] (4)在红外灯下烘烤15分钟左右,待敏感材料干燥后,把绝缘Al2〇3陶瓷管(1)在400 °C下煅烧2小时;然后将电阻值为30~40 Q的镍镉加热线圈(3)穿过绝缘Al2〇3陶瓷管(1)内 部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到本发 明所述氧化物半导体C0传感器。
[0042] 实施例2:
[0043]以反应物中元素Pd/Sn质量比为0.030:1的Pd掺杂Sn02氧化物半导体作为敏感材 料制作旁热式一氧化碳传感器,其具体的制作过程:
[0044] (1)首先将42mg 1^11〇3.31120、18〇11^尿素、51111乙醇、51111水搅拌10分钟形成匀质溶 液,一定量PdCh加入到上述溶液使得元素Pd和元素Sn的质量比为3.Owt% ;
[0045] (2)将(1)混合溶液放入45ml聚四氟乙烯釜中密封,放入150 °C烘箱中24小时,结束 后自然降温到室温,将样品收集用乙醇和去离子水离心后放到培养皿中80°C保持12个小 时,收集样品;
[0046] (3)将上述纳米气体敏感材料在500 °C下煅烧2小时,得到气体敏感材料,将该敏感 材料与去离子水混合成糊状,然后均匀涂覆在市售的外表面自带有2个环形金电极(5)的绝 缘Al2〇3陶瓷管(1)表面,形成10~40微米的敏感材料薄膜(2),陶瓷管的长为4~4.5mm,外径 为1.2~1.5mm,内径为0.8~1.0_,并使敏感材料完全覆盖环形金电极(5);
[0047] (4)在红外灯下烘烤15分钟左右,待敏感材料干燥后,把绝缘A1203陶瓷管(1)在400 °C下煅烧2小时;然后将电阻值为30~40 Q的镍镉加热线圈(3)穿过绝缘Al2〇3陶瓷管(1)内 部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到本发 明所述氧化物半导体CO传感器。
[0048] 实施例3:
[0049]以反应物中元素Pd/Sn质量比为0.045:1的Pd掺杂Sn02氧化物半导体作为敏感材 料制作旁热式一氧化碳传感器,其具体的制作过程:
[0050] (1)首先将42mg 1^11〇3.31120、18〇11^尿素、51111乙醇、51111水搅拌10分钟形成匀质溶 液,一定量PdCh加入到上述溶液使得元素Pd和元素Sn的质量比为4.5wt% ;
[00511 (2)将(1)混合溶液放入45ml聚四氟乙烯釜中密封,放入150 °C烘箱中24小时,结束 后自然降温到室温,将样品收集用乙醇和去离子水离心后放到培养皿中80°C保持12个小 时,收集样品;
[0052] (3)将上述纳米气体敏感材料在500 °C下煅烧2小时,得到气体敏感材料,将该敏感 材料与去离子水混合成糊状,然后均匀涂覆在市售的外表面自带有2个环形金电极(5)的绝 缘Al2〇3陶瓷管(1)表面,形成10~40微米的敏感材料薄膜(2),陶瓷管的长为4~4.5mm,外径 为1.2~1.5mm,内径为0.8~1.0_,并使敏感材料完全覆盖环形金电极(5);
[0053] (4)在红外灯下烘烤15分钟左右,待敏感材料干燥后,把绝缘Al2〇3陶瓷管(1)在400 °C下煅烧2小时;然后将电阻值为30~40 Q的镍镉加热线圈(3)穿过绝缘Al2〇3陶瓷管(1)内 部作为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到本发 明所述氧化物半导体C0传感器。
【主权项】
1. 一种Pd掺杂Sn〇2氧化物半导体CO传感器,由外表面带有2个环形金电极(5)的AI2O3绝 缘陶瓷管(1)、涂覆在环形金电极(5)和Al 2〇3绝缘陶瓷管(1)外表面的半导体敏感材料(2)、 穿过Al2〇3绝缘陶瓷管(1)内部的镍镉合金加热线圈(3)和用于导电的铂线(4)组成;其特征 在于:半导体敏感材料(2)为Pd掺杂Sn0 2氧化物半导体,该敏感材料是采用一步水热技术制 备,经煅烧,涂覆在环形金电极(5)和Al2〇3绝缘陶瓷管(1)外表面。2. 如权利要求1所述的Pd掺杂Sn02氧化物半导体C0传感器,其特征在于:陶瓷管的长为4 ~4.5mm,外径为1.2~1.5mm,内径为0.8~1 .Omm。3. 权利要求1所述的一种Pd掺杂Sn02氧化物半导体CO传感器的制备方法,其步骤如下: (1) 首先将42mg K2Sn03.3H20、180mg尿素、5ml乙醇、5ml水搅拌10分钟形成匀质溶液,一 定量PdCl 2加入到上述溶液使得元素 Pd和元素 Sn的质量比为3.0wt%; (2) 将(1)混合溶液放入45ml聚四氟乙烯釜中密封,放入150 °C烘箱中24小时,结束后自 然降温到室温,将样品收集用乙醇和去离子水离心后放到培养皿中80°C保持12个小时,收 集样品; (3) 将上述纳米气体敏感材料在500 °C下煅烧2小时,得到气体敏感材料,将该敏感材料 与去离子水混合成糊状,然后均匀涂覆在市售的外表面自带有2个环形金电极(5)的绝缘 Al2〇3陶瓷管(1)表面,形成10~40微米的敏感材料薄膜(2),陶瓷管的长为4~4.5mm,外径为 1.2~1.5mm,内径为0.8~1.0mm,并使敏感材料完全覆盖环形金电极(5); (4) 在红外灯下烘烤15分钟左右,待敏感材料干燥后,把绝缘Al2〇3陶瓷管(1)在400 °C下 煅烧2小时;然后将电阻值为30~40 Ω的镍镉加热线圈⑶穿过绝缘Al2〇3陶瓷管(1)内部作 为加热丝,最后将上述器件按照通用旁热式气敏元件进行焊接和封装,从而得到本发明所 述氧化物半导体C0传感器。4. 权利要求1所述的一种Pd掺杂Sn〇2氧化物半导体C0传感器,其特征在于:以一步原位 合成Pd掺杂Sn02氧化物半导体作为敏感材料,一方面掺入Pd改变了 Sn02纳米空心球的催化 能力,会提供更多的反应活性位点,这会大幅提高气体与敏感材料的反应效率,进而提高传 感器的灵敏度;另一方面Pd和Sn0 2颗粒间会形成大量的异质结,这些异质结的出现会提供 更多的反应活性位点,这两方面都会大幅提高气体与敏感材料的反应效率。5. 如权利要求4所述的一种Pd掺杂Sn〇2氧化物半导体C0传感器在矿井气体和大气环境 检测的应用,其特征在于:用于检测一氧化碳浓度。
【文档编号】G01N27/12GK106053548SQ201610352182
【公开日】2016年10月26日
【申请日】2016年5月25日
【发明人】王庆吉, 林君, 李旭
【申请人】吉林大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1