一种三维成像安检门伺服控制装置的制作方法

文档序号:6277208阅读:188来源:国知局
专利名称:一种三维成像安检门伺服控制装置的制作方法
技术领域
本申请涉及伺服控制领域,特别是涉及一种三维成像安检门伺服控制装置。
背景技术
三维成像安检门适合应用于机场、地铁、银行、大型活动等特殊场合的安防工程中,其利用不同角度的微波成像技术构成目标体的三维成像图以检测是否存在危险物品, 因此需要配备伺服控制系统对装有微波天线收发模块的负载框架运动轨迹进行控制。为保证安检门系统成像品质以及检测速度,对伺服控制系统负载的运行速度、运行曲线以及平稳性提出了较高的要求。与本发明相关的公开报道有“新型亭式金属探测系统的设计与实现”(《安防科技》,2008年第4期)一文中介绍了利用CPLD实现的伺服电机的控制方法,其主要控制对象为双门亭式结构中的防弹玻璃门,仅需要控制其开合,对运行速度和运行轨迹无特殊要求, 因此现有技术的伺服控制器无法实现自检校正以及工作扫描功能,无法满足工作过程中负载框架稳速精准回零,也无法满足三维安检门系统成像的指标要求。

发明内容
本发明旨在提供一种三维成像安检门伺服控制装置。伺服控制装置用来执行伺服控制器发出的控制信号,带动负载框架按照设定规律运动。其中,伺服控制器作为整个伺服控制系统的中枢完成同上位机信号处理以及电机驱动器间的交互通信、反馈测量机构的信号采集处理、自检校正功能以及工作扫描功能,保证系统运行平稳并具备故障保护功能。本发明的技术方案是本发明涉及一种三维成像安检门伺服控制装置,该装置包括伺服机构、测量反馈机构和伺服控制器,其中伺服机构包括交流伺服电机、电机驱动器、电源适配器、减速器、皮带轮和负载框架;交流伺服电机主轴通过法兰盘连接减速器,减速器驱动皮带轮运动,皮带轮同负载框架相连,驱动安检门负载框架完成各种功能运动,交流伺服电机由电机驱动器直接控制,电机驱动器连接电源适配器实现交直流转换为电机系统提供电源并实现保护功能;测量反馈机构包括光栅尺、光电开关,光栅尺安装于负载框架主轴上,光栅尺读数头固定于负载框架并随框架转动产生编码信号脉冲从而测量负载框架旋转的角度信息,光电开关安装于负载框架顶部与角度指示圆盘相接触,可实现中心零位和极限位置的指示;伺服控制器包括交互通信模块、信号采集模块、自检校正控制模块以及伺服机构的扫描曲线控制模块;交互通信模块分为两部分一部分完成同上位机信号处理分机的通信,接收其下发的指令信号并反馈当前伺服系统状态信息;另一部分完成与电机驱动器的通信,对伺服执行机构实施控制;其中,信号采集模块处理光栅的正交编码脉冲信号以及光电开关信号;自检校正控制模块完成信号处理分机下发的自检校正指令;扫描曲线控制模块完成信号处理分机下发的扫描工组指令。
进一步地,伺服控制器按照以下模式进行工作伺服控制器按照以下工作模式进行工作第一模式完成自检校正,自检校正工作过程中由伺服控制器采集光栅尺读数头信号计算出负载位置并控制电机进行回零运动,完成校正后,将伺服状态信息上报信号处理分机等待下发扫描工作指令;第二模式完成扫描工作,扫描工作过程中由伺服控制器按照设定的扫描运动曲线计算参数并控制电机驱动器使伺服系统负载框架进行扫描运动。本发明的有益效果在本发明中通过伺服控制器的协调控制实现了自检校正以及工作扫描功能,负载框架能够在自检校正指令下计算出零位并稳速精准回零;在工作扫描指令下按照设定曲线轨迹运动并且运行平稳,能够保证三维安检门系统成像的指标要求。


图1为伺服控制装置结构示意图;图2为伺服控制器模块框图;图3为伺服控制流程图。其中1-交流伺服电机,2-电机驱动器,3-电源适配器,4-减速器,5-皮带轮, 6-负载框架,7-光栅尺,8-光电开关,9-伺服控制器,10-信号采集模块,11-自检校正控制模块,12-扫描曲线控制模块,13-交互通信模块,14-信号处理分机。
具体实施例方式下面结合附图1-4对本发明的实施方式作进一步描述 三维成像安检门伺服控制装置的结构示意如图1所示,包括伺服机构和测量反馈机构和伺服控制器,其中伺服机构由交流伺服电机1、电机驱动器2、电源适配器3、减速器4、皮带轮5和负载框架6构成。交流伺服电机1作为控制动力的出处,带动传动机构以及负载框架运动。电机驱动器2接收伺服控制器的运动指令信号并转化为交流伺服电机1的控制脉冲并结合交流伺服电机1轴端配置的编码器信号直接控制电机运动的速度和位置。本发明所使用的是 GV6驱动器及其配套的NO系列的交流伺服电机1,具有控制参数可调节、速度位置易规划等特点。电源适配器3将交流电源转换为直流电源并具备整流功能,为电机及驱动器实现电源供给且可实现过压保护功能,其连续输出功率300W,最大输出功率为9KW。电机的输出轴经过减速器及皮带轮构成的传动机构带动负载框架运动,系统总的减速比为86. 2367。测量反馈机构由光栅尺7、光电开关8构成。光栅尺7安装于负载框架6主轴上, 其绝对零位处于负载框架6运行范围的中心位置,光栅尺7读数头固定于负载框架6并随框架转动产生正交编码脉冲信号解算角度信息。本发明使用的光栅尺7为RESD系列的增量式圆光栅,增量式光栅尺7较绝对式光栅尺7系统连线少、接口简单,其刻线数为32768,系统精度能达到1.08角秒,适高速系统及精度要求很高的测量场合。该伺服控制装置配备两个光电开关8,配合角度限位及运行中心指示圆盘使用,安装于负载框架6顶部,可指示极限位置以及粗精度的中心位置。光电开关8具有无触点、无机械碰撞、响应速度快的特点,可以满足本发明中设计的限位功能应用。伺服控制器9结构框图如图2所示,伺服控制器9包括交互通信模块13、信号采集模块10、自检校正控制模块11以及伺服机构的扫描曲线控制模块12,伺服控制器9采用 TI公司的TMS320F2812作为主控芯片处理整个控制流程。交互通信模块13包括同上位机信号处理分机进行工作指令及工作状态的交互, 以及同电机驱动器2运动曲线规划控制指令的交互。此模块可通过RS422/RS232实现串口通信,同信号处理分机的通信协议包括帧头、指令字、状态字、帧计数以及校验位信息;同电机驱动器2的通信协议满足驱动器的设计要求。信号采集模块10需处 理光栅的正交编码脉冲信号以及光电开关8信号。光栅信号通过光栅尺7读数头连接器同伺服控制器相连接,经正交编码脉冲计数器芯片处理后与 DSP通过并口进行数据通信,DSP定时采集计数器芯片的计数值。光电开关8信号经电平转换后连接到DSP上,供主控芯片采集。伺服系统自检校正控制模块11完成信号处理分机下发的自检校正指令,实现负载框架精准回零,并为扫描工作指令做准备。扫描曲线控制模块12完成信号处理分机下发的扫描工作指令,最终实现负载框架按照扫描曲线运行。伺服控制器按照两种模式进行第一模式完成自检校正,自检校正工作过程中由伺服控制器9采集光栅尺7读数头信号计算出负载位置并控制电机进行回零运动,完成校正后,将伺服状态信息上报信号处理分机等待下发工作指令,具体工作如下控制器收到自检校正指令后,驱动电机运动15度停止,系统采集运动过程中经过的总线数,以及相邻两个Z脉冲处的线数值。根据上述算法计算运动过程中经过第一个Z脉冲处的绝对线数,由此可计算出负载当前的绝对线数。根据绝对位置换算控制电机使负载框架6运行至零位处完成回零工作。为准备执行扫描工作,控制负载框架6运行至+55度位置处,并上传信号处理分机完成自检校正。第二模式完成扫描工作,扫描工作过程中由伺服控制器9按照预定的扫描运动曲线计算参数并装订电机驱动器2使伺服系统负载框架6进行扫描运动。其工作过程为通过中心指示光电开关8信号判断负载框架6当前相对零位的方向,并控制负载框架6进行扫描运动,运行结束后发送扫描完成状态字。由于自检校正指令或每次扫描工作结束后电机已经运行至工作准备角度处,且扫描工作每次运行的角度以及规划曲线固定不变,因此仅需判断零位方向来确定下次扫描运动的方向,并控制负载框架6按预定曲线运动。伺服控制系统整体工作流程如图3所示,具体步骤为(1)等待并接收信号处理14下发的指令信号,进入步骤(2);(2)判断指令为自检校正则进入步骤(3);若不是则进入步骤(12);(3)采集光电开关信号,进入步骤(4);(4)通过采集的光电开关8信号判断负载当前所在的方向,如为正方向则进入步骤(5);如为负方向则进入步骤(6);(5)向电机驱动器2发送指令程序,使电机1向负方向运行15度后停止,进入步骤(7); (6)向电机驱动器2发送指令程序,使电机1向正方向运行15度后停止,进入步骤 (7); (7)采集光栅尺7信号,进入步骤(8);(8)解算负载框架6当前所在的绝对位置,进入步骤(9);(9)向电机驱动器2下发指令程序,使电机1带动负载框架6回至绝对零位处,进入步骤(10);(10)控制负载框架6勻速运行至+55度位置处,为扫描工作做准备,进入步骤 (11);(11)向信号处理14发送自检完成状态字,完成自检校正功能;(12)判断指令为工作扫描,则进入步骤(13),否则进入步骤(1);(13)采集当前光电开关8信号,并进入步骤(14);(14)通过光电开关8信号值判断负载框架6当前方向,如为正则进入步骤(15), 为负则进入步骤(16);(15)向电机驱动器2下发指令程序,使电机1带动负载框架6向负方向按规划曲线运行,进入步骤(17);(16)向电机驱动器2下发指令程序,使电机1带动负载框架6向正方向按规划曲线运行,进入步骤(17);(17)向信号处理分机14发送本次扫描完成状态字,完成扫描工作。负载框架6当前绝对位置的解算算法为本发明选择的圆光栅由周期性刻线组成,通过自某绝对参考点开始的增量数计算位置信息,可通过累计两个参考点间信号线数以及下面的公式计算参考点的绝对线数Zlabs= (absA-sgnA-1) 1/2+ (sgnA-dir) absZdelt/2A = 2absZdelt-I其中Zlabs为移过第一个参考点的相对零位的绝对线数;I为两个固定参考点间的名义增量值;dir为旋转方向,取值为+1或-1 ;Zdelt为两个固定参考点间的线数差;扫描运动规划曲线配置,负载框架6最高转速为140° /s,最大加速度400° /s2, 旋转角度110°,单次扫描时间1.4s。
权利要求
1.一种三维成像安检门伺服控制装置,该装置包括伺服机构、测量反馈机构和伺服控制器,其中伺服机构包括交流伺服电机(1)、电机驱动器(2)、电源适配器(3)、减速器(4)、皮带轮 (5)和负载框架(6);交流伺服电机主轴通过法兰盘连接减速器,减速器驱动皮带轮运动, 皮带轮同负载框架相连,驱动安检门负载框架完成各种功能运动,交流伺服电机由电机驱动器直接控制,电机驱动器连接电源适配器实现交直流转换为电机 系统提供电源并实现保护功能;测量反馈机构包括光栅尺(7)、光电开关(8),光栅尺(7)安装于负载框架主轴上,光栅尺(7)读数头固定于负载框架并随框架转动产生编码信号脉冲从而测量负载框架旋转的角度信息,光电开关(8)安装于负载框架(6)顶部与角度指示圆盘相接触,可实现中心零位和极限位置的指示;伺服控制器包括交互通信模块、信号采集模块、自检校正控制模块以及伺服机构的扫描曲线控制模块;交互通信模块分为两部分一部分完成同上位机信号处理分机的通信, 接收其下发的指令信号并反馈当前伺服系统状态信息;另一部分完成与电机驱动器的通信,对伺服执行机构实施控制;其中,信号采集模块处理光栅的正交编码脉冲信号以及光电开关信号;自检校正控制模块完成信号处理分机下发的自检校正指令;扫描曲线控制模块完成信号处理分机下发的扫描工组指令。
2.根据权利1所述的三维成像安检门伺服控制装置,其特征在于伺服控制器按照以下模式进行工作伺服控制器按照以下工作模式进行工作第一模式完成自检校正,自检校正工作过程中由伺服控制器(9)采集光栅尺(7)读数头信号计算出负载位置并控制电机进行回零运动,完成校正后,将伺服状态信息上报信号处理分机等待下发扫描工作指令;第二模式完成扫描工作,扫描工作过程中由伺服控制器(9)按照设定的扫描运动曲线计算参数并控制电机驱动器(2)使伺服系统负载框架(6)进行扫描运动。
全文摘要
本发明涉及一种三维成像安检门伺服控制装置,该装置包括伺服机构、测量反馈机构和伺服控制器,其中伺服机构包括交流伺服电机(1)、电机驱动器(2)、电源适配器(3)、减速器(4)、皮带轮(5)和负载框架(6);测量反馈机构包括光栅尺(7)、光电开关(8);伺服控制器包括交互通信模块、信号采集模块、自检校正控制模块以及伺服机构的扫描曲线控制模块;本发明通过伺服控制器的协调控制实现了自检校正以及工作扫描功能,负载框架能够在自检校正指令下计算出零位并稳速精准回零;在工作扫描指令下按照设定曲线轨迹运动并且运行平稳,能够保证三维安检门系统成像的指标要求。
文档编号G05B19/04GK102426432SQ20111045750
公开日2012年4月25日 申请日期2011年12月30日 优先权日2011年12月30日
发明者刘俊, 孟飞, 王晓玢 申请人:北京华航无线电测量研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1