聚合物凝胶电解液电芯的制备方法

文档序号:7142042阅读:257来源:国知局
专利名称:聚合物凝胶电解液电芯的制备方法
技术领域
本发明属于聚合物锂离子电池领域,更具体地说,本发明涉及一种聚合物凝胶电解液电芯的制备方法。
背景技术
与铅酸、N1-Cd, MH-Ni电池相比,锂离子电池具有更高的比体积能量密度、比重量能量密度以及更好的环境友好,因此已经广泛应用于手机、便携式音频视频播放器、笔记本电脑、手持式触屏平板电脑等电子产品上。近年来,随着能源危机概念深入人心,人们逐渐意识到过度依赖化石能源是极其危险的,从而掀起全球范围内的EV-HEV(电动汽车、混合动力汽车),以及风电、光伏发电等间歇发电站的储能电站(ESS)热潮。然而,电动汽车和储能电站使用的锂电池,其单电芯具有更高的容量和更大的体积尺寸,一旦发热、着火燃烧会产生严重的后果,因而需要更好的安全性。传统的锂离子电池通常使用易燃的液态有机碳酸酯作为电解液溶剂,容易产生漏液、鼓胀、发热冒烟甚至着火爆炸的危险,难以满足电动汽车和储能电站对电池的安全要求。聚合物凝胶电解液是采用高分子量聚合物分散在碳酸酯溶剂中,通过高分子链段和碳酸酯溶剂之间的相互作用(范德华力、氢键等)来包覆和锁定碳酸酯溶剂,形成一种高电导率的准固态电解液。由于碳酸酯分子被高分子链锁定,聚合物凝胶电解液中不存在游离态的碳酸酯,因而不容易产生漏液和鼓胀现象,一般而言相对于液态电解液,聚合物凝胶电解液具有更好的安全性,不易发热和燃烧,聚合物锂离子电池也因此成为电动汽车和储能电站电池的首选。目前,已经产业化的聚合物凝胶电解液有多种制备工艺方法,主要为:1.多孔凝胶干膜法:此法最早是Bellcore法(萃取法、抽提法),步骤为将高分子骨架(例如PVDF-HFP)、高沸点增塑剂(如伽玛丁内酯)溶解在低沸点溶剂(如丙酮)中,然后流延成膜或者刮刀成膜,在室温或者常温下挥发掉低沸点溶剂(丙酮),再用PVDF的贫溶剂(二乙醚)萃取掉高沸点增塑剂而形成多孔膜,干燥后经电解液浸泡活化,形成多孔凝胶电解液膜。但是,该方法生产工艺相当复杂,不仅对设备和工艺的要求高,而且溶剂的回收再利用困难,低沸点易燃溶剂也会带来安全隐患。此外,该制膜方法仅适合叠片工艺,生产效率较低,成品膜的孔隙率也较低,电导率〈1.0X 10_3S/cm,用该法生产的电池,低温性能和倍率性能都较差,应用面也较窄。后来开发的相反转法(反相法,也叫溶剂/非溶剂法)是在Bellcore成膜法的基础上做了一定改进,使多孔膜的孔隙率、电导率都得到了一定程度的改善,但是综合性能依然较差,而且溶剂用量很大,成本较高。2.原位凝胶法:本方法一般是将可聚合小分子单体、引发剂、交联剂、偶联剂等和液态电解液混合后,在电芯内部发生(自由基、阳离子等)聚合反应,原位形成凝胶,其优点是工艺简便、成本低廉,而且聚合物骨架含量低的时候,电导率较高,但是,该方法所形成的体系为致密无孔结构,以致倍率性能和循环性能都较差,加之单体不易聚合完全,残留单体和弓I发剂碎片都会对电芯电化学稳定性带来消极影响。3.涂布热压法:此方法是将聚合物骨架、低沸点溶剂、液态电解液高温溶解后,涂布在极片活性物质表面,蒸发低沸点溶剂原位成孔,再通过热压使极片和隔离膜形成良好的界面接触;本方法制备的凝胶具有孔隙率高、高温和倍率性能好等优点,而且成品凝胶的锁液能力强,凝胶表面呈完全干态。但是,由于凝胶中含锂盐,所以凝胶的涂布、卷绕等整个工艺工程都需要严格控制水分,以致干房成本增加;另外,该凝胶电芯的内阻和低温性能略差。为了改善上述方法的不足,业界人士对凝胶的制备方法进行了大量研究,例如,中国发明专利申请200610122573.7揭示了一种将低分子量(5000-10000)的PMMA-VAC(聚甲基丙烯酸甲酯-醋酸乙烯酯共聚物)高温溶解在电解液中,然后进行低温凝胶。但是,该发明的预凝胶液粘度为300-2500CP,是常规液态电解液的数百倍至数千倍,因而带来了极片和隔膜浸润困难的问题,虽然该发明人也意识到了粘度带来的浸润不良问题而将分子量限定在了 10000以下,但即使是用低分子量聚合物,或者采用降低聚合物添加量的办法,该发明制备的电芯依然存在首次容量/效率较低,循环容量衰减较快的缺点。而中国发明专利申请201210128618.7则给出了一种大面积静电纺丝凝胶实现工艺,该方法制备的凝胶电解质膜具有孔隙率大、电导率较高、综合性能较好等优点,但是,静电纺丝在高压干燥环境中容易着火,需要相对密封的环境以控制粉尘,而且溶剂挥发后难于回收而易于造成空气污染,加之静电纺丝成本较高,因此凝胶电解质的生产效率较低,难于大面积工业化生产。有鉴于此,确有必要开发一种简单易行、且能够制备出具有优良性能的聚合物凝胶电解液电芯的制备方法。

发明内容
本发明的目的在于:提供一种简单易行的聚合物凝胶电解液电芯的制备方法,以制备出具有优良性能的锂离子电芯。为了实现上述发明目的,发明人经潜心研究,提供了一种聚合物凝胶电解液电芯的制备方法,其包括以下步骤:1)聚合物粉末预处理:将聚合物粉体通过高速球磨方法,得到颗粒度小于I μ m的粉末;2)聚合物粉末分散:将步骤I)球磨后的聚合物粉末与非水溶齐U、锂盐、添加剂混合,配制成亚微米级的聚合物悬浮分散液;3)电解液凝胶化:将步骤2)制得的聚合物悬浮分散液注入锂离子电芯充分浸润后,于高温下凝胶化1-12小时,冷却后得到聚合物凝胶电解液电芯。作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述步骤2)制得的聚合物悬浮分散液中的聚合物悬浮颗粒粒径为0.001-100 μ m,较优为0.01-10 μ m,最优为
0.03-1 μ mD作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述步骤2)制得的聚合物悬浮分散液(预凝胶液)的粘度为1.0CP-10.0CP ;较优为1.5CP-7.5CP ;最优为
2.0CP-5.0CP。作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述步骤3)中电解液凝胶化的温度为60-100°C,优选为65-90°C,最优为70_85°C。作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述步骤2)中聚合物粉末分散的分散温度是10-90°C,优选为20-80°C,最优为25-60°C。
作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述步骤2)中聚合物粉末分散所用的分散方法为搅拌、高速搅拌、球磨、高速球磨、超声波分散中一种或几种,分散时间为5min-120min,优选为10_60min,最优为20_40min。作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述聚合物的分子量不低于5000,较优为不低于10000,最优为50000以上。作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述聚合物包括PMMA, PAN、PEO、PVDF及其衍生物或共聚物中的一种或几种。作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述聚合物粉末在悬浮分散液中的重量百分含量为2 40%。作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述锂盐的总浓度为
0.5M 1.5M。作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述非水溶剂为碳酸酯溶剂,其中至少包含乙烯碳酸酯、丙烯碳酸酯中的一种,且乙烯碳酸酯和丙烯碳酸酯的重量百分比之和占整个非水溶剂的百分比为10-85%,优选为15-80%,最优为20-70%。作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述非水溶剂包括乙烯碳酸酯、丙烯碳酸酯、丁烯碳酸酯、1,2-二甲基乙烯碳酸酯、碳酸乙丁酯、碳酸甲丁酯、碳酸二丁酯、碳酸二乙酯、碳酸二甲酯、三氟甲基碳酸乙烯酯、碳酸二正丙酯、碳酸二异丙酯、碳酸甲乙酯、碳酸乙丙酯、碳酸乙异丙酯、碳酸甲丙酯、二甲氧基乙烷、二乙氧基乙烷、四氢呋喃、2-甲基四氢呋喃、缩二乙二醇二甲醚、缩三乙二醇二甲醚、缩四乙二醇二甲醚、1,3-二氧戊烷、二甲基亚砜、环丁砜、4-甲基-1,3-丁内酯、Y-丁内酯、甲酸甲酯、甲酸乙酯、乙酸甲酯、乙酸乙酯、丙酸甲酯、丙酸乙酯、丁酸甲酯、丁酸乙酯、亚乙烯碳酸酯、丙烷磺内酷、乙稀亚硫Ife酷中的一种或几种。作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述锂盐包括LiPF6、LiBF4' LiClO4' LiAsF6, LiSO3CF3' LiN (SO2CF3) 2、LiB (C2O4) 2、LiPF3 (C2F5) 3 中的一种或几种。作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述添加剂为成膜添加剂,包括碳酸亚乙烯酯(VC)、氟代碳酸乙烯酯(FEC)、碳酸乙烯亚乙酯(VEC)、磺酸丙内酯(PS)、磺酸丁内酯(DS)、硫酸亚乙酯(DTD)、亚硫酸亚乙酯(ES)、亚硫酸丁烯酯(BS)、联苯(BP)、丁二腈(ADN)中的一种或几种。作为本发明聚合物凝胶电解液电芯的制备方法的一种改进,所述步骤2)的聚合物粉末分散步骤为:将锂盐加入非水溶剂中,高速搅拌使锂盐完全溶解,冷却到室温,然后加入添加剂搅匀,得到电解液母液,再将步骤I)球磨后的聚合物粉末加入制得的电解液母液中,经分散得到亚微米级的聚合物悬浮分散液;或是先将步骤I)球磨后的聚合物粉末加入非水溶剂中溶胀,再向非水溶剂中加入锂盐和添加剂。与现有技术相比,本发明聚合物凝胶电解液电芯利用粘度较低的聚合物悬浊液对电芯的膜片进行充分浸润后,再在较高温度下对聚合物进行凝胶化处理,从而使制得的电芯既具有聚合物凝胶电解液的优点,又克服了聚合物在电解液中溶解法制备凝胶时的高粘度,以及由此带来的浸润不良问题,因此具有以下优点:1)和液态电解液锂离子电池相t匕,本发明制备的凝胶电解液锂电池具有优秀的安全性能,且克服了漏液、胀液等缺点,具有良好的综合电化学性能;2)和聚合物溶解在电解液中制备凝胶电解液的方法相比,本发明的预凝胶电解液具有和常规液态电解液相当的低粘度、高渗透能力,能快速浸润电极和隔膜,不会在电极/隔膜中心部位形成电解液浸润不良的干区;最后经过加热凝胶还可以提高铝塑软包锂离子电芯的硬度,改善界面阻抗;3)和原位聚合凝胶电解液相比,本发明无需引发剂、聚合物纯度高,无残留单体和引发剂碎片,而且形成的凝胶电解液电芯具有离子电导率高、首次效率和首次容量高、循环放电衰减低、兼顾高低温性能、倍率放电性能好等优点,不仅保证锂离子二次电池的容量发挥好,而且制备方法简单易行,预凝胶液的粘度和常规液态电解液粘度相当,可以快速注液和并快速浸润极片活性物质及隔离膜,便于大规模工业化生产。
具体实施例方式以下将结合具体实施例对本发明聚合物凝胶电解液电芯的制备方法作进一步详细的描述,但是,可以理解的是,本发明的实施方式不限于此。首先,对本说明中实施例及对照例所使用的材料说明如下:PMMA,均为直链型PMMA,分子量为100,000 ;PVDF,为六氟丙烯和偏二氟乙烯共聚物,共聚物中六氟丙烯摩尔百分比为8%,工业牌号为2801,分子量为280,000 ;ΡΕ0,分子量为200,000。实施例1制备聚合物悬浮分散液:在手套箱中,将重量百分比为11%的LiPF6和1%的LiB (C2O4)2 加入混合溶剂 EC:PC:DEC: VC:FEC 为 28.7%: 28.7%: 24.6%:1%:2%,室温(25°C )搅拌溶解后,冷却到室温备用;将高速球磨预分散好的1%重量的PMMA和2%的重量PVDF添加到上述溶液中,高速搅拌IOmin后,用Para-film密封并从手套箱中取出,放入SK8200HP超声波清洗器(上海科导产,最大超声功率500W,工作频率53KHz)中,水浴温度控制在45-50°C之间,超声15分钟,得到无色透明、粘度不得超过5.0CP的聚合物悬浮分散液,密封后放入手套箱备用。制备锂离子电芯:实验采用铝塑包装的2865B3方形空电芯,具体信息为:正极:活性物质LiCoO2的含量95%,导电炭黑3 %,粘结剂PVDF2%,以铝箔为集流体;负极:活性物质FSNC,石墨含量92%,导电炭黑1.5%,粘结剂PVDF6.5%,以铜箔为集流体;隔膜为Cellgard2300 ;电池设计容量为2390mAh。制备凝胶电解液电芯:将干燥好的上述空电芯(水含量低于50ppm)转入手套箱,注入上述聚合物悬浮分散液,密封后室温静置48小时以上,使电解液充分浸润极片和隔离膜;然后将上述电芯转入80°C恒温箱中烘烤6小时,取出冷却到室温,即得到聚合物凝胶电解液电芯。实施例2-9:各实施例的聚合物种类和添加量见表1,工艺参数指标见表2。表1、各实施例及对照例的电解液配方表(%)
权利要求
1.一种聚合物凝胶电解液电芯的制备方法,其特征在于,包括以下步骤: 1)聚合物粉末预处理:将聚合物粉体通过高速球磨方法,得到颗粒度小于Iμ m的粉末; 2)聚合物粉末分散:将步骤I)球磨后的聚合物粉末与非水溶剂、锂盐、添加剂混合,配制成亚微米级的聚合物悬浮分散液; 3)电解液凝胶化:将步骤2)制得的聚合物悬浮分散液注入锂离子电芯充分浸润后,于高温下凝胶化1-12小时,冷却后得到聚合物凝胶电解液电芯。
2.根据权利要求1所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述步骤2)制得的聚合物悬浮分散液中的聚合物悬浮颗粒粒径为0.001-100 μ m,较优为0.01-10 μ m,最优为 0.03-1 μ m。
3.根据权利要求1所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述步骤2)制得的聚合物悬浮分散液的粘度为1.0CP-10.0CP ;较优为1.5CP-7.5CP;最优为2.0CP-5.0CP。
4.根据权利要求1所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述步骤3)中电解液凝胶化的温度为60-100°C,优选为65-90°C,最优为70_85°C。
5.根据权利要求1所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述步骤2)中聚合物粉末分散的分散温度为10-90°C,优选为20-80°C,最优为25_60°C。
6.根据权利要求1所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述步骤2)中聚合物粉末分散所 用的分散方法为搅拌、高速搅拌、球磨、高速球磨、超声波分散中一种或几种,分散时间为5min-120min,优选为10-60min,最优为20_40min。
7.根据权利要求1至6中任一项所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述聚合物的分子量不低于5000,较优为不低于10000,最优为50000以上。
8.根据权利要求1至6中任一项所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述聚合物包括PMMA、PAN、PEO、PVDF及其衍生物或共聚物中的一种或几种。
9.根据权利要求1至6中任一项所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述聚合物粉末在悬浮分散液中的重量百分含量为2 40%,所述锂盐的总浓度为0.5M 1.5M。
10.根据权利要求1至6中任一项所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述非水溶剂为碳酸酯溶剂,其中至少包含乙烯碳酸酯、丙烯碳酸酯中的一种,且乙烯碳酸酯和丙烯碳酸酯的重量百分比之和占整个非水溶剂的百分比为10-85%,优选为15-80%,最优为 20-70%。
11.根据权利要求1至6中任一项所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述非水溶剂包括乙烯碳酸酯、丙烯碳酸酯、丁烯碳酸酯、1,2-二甲基乙烯碳酸酯、碳酸乙丁酯、碳酸甲丁酯、碳酸二丁酯、碳酸二乙酯、碳酸二甲酯、三氟甲基碳酸乙烯酯、碳酸二正丙酯、碳酸二异丙酯、碳酸甲乙酯、碳酸乙丙酯、碳酸乙异丙酯、碳酸甲丙酯、二甲氧基乙烷、二乙氧基乙烷、四氢呋喃、2-甲基四氢呋喃、缩二乙二醇二甲醚、缩三乙二醇二甲醚、缩四乙二醇二甲醚、1,3- 二氧戊烷、二甲基亚砜、环丁砜、4-甲基-1,3- 丁内酯、Y - 丁内酯、甲酸甲酯、甲酸乙酯、乙酸甲酯、乙酸乙酯、丙酸甲酯、丙酸乙酯、丁酸甲酯、丁酸乙酯、亚乙烯碳酸酯、丙烷磺内酯、乙烯亚硫酸酯中的一种或几种。
12.根据权利要求1至6中任一项所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述锂盐包括 LiPF6, LiBF4' LiClO4' LiAsF6, LiSO3CF3' LiN(SO2CF3)2' LiB(C2O4)2'LiPF3(C2F5)3中的一种或几种。
13.根据权利要求1至6中任一项所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述添加剂为成膜添加剂,包括碳酸亚乙烯酯、氟代碳酸乙烯酯、碳酸乙烯亚乙酯、磺酸丙内酯、磺酸丁内酯、硫酸亚乙酯、亚硫酸亚乙酯、亚硫酸丁烯酯、联苯、丁二腈中的一种或几种。
14.根据权利要求1至6中任一项所述的聚合物凝胶电解液电芯的制备方法,其特征在于:所述步骤2)的聚合物粉末分散步骤为:将锂盐加入非水溶剂中,高速搅拌使锂盐完全溶解,冷却到室温,然后加入添加剂搅匀,得到电解液母液,再将步骤I)球磨后的聚合物粉末加入制得的电解液母液中,经分散得到亚微米级的聚合物悬浮分散液;或是先将步骤I)球磨后的聚合物 粉末加入非水溶剂中溶胀,再向非水溶剂中加入锂盐和添加剂。
全文摘要
本发明公开了一种聚合物凝胶电解液电芯的制备方法,其包括以下步骤1)聚合物粉末预处理将聚合物粉体通过高速球磨方法,得到颗粒度小于1μm的粉末;2)聚合物粉末分散将步骤1)球磨后的聚合物粉末与非水溶剂、锂盐、添加剂混合,配制成亚微米级的聚合物悬浮分散液;3)电解液凝胶化将步骤2)制得的聚合物悬浮分散液注入锂离子电芯充分浸润后,于高温下凝胶化1-12小时,冷却后得到聚合物凝胶电解液电芯。与现有技术相比,本发明制备的聚合物凝胶电解液电芯具有较高的离子导电率、较低的电池内阻、优良的循环使用寿命、良好的高温性能、优秀的安全性能且无漏液风险,综合性能明显优于现有的制备方法所制得的电解液电芯。
文档编号H01M10/058GK103178303SQ20131002624
公开日2013年6月26日 申请日期2013年1月22日 优先权日2013年1月22日
发明者江辉, 游从辉, 俢倩 申请人:东莞新能源科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1