有机半导体组合物的制作方法

文档序号:6855156阅读:170来源:国知局
专利名称:有机半导体组合物的制作方法
技术领域
本发明涉及有机半导体组合物,这种组合物的制备方法,和包括这种组合物的元件。
相关技术讨论有机半导体薄膜经常是多晶的,因此其往往是由单独的晶体或颗粒形成的。在多晶半导体中,单独的颗粒被晶粒边界区分隔开。晶粒边界区通常具有比颗粒内部低的导电性。由于这一缘故,晶粒边界区往往会使得有机半导体薄膜具有比相同有机半导体的单一晶体更低的导电性或传导能力。
概要一个方面,本发明的特征在于一种固体半导体组合物,其包括有机半导体分子的固体基质和纳米棒或纳米管在基质中的分散体。所述纳米棒或纳米管不形成间跨所述组合物的渗滤结构(percolatingstructure)。
另一方面,本发明的特征在于一种制造固体半导体组合物的方法。该方法包括,提供包含有机半导体分子或用于该分子的前体的混合物。所述混合物还包含溶剂以及分散在溶剂中的纳米管或纳米棒。所述方法包括将混合物加热以使溶剂蒸发,并形成固体半导体组合物。所述纳米管或纳米棒不形成间跨所述固体半导体组合物的渗滤结构。
某些实施方案包括具有半导电层、与所述半导电层接触的漏电极和源电极、与所述半导电层的通道部分相邻的介电层(dielectriclayer)、以及门电极的晶体管。所述通道部分在漏电极和源电极之间延伸。门电极位于控制通道部分的位置上。介电层介于门电极和半导电层之间。所述半导电层包括有机半导体分子的固体基质和分散在所述基质中的纳米棒或纳米管。所述分散的纳米棒或纳米管不形成间跨所述半导电层的渗滤结构。
附图简述

图1示出多晶的半导体组合物;图2示出无定形的固体半导体组合物;图3是阐明制造图1和2的固体半导体组合物的方法的流程图;图4示出用于图3所述方法的某些实施方案中的并五苯前体;图5是阐明用5,5′-二(4-己基苯基)-2,2′-并噻吩制造根据图1或2的示例组合物的方法的流程图;图6示出在图4的方法中使用的5,5′-二(4-己基苯基)-2,2′-并噻吩分子;图7示出其活动通道(active channel)引入了图1-2中的一种固体有机半导体组合物的薄膜场效应晶体管。
在这里,相似的参考数字表示功能上相似的分子或结构。
下面将通过附图和详细说明更完全地描述例证性的实施方案。但是,本发明可以体现为各种各样的形式,并且不局限于附图和详细说明中描述的实施方案。
例证性实施方案的详细说明图1和2示出了固体半导体组合物10,10′。组合物10,10′包括有机半导体分子的基质12,和均匀分散在基质12中的纳米棒和/或纳米管14。基质12可以包括单一类型的有机半导体分子或一种以上类型的半导体分子的混合物。这种混合物可以使基质12具有改进的性质,如,更大的粒径或更好的粘着性能。纳米棒和/或纳米管14随机地分布在基质12中,在其中形成基本上无序的分散体。通常,对于相邻的纳米棒和/或纳米管14来说,其取向基本上随机变化。然而,所述纳米棒和/或纳米管不形成间跨所述组合物的连续结构。
参考图1,多晶的基质12包括多个晶粒16,18。相邻的颗粒16,18被晶粒边界区19分隔开。一些纳米棒和/或纳米管14在相邻的颗粒16,18之间形成跨越边界区19的桥。
在各种不同的实施方案中,纳米棒和/或纳米管14具有不同的电性质。单独的纳米棒和/或纳米管14可以是导电的、半导电的、或电绝缘的。
参考图2,固体半导体组合物10′含有有机半导体分子的基质12,所述基质12基本上是均匀和无定形的而不是多晶的。
参考图1和2,组合物10,10′的基质12可以包括一种或多种有机半导体分子物种。示范性的物种包括区域规则的聚(3-己基噻吩),其由Sigma-Aldrich Company(www.sigmaaldrich.com)出售;聚(9,9-二辛基芴基并噻吩),其被称为F8T2并由Dow Chemical Company(www.dow.com)出售;和5,5′-二(4-己基苯基)-2,2′-并噻吩(本发明中称为6PTTP6)。半导体化合物6PTTP6可以根据本领域技术人员公知的方法合成,参见,例如,Mushrush,M.;Facchetti,A.;Lefenfeld,M.;Katz,H.E.;和Marks T.J.的文章,标题为″易于操作的亚苯基-噻吩-基有机场效应晶体管和通过溶液制造的不挥发性晶体管存储元件(Easily processable phenylene-thiophene-based organicfield-effect transistors and solution-fabricated nonvolatiletransistor memory elements)″,JOURNAL OF THE AMERICAN CHEMICALSOCIETY,125(31)9414-9423页,2003年8月6日。
在组合物10,10′中,基质12也可以由其他已知的有机半导体分子制造。示范性的有机半导体低聚物和/或半导体聚合物参见OngB.S.,Wu Y.L.,Liu P.,和Gardner S.在JOURNAL OF THE AMERICANCHEMICAL SOCIETY,126(11)3378-3379页,2004年3月24日的文章,标题为″用于有机薄膜晶体管的高性能半导电聚噻吩(High-performance semiconducting polythiophenes for organicthin-film transistors)″,Ong B.,Wu Y.L.,Jiang L.,Liu P.,和Murti K.在SYNTHETIC METALS,142(1-3)49-52页,2004年4月13日的文章,″具有增强的空气稳定性的聚噻吩基场效应晶体管(Polythiophene-based field-effect transistors with enhancedair stability)″;Chabinyc M.L.,Lu J.P.,Street R.A.,Wu Y.L.,Liu P.,和Ong B.在JOURNAL OF APPLIED PHYSICS,96(4)2063-2070页,2004年8月15日中的文章,″短通道在区域规则的聚(噻吩)薄膜晶体管中的作用(Short channel effects in regioregularpoly(thiophene)thin film tansistors)″;以及Wu Yiliang,PingLiu,Sandra Gardner,和Beng S.Ong的文章″聚(3,3″-二烷基三噻吩)用于有机薄膜晶体管的室温的、溶液加工的、高迁移率半导体(Poly(3,3”-dialkylterthiophens)sRoom-Temperature,Solution-Processed,High-Mobility Semiconductors for OrganicThin-Film Transistors″,其由美国化学会在网址http://pubs.acs.org/journals/cmatex/index.html上以″文章″的形式在线公开。
上述文章均全文在此引入作为参考。
基质12可以包括具有基于芳香环的结构且其共轭长度类似于上述示范性的有机半导体分子的有机半导体分子。这些其他的有机半导体分子也可以具有4-10个碳原子的侧链。在一些侧链中,氧原子可以代替一个或多个碳原子。例如,基质12可以包括并五苯。
参考图1和2,示范性的纳米棒和/或纳米管14包括导电或半导电的纳米线,导电或半导电的碳纳米管,和/或金属线或纳米线。半导电的纳米管和纳米线的实例以碳或无机半导体为基准。用于制备导电和半导电碳纳米线和/或碳纳米管的方法对本领域技术人员来说是公知的。各种类型的碳纳米管,例如也可以从Carben NanotechnologiesInc.商购,该公司位于16200 Park Row,Houston,Texas 77084-5195USA(本发明中称为CNI)。
对于其中纳米棒和/或纳米管14是导电的或半导电的的实施方案,所述纳米棒和/或纳米管14的密度要低于其中纳米棒和/或纳米管14的无规分散体将形成渗透结构的阈值。本发明中,渗透结构是一种间跨全部组合物,如组合物10,10′的非最小线性尺寸的接合结构。本发明中,非最小线性尺寸是指固体组合物的线性尺寸,它不是固体组合物的最小线性尺寸,如,层厚是薄层的最小尺寸。对于低于渗透阈值的密度来说,当组合物10,10′用作有机晶体管或其他电子设备的通道时,纳米棒和/或纳米管14不形成可以使基质12短路的导电或半导电网络。此外,在组合物10,10′中,纳米棒和/或纳米管14随机取向,如,相邻的纳米棒和/或纳米管14往往具有极为不同的取向。
本发明中,纳米棒和纳米管是指近似于圆柱形状且直径为0.1微米(μm)或以下,优选0.01μm或以下的结构。此外,纳米棒和/或纳米管的长度至少为其宽度的两倍。纳米棒和/或纳米管的长度可以大很多。示范性的长度可以是在约0.01μm-约1.0μm范围内。纳米棒或纳米管可以是直的、弯曲的、或沿着其轴扭曲的,并且可以具有环状圆柱形或椭圆形横截面。
优选,纳米棒和/或纳米管的长度足以连接基质的高迁移率区域,如,长度足以形成相邻晶体的电连接。在其中纳米棒和/或纳米管是导电的或半导电的的实施方案中,它们可以形成电短路(electricallyshort)边界区的桥,从而补偿所述区域在其他方面的低导电性。纳米棒和纳米管的长度不足以使得其本身形成跨过整个组合物10,10′的渗滤簇。
图3示出制备图2所述固体半导体组合物10,10′的方法20。
首先,方法20包括将纳米棒和/或纳米管14混合到用于基质12的有机分子溶液中(步骤22)。所述有机分子或者是有机半导体分子或者是有机半导体分子的前体。示范性的前体分子包括可溶的并五苯的前体,如,图4的Diels-Alder加成物28。Diels-Alder加成物28的合成对本领域技术人员来说是公知的,如,参见Ali Afzali,Christos D.Dimitrakopoulos,和Tricia L.Breen在Journal ofAmerican Chemical Society(JACS),第124卷(2002),8812-8813页的文章,″由新型的并五苯前体得到的高性能的、溶液加工的有机薄膜晶体管(High-Performance,Solution-Processed Organic Thin Filmfrom a Novel Pentacene Precusor)″,其全文在此引入作为参考。混合步骤包括将用于基质12的分子溶解在适当的溶剂,如有机溶剂中。在混合步骤之前,也可以用已知的工艺将纳米棒和/或纳米管14的外表面进行化学官能化,以增加它们与溶剂的相容性,从而增加它们分散在溶剂中的能力。任何的这种化学官能化都不应该在实质上干扰纳米棒和/或纳米管的传导性质或纳米棒和/或纳米管14与用于基质12的有机分子之间的传导性质。
第二,方法20包括进行液体混合物的超声作用,以将纳米棒和/或纳米管基本上均匀地分散在溶剂中(步骤24)。超声作用在足够低的以致于不使半导体前体分子或纳米棒或纳米管破裂的功率设定值下进行。
第三,方法20包括在基材的平面表面上由所述液体混合物形成半导电的薄膜或主体(步骤26)。示范性的成型步骤可以包括把液体混合物通过浇铸(casting)、喷墨印刷、或旋转涂布成型到平面表面上。这种形成薄膜的方法对本领域技术人员来说是众所周知的。
如果液体混合物包括用于有机半导体的前体,则方法20包括将前体分子转化为有机半导体分子的处理步骤。对于上述并五苯的前体,示范性的处理步骤可以包括在从液体混合物中蒸发溶剂之后,加热留下的薄膜。例如,将薄膜加热到约250℃来促进把上述前体分子转化为不溶的并五苯的反应。所得薄膜在任何后续的将物质溶液沉积到固体有机半导体组合物上的过程中通常将更耐搅拌。
实例图5举例说明了示范性的用包括碳纳米管以及6PTTP6分子的基质12的固体半导体组合物10,10′制造层形物的方法30。图6举例说明了6PTTP6分子。
方法30包括将绝缘的、导电的和/或半导电的碳纳米管商品制剂混合到液体溶剂中,形成碳纳米管的悬浮液(步骤32)。示范性的悬浮液在约1.0克二甲苯溶剂中包括约1毫克碳纳米管。碳纳米管的商品制剂可由,例如,CNI公司得到,为单壁碳纳米管。这种制剂通常还包括无定形碳杂质。混合后,进行超声作用几个小时,如12小时,以将碳纳米管均匀并随机地分散在溶剂中。优选,进行超声作用的方式不会对碳纳米管造成物理上的损坏。在示范性的实施方案中,在超声过程中,使用L & R Ultrasonics Company(www.lrultrasonics.com)的型号为PC3的超声波仪,其在55千赫和22瓦功率设定值下操作。
方法30还包括制备选择的有机半导体低聚物,即,6PTTP6的溶液(步骤34)。示范性的溶液是通过将约1毫克6PTTP6混合在约2.5克二甲苯中形成的。
方法30包括通过混合选定量的步骤32的悬浮液和步骤34的溶液而形成最终的碳纳米管与6PTTP6分子的悬浮液(步骤36)。选定的量取决于最终悬浮液中期望的碳纳米管重量百分数(wt%)相对于有机半导体低聚物重量百分数的比例值。在示范性的最终悬浮液中,该比例的数值范围为约0.01-约0.20,优选约0.01-约0.05。混合后,进行再一次超声作用,约12小时,以将碳纳米管均匀地分散在最终的悬浮液中。
方法30包括将最终的悬浮液静置,以使来自于商品碳纳米管制剂的杂质,如无定形碳,从最终的悬浮液中沉淀出来(步骤38)。通常,静置约3小时或以上足矣。静置后,提取包含悬浮的碳纳米管和6PTTP6的澄清液体,用于后面的步骤。
方法30包括在绝缘体(dielectric)或半导体基材,如晶体硅的表面上准备一个区域,用于随后沉积最终的悬浮液(步骤40)。被选的区域通常包括已经,例如通过各种各样的氟低聚物中的一种官能化成疏水性的边界。适当的氟低聚物的实例包括3M Corporation的FC722产品和Novec Electronic Coating EGC 1700产品,该公司位于St.Paul的3M中心,MN 55144-1000(www.3M.com)。
方法30还包括将一薄层的最终悬浮液浇铸到基材表面的被选区域上(步骤42)。浇铸包括把一滴最终的悬浮液置于准备好的表面区域上,如此使得疏水性的边界强制液滴不发生横向扩展。浇铸还包括将基材加热以蒸发液滴中的溶剂,从而在被选区域上形成薄的固态膜。所述固态膜包括6PTTP6有机半导体低聚物和碳纳米管。加热通常使得6PTTP6基质更有序并更连续,例如,颗粒更大且6PTTP6分子更好地排列,条件是在加热过程中不发生鼓泡。因此,加热在低于溶剂沸点的温度下进行。例如,对沸点为约148℃的二甲苯来说,适合于加热到约125℃。
参考图3和5,方法20,30的某些实施方案还包括形成邻近于固体有机半导体组合物层的其他元件结构的步骤。例如,额外的步骤可以包括通过通用的沉积过程,例如,掩模控制的金属蒸发沉积形成晶体管的门电极、源电极和漏电极。额外的步骤还可以包括沉积一层与固体有机半导体组合物相邻的有机绝缘体,例如,以起到门绝缘体的作用。有机绝缘体的沉积可以,例如,包括旋转涂布、浇铸或喷墨印刷那些用于有机绝缘体的液体制剂,然后使其固化。在这种沉积步骤中,液体制剂通常包括不溶解或穿透所述固体有机半导体组合物的溶剂。
图1和2的固体有机半导体组合物10,10′可以用于各种各样的集成电子设备。
图7示出了将固体有机半导体组合物10,10′中的一种引入到功能晶体管结构中的有机场效应晶体管(OFET)50。特别是,所述OFET 50包括由图1或2的固体半导体组合物10,10′中的一种形成的薄半导电层54。所述薄半导电层54位于绝缘体或半导体基材52上。所述OFET50具有导电的源电极和漏电极56,58,例如,金属电极。所述源电极和漏电极56,58与薄半导电层54的一个表面接触。所述OFET 50还具有导电的门电极62和门介电层64,例如有机绝缘体。门绝缘体64与薄半导电层54以及门电极62接触。门电极62处于能够控制薄半导电层54的通道部分60的位置上。通道部分60连接源电极和漏电极56,58。
在OFET 50中,薄半导电层54的纳米棒和/或纳米管14不会在源电极和漏电极56,58之间或者跨过薄半导电层54产生电短路。特别是,纳米棒和/或纳米管14的长度至少既低于通道部分60的长度,又低于门介电层64的厚度,即,这样的话,伸出的纳米棒或纳米管就不会使门电极62短路。
从公开内容、附图和权利要求,本发明的其他实施方案对本领域技术人员来说将显而易见。
权利要求
1.一种固体组合物,其包括有机半导体分子的固体基质;和分散在所述基质中的纳米棒和纳米管之一;以及其中,分散的纳米棒和纳米管之一不形成间跨所述组合物的渗滤结构。
2.权利要求1的组合物,其中纳米棒和纳米管之一是导电的或者半导电的。
3.权利要求2的组合物,其中相邻的纳米棒和纳米管之一基本上不呈直线排列。
4.权利要求2的组合物,其中纳米棒和纳米管之一不形成线性尺寸为10微米或以上的渗滤结构。
5.权利要求3的组合物,其中纳米棒和纳米管之一包括一种碳纳米管,和其中纳米棒和纳米管之一是半导电的或者导电的碳纳米管。
6.一种制造固体半导体组合物的方法,其包括提供包含有机半导体分子和有机半导体分子前体之一、溶剂、纳米管和纳米棒之一的混合物,其中所述纳米管和纳米棒之一分散在溶剂中;和加热所述混合物以蒸发溶剂,并形成固体半导体组合物,其中所述纳米管和纳米棒之一不形成间跨所述固体半导体组合物的渗滤结构。
7.权利要求6的方法,其中所述纳米管和纳米棒之一包括碳纳米管;和其中所述纳米管和纳米棒之一是半导电的或者导电的。
8.一种晶体管,其包括半导电层;与所述半导电层接触的漏电极和源电极;与半导电层的通道部分接触的介电层,所述通道部分在漏电极和源电极之间延伸;和位于控制所述通道部分的位置上的门电极,所述介电层插入在所述门电极和所述半导电层之间;和其中,所述半导电层进一步包括有机半导体分子的固体基质;和分散在基质中的纳米棒和纳米管之一,其中,所述分散的纳米棒和纳米管之一不形成间跨源电极和漏电极之间的距离的结构。
9.权利要求8的晶体管,其中所述纳米棒和纳米管之一是导电的或者半导电的。
10.权利要求9的晶体管,其中相邻的纳米棒和纳米管之一基本上不呈直线排列。
全文摘要
一种固体半导体组合物,其包括有机半导体分子的固体基质和纳米棒或纳米管在基质中的分散体。所述纳米棒或纳米管不形成间跨所述组合物的渗滤结构。
文档编号H01L51/40GK1753203SQ20051010998
公开日2006年3月29日 申请日期2005年9月21日 优先权日2004年9月22日
发明者E·A·钱德罗斯, H·E·卡茨, E·雷克迈尼斯, S·维迪亚纳桑 申请人:朗迅科技公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1