蚀刻液的制作方法

文档序号:7222043阅读:440来源:国知局

专利名称::蚀刻液的制作方法
技术领域
:本发明涉及可以在半导体工序、液晶工序等中使用的硅氧化膜的蚀刻液、其制造方法、使用该蚀刻液的蚀刻方法以及使用该蚀刻液的蚀刻处理物的制造方法。
背景技术
:硅氧化膜的湿蚀刻液可以使用作为氢氟酸和氟化铵溶液的混合液的缓冲氢氟酸(例如,专利文献l、2)。已知在半导体制造工序中,在加入了缓冲氢氟酸的药液槽中浸渍晶片进行蚀刻,通常,药液槽为了浸渍晶片,具有开口部,因此由药液成分的蒸发,药液组成经时地变化,对蚀刻速率产生大的影响。因此,在时间经过的同时,不得不更换药液全部量,在处理效率和资源有效利用方面存在问题。在专利文献1的0005段中记载了"药液组成为HF:0.1%、NH4F:400%的缓冲氢氟酸(BHF)的情况下,热氧化膜的蚀刻速率在25"C时为1.6nm/min。但是,将这样的药液在湿度40%、气氛温度为25。C的环境下,放置3天时,蚀刻速率增加到4.2nm/min,约增加2.6倍。在这样的环境下变化的药液不能在今后的半导体工艺中使用"。缓冲氢氟酸中的氟化铵、钹离子和氢氟酸的解离以下述(1)式至(4)式表示。NH4F—NH4++F-(1)NH4+$NH3+H+(pKa=9.24)(2)HF$H++F-(pKa=3.17)(3)HF+F-^HFV(4)如专利文献1所述的药液组成(HF=0.1mass%、NH4F=40mass%)的缓冲氢氟酸,例如在湿度40%、温度25匸的环境下放置时,由式(2)氨蒸发,在液体中产生质子(H+)。因为氢氟酸为pKa二3.17的弱酸,所以产生H+时,与由式(1)生成的氟化物离子(F—)反应,由式(3)产生氟化氢(HF),HF再与F—反应,产生作为硅氧化膜蚀刻种的HF2_。因此,如果放置这样的药液组成的缓冲氢氟酸,药液组成就会发生变化,硅氧化膜的蚀刻速率变快,因而药液变得不能使用。另外,在专利文献l的0019段中,记载了"NHUF浓度如果大于30maSS%、药液的蒸发量就少,药液的组成比例变化。因此,难以返回原来的组成。"。在专利文献1中,还记载了涉及缓冲氢氟酸,特别是涉及HF浓度为0.1mass^以下、NH4F浓度为30mass%以下的缓冲氢氟酸,为了减少药液组成的经时变化,向药液槽中供给组成调整用药液,将组成变化的药液槽中的药液维持在规定的药液组成的技术。这只不过记载了通过控制药液的使用环境、不发生药液组成变化,不是由药液本身的改良来减少组成变化。专利文献1:特开平9-22891号公报专利文献2:特开平9-115875号公报
发明内容本发明的目的在于提供伴随药液蒸发等的组成变化少、药液更换频度少,而且经时的蚀刻速率变化少,能够均匀蚀刻硅氧化膜的蚀刻液。本发明人为了解决上述课题,进行了深入研究,结果得到下述见解。可知缓冲氢氟酸,在氟化铵浓度大于30mass。/^(8.2mol/kg)时,氨蒸发,作为硅氧化膜蚀刻种的HFr增加,蚀刻速率加快。因此,为了减少氨的蒸发,可以代替氨,改变为由具有比氨的沸点一33"C(1大气压)更高沸点的碱和氟化氢构成的氟化物盐。另外,如专利文献2所示,用于接触孔洗净等的缓冲氢氟酸,通过使用氟化铵浓度特别在35mass%(9.5mol/kg)40mass%(10.8mol/kg)的缓冲氢氟酸,保持加工尺寸精度。氟化铵浓度高的缓冲氢氟酸的加工尺寸精度高的理由是因为氟化铵浓度越高、各种氧化膜的蚀刻速率变得越相等。因此,为了保持一定的加工尺寸精度,必须成为与35mass%(9.5mol/kg)氟化铵浓度同等的氟化物盐浓度。因此,氟化铵、氟化氢与沸点比氨高的碱的盐的合计浓度必须是9.5mol/kg以上。由上所述,如果是使8.2mol/kg(30mass%)浓度以下的氟化铵、氟化氢与沸点比氨高的碱的盐的合计为9.5mol/kg以上的缓冲氢氟酸,即使放置,因为伴随药液蒸发等的组成变化小,所以硅氧化膜的蚀刻速率不加快,其结果,可以提供药液更换频度小、寿命长的蚀刻液。另外,因为氟化物盐浓度是用于接触孔洗净等的缓冲氢氟酸的氟化铵浓度以上(9.5mol/kg(35mass%)以上),所以加工尺寸精度也可以满足。基于这样的见解,再反复研究,结果直至完成本发明。艮P,本发明提供下述的蚀刻液。项1.一种蚀刻液,该蚀刻液含有氢氟酸(a)、氟化铰(b)以及氟化氢与沸点比氨高的碱的盐(c),氟化铵(b)的浓度为8.2mol/kg以下,氟化铵(b)和氟化氢与沸点比氨高的碱的盐(c)的合计为9.5mo1/kg以上。项2.如项l所述的蚀刻液,碱的沸点为一3(TC以上。项3.如项1或2所述的蚀刻液,蚀刻液中的氟化氢(HF)的浓度为0.5mol/kg(lmass%)以下。项4.如项13中任一项所述的蚀刻液,沸点比氨高的碱为选自伯胺、仲胺、叔胺和季铵中的至少一种。项5.如项4所述的蚀刻液,伯胺为选自甲胺、乙胺、丙胺、丁胺、戊胺、羟胺、乙醇胺、丙醇胺、丁醇胺、甲氧基乙胺和甲氧基丙胺中的至少一种。项6.如项4所述的蚀刻液,仲胺为选自二甲胺、二乙胺、二丙胺和二乙醇胺中的至少一种。项7.如项4所述的蚀刻液,叔胺为选自三甲胺、三乙胺和三乙醇胺中的至少一种。项8.如项14中任一项所述的蚀刻液,沸点比氨高的碱为选自甲胺、乙胺和乙醇胺中的至少一种。项9.如项18中任一项所述的蚀刻液,还含有表面活性剂。项10.—种蚀刻液的制造方法,其特征在于混合氢氟酸(a)、氟化铵(b)以及由氟化氢和沸点比氨高的碱构成的盐(c),使氟化铵(b)的浓度为8.2mol/kg以下,使氟化铵(b)和氟化氢与沸点比氨高的碱的盐(c)的合计为9.5mol/kg以上。项ll.一种蚀刻方法,其特征在于使用项19中任一项所述的蚀刻液,对被蚀刻物进行蚀刻处理。项12.—种蚀刻处理物的制造方法,其特征在于使用项19中任一项所述的蚀刻液,对被蚀刻物进行蚀刻处理。以下详细叙述本发明。本发明的蚀刻液的特征在于该蚀刻液含有氢氟酸(a)、氟化铵(b)以及氟化氢与沸点比氨高的碱的盐(c),氟化铵(b)的浓度为8.2mol/kg以下,氟化铵(b)和氟化氢与沸点比氨高的碱的盐(c)的合计为9.5mol/kg以上。添加氢氟酸(a),使得成为可以适合实施蚀刻的氟化氢(HF)浓度。例如,相对于蚀刻液的总重量,HF的浓度配合成为0.5mol/kg(lmass%)以下、优选为0.0005mol/kg(0.001mass%)0.25mol/kg(0.5mass%)、更优选为0豫5mo1/kg(0.005mass%)0.2mol/kg(0.4mass%)、特别优选为0.0025mol/kg(0.005mass%)0.175mol/kg(0.35mass%)。氟化氢的浓度如果在该范围内,作为蚀刻液是适合的,但药液中的HF浓度越低、放置后的蚀刻速率变化(增加)越大。在本发明中,即使是这样低的HF浓度的蚀刻液,通过添加后述规定的盐,也能够变得可以抑制蚀刻速率的变化。氟化铵(NH4F)(b)的含量为08.2mol/kg、优选为28.2mol/kg、更优选为58.2mol/kg。氟化铵以往为了用于缓冲氢氟酸,以半导体药液用的高纯度被低价格地生产,所以在放置时蚀刻速率变化小的上述范围内,优选尽可能多地添加。在蚀刻液中含有的盐为氟化氢和沸点比氨高的碱的盐(c)。作为构成盐(c)的沸点比氨高的碱,可以例示伯胺、仲胺、叔胺、季铵等。作为伯胺,例如可以例示甲胺、乙胺、丙胺、丁胺、戊胺、羟胺、乙醇胺、丙醇胺、丁醇胺、甲氧基乙胺、甲氧基丙胺等。作为仲胺,例如可以例示二甲胺、二乙胺、二丙胺、二乙醇胺等。作为叔胺,例如可以例示三甲胺、三乙胺、三乙醇胺等。7作为季铵,例如可以例示四甲基氢氧化铵、四乙基氢氧化铵、胆碱等。该碱可以是上述中的1种、或2种以上的混合物。在上述碱中,适合使用选自甲胺、乙胺和乙醇胺中的至少一种。含有该碱和氟化氢的盐(c)的蚀刻液可以通过在含有HF和NH4F的缓冲氢氟酸中加入该碱和氟化氢的盐(c)而进行调整。另外,含有该碱和氟化氢的盐(c)的蚀刻液也可以通过在含有HF和NH4F的缓冲氢氟酸中加入相等摩尔量的该碱和氟化氢并混合而进行调制。蚀刻液中的盐(c)的含量例如相对于蚀刻液的总重量为1.3mo1/kg以上、优选为1.312mol/kg、更优选为L34.5mo1/kg。通过成为这样的浓度,可以得到即使放置后、蚀刻速率变化也小的蚀刻液。蚀刻液中的氟化铵(b)和氟化氢与沸点比氨高的碱的盐(c)的合计为9.5mol/kg以上、优选为9.512mol/kg、更优选为10llmol/kg。将(b)和(c)的合计的下限值设为9.5mol/kg,是因为需要对热氧化膜和包括其它氧化膜的膜保持一定的加工尺寸精度。具体地而言,在(b)禾B(c)的合计低于9.5mol/kg时,对热氧化膜的经时蚀刻速率的增加率没有那样的变化,但相对于热氧化膜蚀刻速率的等离子体TEOS膜、BPSG膜、SOD退火膜等各种氧化膜的蚀刻速率的比有增大的倾向,在接触孔等洗净用途中不合适。还可以在蚀刻液中添加表面活性剂。是因为表面活性剂对疏水性表面(Si表面、Poly-Si表面和抗蚀剂表面)增加濡湿性,防止由于图案的形状而使药液不能遍及的情况等。其种类为阳离子型、阴离子型、非离子型等,但不特别限定。作为阳离子型表面活性剂,例如可以列举C8H17NH2等胺类,作为阴离子型表面活性剂,例如可以列举C8HnCOOH等烃类羧酸、CsHnS03H等烃类磺酸、H(CF2)6COOH等氟类羧酸,作为非离子型表面活性剂,可以列举聚氧化烯烷基醚等醚类。表面活性剂的添加量(浓度)相对于蚀刻液的总重量为2000massppm以下、优选为101500massppm、更优选为501200massppm。蚀刻液的pH通常为pH6.88.2、优选为78。通过成为这样的范围,热氧化膜蚀刻速率成为10A/分钟100A/分钟,变得适合。本发明的蚀刻液通过混合氢氟酸(a)、氟化铵(b)以及由氟化氢和沸点比氨高的碱构成的盐(c),使氟化铵(b)的浓度为8.2mol/kg(30maSS%)以下,使氟化铵(b)和氟化氢与沸点比氨高的碱的盐(c)的合计为9.5mol/kg以上而制造。如上所述,蚀刻液的调制可以通过在含有氢氟酸(a)和氟化铵(b)的缓冲氢氟酸中,加入等摩尔量的氟化氢和沸点比氨高的碱,使得成为上述规定的浓度,或者加入氟化氢和沸点比氨高的碱的盐而进行。混合优选考虑发热,边冷却边进行。在pH偏离上述范围时,根据需要,可以加入氢氟酸(例如,50mass^氢氟酸)或碱水溶液来进行调整。作为本发明的适合的蚀刻液,可以列举以蚀刻液的总重量为基准,含有氟化氢(a)0.0025mo1/kg(0.005mass%)0.175mol/kg(0.35mass%)、氟化铵(b)5mol/kg(20mass%)8.2mol/kg(30mass%)、由氟化氢和沸点比氨高的有机胺构成的盐(c)1.3mol/kg4.5mol/kg以及余量的水的硅氧化膜的蚀刻液。使本发明的蚀刻液适用于包括硅氧化膜的晶片的方法,只要能够蚀刻除去硅氧化膜,就没有特别限定,可以例示涂布、浸渍、喷雾、喷射等任意方法。特别是从利用经时组成变化少、蚀刻速率变化小的优点出发,将晶片浸渍于蚀刻液的方法(间歇式装置)和向晶片喷射蚀刻液的方法(枚叶式装置)是适合的。本发明的蚀刻液的适用温度为159(TC左右、优选为室温左右,在该程度的温度下,将蚀刻液适用于晶片,由此能够适合对硅氧化膜进行蚀刻。蚀刻液的适用时间,也取决于硅氧化膜的膜厚等,一般为5秒至30分钟左右。利用本发明的蚀刻液处理而得到的蚀刻处理物,可以用超纯水等漂洗、干燥而得到蚀刻处理物。发明的效果本发明的蚀刻液伴随药液的蒸发等的组成变化少、药液更换频度少,而且经时的蚀刻速率变化也少,能够均匀蚀刻硅氧化膜。具体实施例方式以下表示实施例,以明确本发明的特征。本发明不被这些实施例限定。9[蚀刻液的调制]以各表所示的配合比例,在含有HF和NH4F的缓冲氢氟酸中添加等摩尔量的HF和沸点比氨高的碱,调制蚀刻液。比较例16的蚀刻液,通过使用HF浓度二0.07massX、NH4F浓度二40.3mass^的缓冲氢氟酸、50.0mass%的氢氟酸、超纯水,调制成初始浓度。实施例1的蚀刻液,通过使用HF浓度二0.07mass^、NH4F浓度二40.3mass^的缓冲氢氟酸、40mass%甲胺水溶液、50massX氢氟酸、超纯水进行调制。具体而言,向298g上述浓度的缓冲氢氟酸中加入32g的50mass^氢氟酸和8g超纯水,边冷却边加入与添加的氢氟酸成为等摩尔量的62g的40massQ/^甲胺,合计为400g。调制后,用堀埸制作所生产的pH计T一21(玻璃电极6367—10D)测定pH,作为初始pH。作为实施例2等的沸点比氨高的碱、含有乙胺的蚀刻液,使用70mass^乙胺水溶液,以与实施例1同样的顺序配制。在其它实施例中表示的含有沸点比氨高的碱的蚀刻液,使用98mass^以上浓度的碱溶液,以与实施例1同样的顺序调制。比较例79、12、16的蚀刻液,添加上述浓度的缓冲氢氟酸,直到30mass%NH4F浓度,其余的中和50.0mass^氢氟酸和29mass%NH3水进行调整。另外,在调整液的pH偏离78时,少量添加50.0mass^氢氟酸或碱水溶液,调整成该范围。[蚀刻液的重量测定]将调制的蚀刻液一半保存在密闭的容器中。其余一半放入直径8cm的圆筒容器中,测定容器内的液体重量(初始重量)。此后,在通风装置内实施规定时间的放置试验。在规定时间放置试验后,再次测定容器内的重量(放置后重量)。放置试验时的通风装置内温度为1822°C、湿度为25%35%。在恒温槽中将保存在密闭容器中的蚀刻液温度设定在25°C,在其中浸渍膜厚约1000A的1.5cmX1.2cm的热氧化膜片(薄膜),在一定时间(2.5分钟、5分钟、IO分钟)后测定浸渍后的膜厚。以浸渍前后的膜厚差作为蚀刻量。以纵轴为蚀刻量、以横轴为蚀刻时间时,以其斜率作为蚀刻速率(初始ER)。同样,在恒温槽中将在通风装置进行放置试验后的蚀刻液温度设定在25°C,在其中浸渍膜厚约IOOOA的1.5cmX1.2cm的热氧化膜片(薄膜),在一定时间(2.5分钟、5分钟、10分钟)后测定浸渍后的膜厚。以浸渍前后的膜厚差作为蚀刻量。以纵轴为蚀刻量、以横轴为蚀刻时间时,以其斜率作为蚀刻速率(放置后ER)。膜厚的测定使用NanoSpec3000AF—T(NanometricsJapan株式会社生产)。另外,蚀刻速率(ER)增加倍率以下式计算。ER增加倍率二[放置后热氧化膜蚀刻速率(放置后ER)]/[初始热氧化膜蚀刻速率(初始ER)]另夕卜,在表27中,所谓"总F浓度"意指"氟化铵的浓度"和"氟化氢与沸点比氨高的碱的盐的浓度"之和。比较例12调制HF浓度为0.25mass%、NH4F浓度变化为20mass%和39.4mass。^的2个药液,将2个药液在通风装置内放置43小时。为了调查药液的组成变化和因药液组成变化对热氧化膜蚀刻速率的影响,调査了放置前的初始HF浓度、NH4F浓度、初始重量、初始热氧化膜蚀刻速率和放置后的HF浓度、NH4F浓度、放置后重量、放置后热氧化膜蚀刻速率。在表1中表示其结果。可知NH4F浓度如果高,水分蒸发量小,但氨蒸发量大,因此HF浓度变高,热氧化膜蚀刻速率大大增加。[表l]例编号盐浓度初始浓度测定值初始PH放置时间放置后浓度测定值初期重量放置后重量水分蒸发量氨蒸发量初始ER放置后ERER增加倍率HF浓度NH4F浓度HF浓度NH4F浓度mol/kgm3ss%rri3ss%Hrmsss%msss%ggA/分钟A/分钟比较例1无添加00.2539.47.55430.2939.52992981.20.1047591.26比较例2无添加00.2520.06,95430.2720.929728313.20.0270761.09比较例36ii调制NH4F浓度为37mass%、使HF浓度从0.05mass^变化到0.25massQX的药液,放置各药液,调查伴随组成变化的蚀刻速率增加倍率。在表2中表示其结果。可知HF浓度越低,热氧化膜的蚀刻速率增加倍率越大。[表2]<table>tableseeoriginaldocumentpage12</column></row><table>实施例18、比较例7、8在缓冲氢氟酸中添加各种沸点不同的碱和氟化氢的盐,调查因药液放置产生的伴随组成变化的热氧化膜蚀刻速率增加倍率。在表3中表示其结果。可知在添加了沸点比氨沸点一33°C(1大气压)高的碱和氟化氢的盐的药液中,相比于再加入了具有同等程度的初始蚀刻速率的氨和氟化氢的盐的药液,起因于氨蒸发的蚀刻速率增加倍率低。<table>tableseeoriginaldocumentpage12</column></row><table>实施例912、比较例911在氟化铵浓度不同的缓冲氢氟酸中添加乙胺和氟化氢的盐,调查因药液放置产生的伴随组成变化的热氧化膜蚀刻速率增加倍率。在表4中表示其结果。可知氟化铵浓度在8.2mol/kg(30mass%)以下时,相比于再加入了具有同等程度的初始蚀刻速率的氨和氟化氢的盐的药液,起因于氨蒸发的蚀刻速率增加倍率低。碱放置后重量放置后ER沸点与HF的盐浓度氟化铵浓度总F浓度放置时间初期重量初始ERER例编号碱名。Cmo1/kgmo1/kgm3ssmol/kg初始pHHrggA/分钟A/分钟增加倍率比较例9氨-3328.1130.010.117,657020218822391.77实施例9乙胺179.860.000.09,867.307016916345410.91实施例10乙胺1了3.356.7625.010.117.607020019028281.00实施例11乙胺1了2.687.4327.510.117.507019918839380.97实施例12乙胺1了28.1130.010.117.657020118924261.08比较例10乙胺1了1,338.7832.510.117.657019918625291.16比较例乙胺1719.4635.010.467.707019718420291.45实施例1314、比较例1215在氟化铵浓度不同的缓冲氢氟酸中添加乙胺和氟化氢的盐,求出热氧化膜、等离子体TEOS膜、BPSG退火膜、SOD退火膜的蚀刻速率及这些膜与热氧化膜的蚀刻速率比。在表5中表示结果。氟化铵浓度、氟化氢与乙胺的盐浓度合计低于9.5mol/kg时,结果是这些膜与热氧化膜的蚀刻速率比变高。另外,氟化铵浓度、氟化氢与乙胺的盐浓度的合计低于9.5mol/kg时,表6所示的蚀刻增加率小,但因为各种膜和热氧化膜的蚀刻速率比高,所以在接触孔等的洗净液中不能使用。[表5]例号碱氟化铵浓度总F浓度初始pH热氧化膜ER等离子休TEOS膜BPSG退火膜BRSOD退火膜ER等离子体TEOSER/热氧化膜ERBPSG退火膜ER/热氧化膜田SOD退火膜ER/热氧化膜BR碱名沸点与HF的盐浓度。Crrd/ird/massrttJ/A/分钟分钟A/分钟A/分钟比较例12氨-332008l11咖1Q117.55326564642J032.00ZOO实施例13乙胺1"7zooa"3Q0icm7.60316462662J062.00Z13实施例14乙胺172.007.50Z7.89.507.65286261防2212.18Z32比较例13乙胺2L00'咖2Z3aoo7.3535100802淡229比较例14乙胺1了2L004501&76L507.203814495136279250诚比较例15乙胺172.0074500咖281311281264684.57450[表6]<table>tableseeoriginaldocumentpage14</column></row><table>实施例1517、比较例16涉及添加了100ppm或200ppm表面活性剂的缓冲氢氟酸,调査因药液放置发生的伴随组成变化的热氧化膜蚀刻速率增加倍率。在表7中表示其结果。可知在添加了表面活性剂、乙胺与氟化氢的盐的药液中,相比于具有同等程度的初始蚀刻速率的未添加盐的药液(比较例16),起因于氨蒸发的蚀刻速率增加倍率低。另夕卜,即使将不含表面活性剂的实施例13的蚀刻液和实施例1517的蚀刻液进行比较,也可知表面活性剂的存在对经时的药液组成几乎没有影响。<table>tableseeoriginaldocumentpage14</column></row><table>如上述实施例117所示,如果是8.2mol/kg(30mass%)浓度以下的氟化铵、氟化氢与沸点比氨高的碱的盐的合计为9.5mol/kg以上的蚀刻液,即使放置药液后,起因于氨蒸发的蚀刻速率变化也充分小,所以即使经过时间,也具有均匀的蚀刻速率。因此,可以尽量减少药液更换,也有助于蚀刻处理的效率化。权利要求1.一种蚀刻液,其特征在于该蚀刻液含有氢氟酸(a)、氟化铵(b)以及氟化氢与沸点比氨高的碱的盐(c),氟化铵(b)的浓度为8.2mol/kg以下,氟化铵(b)和氟化氢与沸点比氨高的碱的盐(c)的合计为9.5mol/kg以上。2.如权利要求1所述的蚀刻液,其特征在于碱的沸点为一3(TC以上。3.如权利要求1或2所述的蚀刻液,其特征在于蚀刻液中的氟化氢(HF)的浓度为0.5mol/kg(lmass%)以下。4.如权利要求13中任一项所述的蚀刻液,其特征在于沸点比氨高的碱为选自伯胺、仲胺、叔胺和季铵中的至少一种。5.如权利要求4所述的蚀刻液,其特征在于伯胺为选自甲胺、乙胺、丙胺、丁胺、戊胺、羟胺、乙醇胺、丙醇胺、丁醇胺、甲氧基乙胺和甲氧基丙胺中的至少一种。6.如权利要求4所述的蚀刻液,其特征在于仲胺为选自二甲胺、二乙胺、二丙胺和二乙醇胺中的至少一种。7.如权利要求4所述的蚀刻液,其特征在于叔胺为选自三甲胺、三乙胺和三乙醇胺中的至少一种。8.如权利要求14中任一项所述的蚀刻液,其特征在于沸点比氨高的碱为选自甲胺、乙胺和乙醇胺中的至少一种。9.如权利要求18中任一项所述的蚀刻液,其特征在于还含有表面活性剂。10.—种蚀刻液的制造方法,其特征在于混合氢氟酸(a)、氟化铵(b)以及由氟化氢和沸点比氨高的碱构成的盐(c),使氟化铵(b)的浓度为8.2mol/kg以下,使氟化铵(b)和氟化氢与沸点比氨高的碱的盐(c)的合计为9.5mol/kg以上。11.一种蚀刻方法,其特征在于使用权利要求19中任一项所述的蚀刻液,对被蚀刻物进行蚀刻处理。12.—种蚀刻处理物的制造方法,其特征在于使用权利要求19中任一项所述的蚀刻液,对被蚀刻物进行蚀刻处理。全文摘要本发明提供伴随药液蒸发等的组成变化少、药液更换频度少,而且经时的蚀刻速率变化也少,能够均匀蚀刻硅氧化膜的蚀刻液。具体地涉及含有氢氟酸(a)、氟化铵(b)以及氟化氢与沸点比氨高的碱的盐(c)的蚀刻液,氟化铵(b)的浓度为8.2mol/kg以下,氟化铵(b)和氟化氢与沸点比氨高的碱的盐(c)的合计为9.5mol/kg以上,还涉及该蚀刻液的制造方法以及使用该蚀刻液的蚀刻方法。文档编号H01L21/308GK101657887SQ20088001192公开日2010年2月24日申请日期2008年4月8日优先权日2007年4月13日发明者中村新吾,板野充司,毛塚健彦,渡边大祐申请人:大金工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1