半导体装置制造方法

文档序号:7049001阅读:144来源:国知局
半导体装置制造方法
【专利摘要】本发明实施方式的半导体装置具备:常关断型晶体管,具有与源极端子连接的第1源极、第1漏极、与栅极端子连接的第1栅极;以及常开启型晶体管,具有与第1漏极连接的第2源极、与漏极端子连接的第2漏极、与栅极端子连接的第2栅极。
【专利说明】半导体装置
[0001]相关申请的交叉引用
[0002]本申请主张2013年6月25日提出的在先日本专利申请第2013-133107号的优先权,通过引用包含其全部内容。

【技术领域】
[0003]本发明的实施方式涉及半导体装置。

【背景技术】
[0004]作为新一代的功率半导体器件用的材料,可以期待III族氮化物,例如,GaN(氮化镓)类半导体。GaN类半导体器件具有比Si (硅)更宽的禁带宽度,与Si半导体器件相比,能够实现高耐压、低损耗。
[0005]GaN类晶体管中,一般采用以二维电子气(2DEG)为载流子的HEMT (High ElectronMobility Transistor,高电子迁移率晶体管)结构。在通常的HEMT中,成为即使不向栅极施加电压也导通的常开启型(normally-on)的晶体管。因此,存在难以实现只要不向栅极施加电压就不导通的常关断型的晶体管(normally-off)这样的问题。
[0006]在处理几百V?一千V这样的大电力的电源电路等中,重视安全方面而要求常关断型的动作。因此,提倡将常开启型的GaN类晶体管和常关断型的Si晶体管级联(cascode)连接、实现常关断型动作的电路结构。
[0007]但是,在这样的电路结构中,存在常开启型GaN类晶体管的栅极电压无法足够高、无法充分流过导通电流的问题。


【发明内容】

[0008]本发明所解决的课题是,提供一种增大导通电流的半导体装置。
[0009]实施方式的半导体装置,具备:常关断型晶体管,具有与源极端子连接的第I源极、第I漏极、与栅极端子连接的第I栅极;以及常开启型晶体管,具有与第I漏极连接的第2源极、与漏极端子连接的第2漏极、与栅极端子连接的第2栅极。
[0010]根据上述结构,提供一种增大导通电流的半导体装置。

【专利附图】

【附图说明】
[0011]图1是第一实施方式的半导体装置的电路图。
[0012]图2是比较方式的半导体装置的电路图。
[0013]图3是第二实施方式的半导体装置的电路图。
[0014]图4是第三实施方式的半导体装置的电路图。
[0015]图5是第四实施方式的半导体装置的电路图。
[0016]图6是第五实施方式的常开启型晶体管的示意剖视图。
[0017]图7是第六实施方式的半导体装置的俯视示意图。
[0018]图8是第七实施方式的半导体装置的电路图。
[0019]图9是第八实施方式的半导体装置的电路图。
[0020]图10是第九实施方式的半导体装置的电路图。
[0021]图11是第十实施方式的半导体装置的电路图。
[0022]图12是第i^一实施方式的半导体装置的电路图。

【具体实施方式】
[0023]以下,参照【专利附图】

【附图说明】本发明的实施方式。另外,以下的说明中,对同一部件等附加同一符号,对一度说明过的部件等适当省略说明。
[0024]此外,本说明书中,所谓半导体装置,是指包含如下的概念:将分离半导体等多个元件组合而成的功率模块、或者在分离半导体等多个元件中植入对这些元件进行驱动的驱动电路及自我保护功能而成的智能功率模块、或者具备功率模块及智能功率模块的系统整体。
[0025]此外,本说明书中,所谓常开启型晶体管,是指当源极和栅极为相同电位时沟道为导通状态、在源极和漏极间流过电流的晶体管。此外,本说明书中,所谓常关断型晶体管,是指当源极和栅极为相同电位时沟道为断开状态、在源极和漏极间不流过电流的晶体管。
[0026]此外,本说明书中,所谓电平位移(level shift)元件,是指具备使元件两端的电压以规定量进行位移的功能的元件。并且,将元件两端的电压差称作位移电压。
[0027]此外,本说明书中,所谓GaN类半导体,是具备氮化物半导体中的GaN、AlN、InN或它们的中间组分的AlxGa1 _XN、InGanN等的总称。
[0028](第一实施方式)
[0029]本实施方式的半导体装置具备源极端子、栅极端子以及漏极端子。并且,具备:常关断型晶体管,具有与源极端子连接的第I源极、第I漏极、与栅极端子连接的第I栅极;常开启型晶体管,具有与第I漏极连接的第2源极、与漏极端子连接的第2漏极、与栅极端子连接的第2栅极。
[0030]图1是本实施方式的半导体装置的电路图。本实施方式的半导体装置例如是额定电压为600V或1200V的功率模块。
[0031]本实施方式的半导体装置,将以电子为载流子的η型沟道的常关断型晶体管10、和以电子为载流子的η型沟道的常开启型晶体管20串联连接而构成功率模块。常关断型晶体管 10 例如是 Si (娃)的纵型 MOSFET(Metal Oxide Semiconductor Field EffectTransistor,金属氧化物半导体场效应晶体管)。此外,常开启型晶体管20例如是GaN(氮化镓)类半导体的HEMT。常开启型晶体管20具备栅极绝缘膜。
[0032]另外,常关断型晶体管10具备未图示的寄生体二极管(parasitic body d1de)。
[0033]常关断型晶体管10与常开启型晶体管20相比元件耐压低。常关断型晶体管10的元件耐压例如是10?30V。此外,常开启型晶体管20的元件耐压例如是600?1200V。
[0034]半导体装置具备源极端子100、漏极端子200、栅极端子300。并且,常关断型晶体管10具有与源极端子100连接的第I源极11、第I漏极12、与栅极端子300连接的第I栅极13。
[0035]此外,常开启型晶体管20具有与第I漏极12连接的第2源极21、与漏极端子200连接的第2漏极22、与栅极端子300连接的第2栅极23。通常,被施加比第2源极21高电压的常开启型晶体管20的第2漏极22被进行器件设计以便具备高耐压。例如设计为,使栅极电极与漏极电极之间的距离比栅极电极与源极电极之间的距离长。
[0036]本实施方式的半导体装置通过上述结构而作为具备源极端子100、漏极端子200和栅极端子300的常关断型晶体管发挥功能。
[0037]S卩,当半导体装置断开时,源极端子100以及栅极端子300被固定为地电位。并且,向漏极端子200例如施加600?1200V的电压。此时,常关断型晶体管10由于第I源极11与第I栅极13之间的电位差是阈值以下的OV而成为断开状态。另一方面,由于第2源极21的电位抬升,从而第2源极21与第2栅极23之间的电位差成为阈值以下,常开启型晶体管20成为断开状态。因而,半导体装置整体为断开状态。
[0038]当半导体装置导通时,源极端子100被固定为地电位。并且,向栅极端子300施加正的栅极电压,例如5V?15V的栅极电压。此时,常关断型晶体管10由于第I源极11与第I栅极13之间的电位差在阈值以上而成为导通状态。另一方面,通过向第2栅极23施加正的电压,第2源极21与第2栅极23之间的电位差在阈值以上而使常开启型晶体管20成为导通状态。因而,半导体装置成为导通状态。
[0039]图2是比较方式的半导体装置的电路图。该半导体装置也具备源极端子100、漏极端子200和栅极端子300。并且,常关断型晶体管10具有与源极端子100连接的第I源极11、第I漏极12、与栅极端子300连接的第I栅极13。此外,常开启型晶体管20具有与第I漏极12连接的第2源极21、与漏极端子200连接的第2漏极22、与源极端子100连接的第2栅极23。
[0040]比较方式的半导体装置也通过上述结构,作为具备源极端子100、漏极端子200和栅极端子300的常关断型晶体管而发挥功能。但是,在图2的结构中,第2栅极23与源极端子100连接,所以无法向栅极施加过驱动(overdrive)、即正的电压。当半导体装置导通时,第2源极21电位上升由常关断型晶体管10的导通电阻和额定电流之积表示的电压量,因此栅极电压有效地变负。因此,有不能充分引起导通电流的问题。
[0041]本实施方式中,常关断型晶体管10的第I栅极13和常开启型晶体管20的第2栅极23都与栅极端子300连接。因而,当半导体装置导通时,能够对常开启型晶体管20的第2栅极23施加过驱动、即正的电压。因此,导通时的沟道电阻降低。由此,能得到大的导通电流。
[0042]本实施方式的半导体装置中,常关断型晶体管10断开时的第I源极11与第I漏极12间的耐压比常开启型晶体管20的第2源极21与第2栅极23间的耐压低。具体而言,常关断型晶体管10的雪崩击穿电压设计得比常开启型晶体管20的栅极绝缘膜的耐压低。
[0043]常关断型晶体管10的雪崩击穿电压由常关断型晶体管10的寄生体二极管的耐压、或沟道部的穿通(punch through)耐压规定。常关断型晶体管10的雪崩击穿电压例如能够通过对形成常关断型晶体管10的杂质层的杂质浓度、杂质分布进行调整来调整。
[0044]常关断型晶体管10的雪崩击穿电压或常开启型晶体管20的栅极绝缘膜的耐压例如能够将测定针接触常关断型晶体管10或常开启型晶体管20的电极来直接进行评价。
[0045]在常关断型晶体管10与常开启型晶体管20串联连接的电路结构中,在常关断型晶体管10与常开启型晶体管20的连接部(以下也简称连接部)即常关断型晶体管10的第I漏极12、或者常开启型晶体管20的第2源极21,有可能在器件动作中产生过电压。例如,当半导体装置从导通状态转移到断开状态时,在源极端子100与漏极端子200之间施加的高电压按常关断型晶体管10与常开启型晶体管20的寄生电容之比而被分压,从而会产生过电压。或者,当半导体装置断开时,按常关断型晶体管10与常开启型晶体管20各自的漏电流比,在源极端子100与漏极端子200之间施加的高电压被分压,从而会产生过电压。
[0046]若过电压产生,则常开启型晶体管20的第2源极21与第2栅极23之间被施加高电压。在该过电压达到栅极绝缘膜的耐压以上时,常开启型晶体管20的栅极绝缘膜的漏电流增大,或者有可能被破坏。若常开启型晶体管20的栅极绝缘膜的漏电流增大、或者栅极绝缘膜被破坏,则半导体装置的动作出现问题。因此,半导体装置的可靠性降低。
[0047]此外,即使在栅极绝缘膜没有发生问题的情况下,通过在常开启型晶体管20的第2源极21与第2栅极23之间施加高电压,也会在第2源极21侧将电荷捕获。由此,有可能产生电流崩塌。若产生电流崩塌则导通电流降低从而动作出现问题。因而,半导体装置的可靠性当然降低。
[0048]本实施方式中,常关断型晶体管10的雪崩击穿电压设计得比常开启型晶体管20的栅极绝缘膜的耐压低。由此,使常关断型晶体管断开时的第I源极和第I漏极间的耐压比常开启型晶体管的第2源极和第2栅极间的耐压低。
[0049]因而,即使是在连接部产生了过电压的情况下,也通过产生常关断型晶体管10的雪崩击穿,从而能够将连接部的电荷释放。因而,能够使在常开启型晶体管20的第2源极21与第2栅极23之间施加的电压比常开启型晶体管20的栅极绝缘膜的耐压低。因而,防止常开启型晶体管20的栅极绝缘膜的漏电流的增大、栅极绝缘膜的破坏。此外,还防止电流崩塌。由此,半导体装置的可靠性提高。
[0050]另外,通常,常开启型晶体管20的栅极绝缘膜的耐压超过30V。因而,优选的是,常关断型晶体管10的雪崩击穿电压在30V以下。
[0051]此外,优选的是,雪崩击穿电压与常开启型晶体管20的阈值(Vth)的绝对值相比足够高。这是为了能够使常开启型晶体管20可靠地断开。从该观点来看,优选的是,常关断型晶体管10的雪崩击穿电压是常开启型晶体管20的阈值(Vth)的绝对值+5V以上。假设在Vth =-1OV的情况下,常关断型晶体管10的雪崩击穿电压优选在15V以上。
[0052]此外,常关断型晶体管10的导通电阻与额定电流之积优选在2V以下。若为2V左右,则能够充分抑制由于在常关断型晶体管10中产生的电压下降而使常开启型晶体管20的栅极偏压降低的情况。因而,能够将由栅极偏压的降低导致的电流损耗抑制在最小限度。
[0053](第二实施方式)
[0054]本实施方式的半导体装置与第一实施方式的不同点在于,在栅极端子与第2栅极之间还具备电平位移元件,该电平位移元件具有位移电压,使第2栅极侧的电压降低位移电压的量。关于与第一实施方式重复的内容,将说明省略。
[0055]图3是本实施方式的半导体装置的电路图。本实施方式的半导体装置,在栅极端子300与第2栅极23之间,具备使第2栅极23侧的电压降低的电平位移元件。本实施方式中,作为电平位移元件而设有齐纳二极管(第I齐纳二极管)130。
[0056]齐纳二极管130的阳极连接于第2栅极23,阴极连接于栅极端子300。
[0057]本实施方式中,与第一实施方式同样,常关断型晶体管10的第I栅极13与常开启型晶体管20的第2栅极23都与栅极端子300连接。因而,当半导体装置导通时,能够向常开启型晶体管20的第2栅极23施加过驱动、即正的电压。
[0058]但是,若向第2栅极23施加的正的栅极电压过高,则向常开启型晶体管20的栅极绝缘膜施加的电场增大,有可能发生栅极绝缘膜的可靠性问题。特别是,如上述那样,常开启型晶体管20的源极侧不为高耐压结构,所以容易发生栅极绝缘膜的可靠性问题。例如,若在第2源极21与第2栅极23之间施加的电压达到5V以上,则有可能发生栅极绝缘膜的可靠性问题。
[0059]本实施方式中,在向栅极端子300施加正的栅极电压的情况下,施加于第2栅极23的电压会降低齐纳二极管130的齐纳电压的量。因而,半导体装置导通时在第2源极21与第2栅极23之间施加的电压降低。由此,常开启型晶体管20的栅极绝缘膜的可靠性提高。
[0060]齐纳二极管130的位移电压即齐纳电压优选的是,比常关断型晶体管10导通时被施加的栅极电压即对栅极端子300施加的电压、与常关断型晶体管10的导通电阻和额定电流之积之间的差小。这里,常关断型晶体管10的导通电阻和额定电流之积,表示半导体装置导通时的第I漏极12以及第2源极21的电压。
[0061]常关断型晶体管10的导通电阻例如能够使测定针接触常关断型晶体管10的电极而直接进行评价。
[0062]例如,设向栅极端子300施加的电压为1V。并且,设常关断型晶体管10的导通电阻(Ron)为0.1 Ω,设额定电流(漏极电流)为10A。该情况下,常关断型晶体管10的导通电阻和额定电流之积即第I漏极12以及第2源极21的电压为IV。这样,齐纳二极管130的齐纳电压优选比9V( = 1V — IV)小。
[0063]通过补充上述关系,当半导体装置导通时,保证在常开启型晶体管20的第2源极21与第2栅极23之间施加过驱动、即正的电压。由此,半导体装置的导通电流增大。
[0064]齐纳二极管的齐纳电压与动作状态、动作环境无关,是稳定的。因而,位移电压稳定,能够实现稳定的电路动作。此外,齐纳二极管中,存在具有大范围的齐纳电压的产品,所以具有能够以I个部件实现所希望的位移电压的优点。
[0065]此外,优选的是,齐纳二极管130的齐纳电压比从常关断型晶体管10导通时被施加的栅极电压、与常关断型晶体管10的导通电阻和额定电流之积之间的差中减去5V而得到的电压大。该5V是为了确保栅极绝缘膜的可靠性而允许的电压。
[0066]例如,假设对栅极端子300施加的电压为10V,常关断型晶体管10的导通电阻和额定电流之积即第I漏极12以及第2源极21的电压为IV。该情况下,齐纳二极管130的齐纳电压优选在4V( = (10V -1V) - 5V)以上。
[0067]通过补充上述关系,当半导体装置导通时,在常开启型晶体管20的第2源极21与第2栅极23之间施加的电压、即对栅极绝缘膜施加的电压成为5V以下,栅极绝缘膜的可靠性提闻。
[0068](第三实施方式)
[0069]本实施方式的半导体装置与第一及第二实施方式的不同点在于,电平位移元件是第I 二极管,第I 二极管的阳极连接于栅极端子侧,第I 二极管的阴极连接于第2栅极侧,在栅极端子与第2栅极之间,与第I 二极管并联而设有第2 二极管,第2 二极管的阳极连接于第2栅极,第2 二极管的阴极连接于栅极端子。关于与第一及第二实施方式重复的内容,将说明省略。
[0070]图4是本实施方式的半导体装置的电路图。本实施方式的半导体装置具备串联连接的3个二极管(第I 二极管)140a、140b、140c和二极管(第2 二极管)150。本实施方式中,3个二极管140a、140b、140c是电平位移元件。
[0071]3个二极管(第I 二极管)140a、140b、140c的阳极连接于栅极端子300侧,阴极连接于第2栅极23侧。并且,二极管(第2 二极管)150在栅极端子300与第2栅极23之间与3个二极管140a、140b、140c并联而设置。二极管150的阳极连接于第2栅极,阴极连接于栅极端子300。
[0072]本实施方式中,在对栅极端子300施加正的栅极电压的情况下,对第2栅极23施加的电压会降低3个二极管140a、140b、140c的正向压降(Vf)的量。因而,半导体装置导通时在第2源极21与第2栅极23之间施加的电压降低。由此,常开启型晶体管20的栅极绝缘膜的可靠性提高。
[0073]对第2栅极23施加的电压能够通过优化串联连接的二极管的数量来调整。图4中,例示出二极管的数量是3个的情况,但不限于此个数。
[0074]在使半导体装置为断开状态的情况下,对栅极端子300例如施加0V。此时,在常开启型晶体管20的第2栅极23蓄积的正电荷经由二极管150而被吸引至栅极端子300。通过设置二极管150,从导通状态向断开状态的切换被迅速地进行。
[0075]二极管(第I 二极管)140a、140b、140c以及二极管(第2 二极管)150例如是PIN二极管或肖特基势垒二极管。PIN二极管相比于肖特基势垒二极管,正向压降(Vf)大,因此在使位移电压增大的情况下是优选的。另一方面,肖特基势垒二极管的开关速度快,因此从提高电路动作速度的观点来看是优选的。
[0076](第四实施方式)
[0077]本实施方式的半导体装置,在栅极端子与第2源极之间还具备串联连接的第3 二极管和第2齐纳二极管,第3 二极管的阴极与栅极端子连接,第2齐纳二极管的阴极与第2源极连接。其他结构与第一实施方式相同。因而,对于与第一实施方式重复的内容将说明省略。
[0078]图5是本实施方式的半导体装置的电路图。本实施方式的半导体装置,在栅极端子300与常开启型晶体管20的第2源极21之间,进一步具备串联连接的二极管(第3 二极管)210和齐纳二极管(第2齐纳二极管)220。并且,二极管(第3 二极管)210的阴极与栅极端子300连接,齐纳二极管(第2齐纳二极管)220的阴极与第2源极21连接。此夕卜,二极管(第3 二极管)210的阳极与齐纳二极管220的阳极连接。
[0079]在如上述那样将常关断型晶体管10与常开启型晶体管20串联连接的电路结构中,在常开启型晶体管20的第2源极21,有可能在器件动作中产生过电压。本实施方式中,在第2源极21产生了过电压的情况下,二极管210中流过正向电流,能够使第2源极21的电压降低。因而,栅极绝缘膜的破坏不易发生,半导体装置的可靠性提高。
[0080]但是,在使半导体装置断开时,需要使第2源极21的电压上升一定量以上、使常开启型晶体管20成为断开状态。本实施方式中,通过设置齐纳二极管220,在使半导体装置断开时,即使栅极端子300成为0V,第2源极21的电压也上升到齐纳二极管220的齐纳电压。由此,能够使常开启型晶体管20为断开状态。
[0081]根据本实施方式,当对第2源极21施加了过电压时,能够直接对左右栅极绝缘膜的可靠性的在第2源极21与第2栅极23之间施加的电压进行控制。因而,能够实现可靠性无偏差的稳定的特性的半导体装置。
[0082]另外,二极管(第3 二极管)210例如是PIN 二极管或肖特基势垒二极管。
[0083](第五实施方式)
[0084]本实施方式的半导体装置中,常开启型晶体管具有源极场板(以下也记作SFP)。其他结构与第一实施方式相同。因而,关于与第一实施方式重复的内容将说明省略。
[0085]图6是本实施方式的常开启型晶体管的示意剖视图。常开启型晶体管是GaN(氮化镓)类半导体的、具备栅极绝缘膜的HEMT。
[0086]该常开启型晶体管20(图1)形成在基板160上的氮化物半导体层161上。基板160例如是硅(Si)。
[0087]在基板160与氮化物半导体层161之间,设有缓冲层(未图示)。缓冲层具备缓和基板160与氮化物半导体层161之间的晶格不匹配的功能。缓冲层例如由氮化铝镓(AlxGa1-XN(O < X < I))的多层结构形成。
[0088]此外,氮化物半导体层161具备动作层(沟道层)161a与势垒层(电子供给层)161b的层叠结构。动作层161a例如是氮化镓(GaN),势垒层161b例如是氮化铝镓(AlGaN)。
[0089]在动作层161a与势垒层161b之间形成有异质结界面。
[0090]在氮化物半导体层161上以与氮化物半导体层161之间夹着第一氮化硅膜162的方式形成栅极电极164。第一氮化硅膜162作为栅极绝缘膜发挥功能。栅极电极164例如是金属电极。金属电极例如是镍(Ni)电极、钛(Ti)电极或铝(Al)电极。
[0091]此外,在氮化物半导体层161上,以与氮化物半导体层161之间夹着栅极电极164的方式设有源极电极166和漏极电极168。源极电极166和漏极电极168分别与栅极电极164分离。
[0092]在源极电极166与栅极电极164之间、以及漏极电极168与栅极电极164之间的氮化物半导体层161上,形成第二氮化娃膜170。第二氮化娃膜170与氮化物半导体层161的表面相接而形成。第二氮化娃膜170作为对栅极电极164和源极电极166、栅极电极164和漏极电极168之间的氮化物半导体层161的表面进行保护的表面保护膜(或钝化膜)发挥功能。
[0093]源极电极166具备在第二氮化硅膜170上向漏极电极168侧延伸的2级的源极场板部166a、166b。源极场板部166a、166b在常开启型晶体管20导通时作为源极场板发挥功倉泛。
[0094]源极场板部166a、166b具有缓和源极电极166与栅极电极164间的源极区域以及栅极电极164与漏极电极168间的漏极区域中的电场、抑制电流崩塌的功能。作为实现相同功能的结构,有使栅极电极164向漏极电极168侧延伸的栅极场板(以下也记作GFP)。
[0095]通常,从避免动作速度降低、损耗增大的观点来看,优选晶体管的寄生电容小。特别是,漏极一栅极间电容(Cgd)对寄生振荡、开关速度的影响大从而希望较小。
[0096]因而,在本实施方式的半导体装置,即将常关断型晶体管10与常开启型晶体管20直接连接并使各自的栅极电极共通化的结构中,优选将栅极一漏极间电容(Cgd)变小的SFP作为比GFP更能降低崩塌的结构。
[0097]根据本实施方式,除了与第一实施方式同样的可靠性提高效果以外,还能够利用SFP抑制寄生电容对器件特性的影响,抑制电流崩塌。因而,实现可靠性进一步提高的半导体装置。
[0098]另外,对于SFP,以源极电极166自身向漏极侧延伸的结构为例进行了说明,但是也可以是例如将与源极电极166电位相同的SFP电极与源极电极166独立地设置的结构。此外,源极场板部的数量不限于2个,可以是I个,也可以是3个以上。
[0099](第六实施方式)
[0100]本实施方式的半导体装置还具备基板、源极的引线、漏极的引线、栅极的引线。并且,在基板上安装常关断型晶体管、常开启型晶体管、齐纳二极管。从源极的引线侧朝向漏极的引线侧,依次配置常关断型晶体管、常开启型晶体管。此外,从源极的引线侧朝向漏极的引线侧,依次配置第I齐纳二极管、常开启型晶体管。进而,源极的引线与第I源极连接,漏极的引线与第2漏极连接,栅极的引线与第I栅极以及第I齐纳二极管的阴极连接。
[0101]本实施方式是将第二实施方式的电路结构作为功率模块而具体化的形态。以下,对于与第二实施方式重复的内容将说明省略。
[0102]图7是本实施方式的半导体装置的俯视示意图。
[0103]本实施方式的半导体装置具备基板90、源极的引线91、漏极的引线92、栅极的引线93。源极的引线91与源极端子100对应,漏极的引线92与漏极端子200对应,栅极的引线93与栅极端子300对应。
[0104]在基板90的至少表面,例如存在金属的第一导电体95以及第二导电体96。第一导电体95以及第二导电体96在物理上相分离。
[0105]在基板90上的第一导电体95上,安装常关断型晶体管10、常开启型晶体管20。此夕卜,在基板90上的第二导电体96上,安装齐纳二极管130。常关断型晶体管10、常开启型晶体管20、齐纳二极管130例如是半导体芯片,例如通过导电性膏、或焊料而安装在基板的第一及第二导电体95、96上。
[0106]并且,从源极的引线91侧朝向漏极的引线92侧,依次配置常关断型晶体管10、常开启型晶体管20。此外,从基板90的源极的引线91侧朝向漏极的引线92侧,依次配置齐纳二极管130、常开启型晶体管20。
[0107]并且,源极的引线91与常关断型晶体管10的第I源极11连接。并且,漏极的引线92与第2漏极22连接。栅极的引线93与第I栅极13、以及和齐纳二极管130的阴极电位相同的第二导电体96连接。
[0108]此外,齐纳二极管130的阳极130a与常开启型晶体管20的第2栅极23连接。并且,和常关断型晶体管10的第I漏极电位相同的第一导电体95与常开启型晶体管20的第2源极21连接。
[0109]各连接例如通过引线键合进行。引线键合例如使用铜(Cu)、铝(Al)等材料。
[0110]根据本实施方式,从源极的引线91侧朝向漏极的引线92侧,依次配置常关断型晶体管10、常开启型晶体管20。由此,能够使半导体装置的导通电流流过的路径较短。通过该配置,极力地排除导通电流的路径的寄生电感,降低导通损耗。
[0111]以上,根据本实施方式,除了第二实施方式的效果以外,通过将各器件适当地配置、连接,能够实现特性优良的半导体装置。
[0112]在本实施方式中,优选的是,齐纳二极管130与常开启型晶体管20之间的距离,比常关断型晶体管10与常开启型晶体管20之间的距离长。通常,二极管与晶体管相比更容易受到热的影响。并且,常开启型晶体管20由于消耗大的电力而发热量大。因而,通过使齐纳二极管130与常开启型晶体管20的距离远离,能够抑制由半导体装置的发热引起的特性变动。
[0113](第七实施方式)
[0114]本实施方式的半导体装置,与第一实施方式的不同点在于,还具备第3齐纳二极管,该第3齐纳二极管具有与第I源极连接的阳极、和与第I漏极及第2源极连接的阴极,齐纳电压比常关断型晶体管的雪崩击穿电压低。对于与第一实施方式重复的内容将说明省略。
[0115]图8是本实施方式的半导体装置的电路图。本实施方式的半导体装置中与常关断型晶体管10并联地设置齐纳二极管(第3齐纳二极管)230。
[0116]齐纳二极管230的阳极与第I源极11连接。此外,阴极与第I漏极12以及第2源极21连接。
[0117]齐纳二极管230的齐纳电压设定得比常关断型晶体管10的雪崩击穿电压低。此夕卜,齐纳电压设定得比常开启型晶体管20的栅极绝缘膜的耐压低。由此,常关断型晶体管10断开时的第I源极11与第I漏极12间的耐压比常开启型晶体管20的第2源极21与第2栅极23间的耐压低。
[0118]本实施方式的半导体装置中,当常关断型晶体管10与常开启型晶体管20的连接部产生过电压时,在过电压达到齐纳电压的时刻,电荷向齐纳二极管230释放,吸引到源极端子100。因而,抑制连接部的电压上升,防止常开启型晶体管20的栅极绝缘膜的漏电流的增大、栅极绝缘膜的破坏。此外,还防止电流崩塌。由此,半导体装置的可靠性提高。
[0119]齐纳二极管230的齐纳电压与常关断型晶体管10的雪崩击穿电压相比能够更高精度地控制。因而,本实施方式的半导体装置通过使用齐纳二极管230,与第一实施方式相t匕,更稳定且能够抑制连接部的过电压。此外,即使是对常关断型晶体管10的第I漏极12施加了噪声等预期外的高电压的情况,也由于电荷能够通过齐纳二极管230释放,从而有利于常关断型晶体管10的保护。
[0120](第八实施方式)
[0121]本实施方式的半导体装置与第七实施方式的不同点在于,还具备第4 二极管和电容器,该第4 二极管设置在第I漏极与第3齐纳二极管之间,具有与第I漏极连接的阳极、和与第3齐纳二极管的阴极连接的阴极,该电容器在第3齐纳二极管的阴极与第I源极之间、与第3齐纳二极管并联地设置。对于与第七实施方式重复的内容将说明省略。
[0122]图9是本实施方式的半导体装置的电路图。本实施方式的半导体装置中,在常关断型晶体管10的漏极侧设有二极管(第4 二极管)240。并且,与常关断型晶体管10并联地设有齐纳二极管(第3齐纳二极管)230。进而,与齐纳二极管(第3齐纳二极管)230并联地设有电容器250。
[0123]二极管240设置在第I漏极12以及第2源极21与齐纳二极管230之间。二极管240的阳极与第I漏极12以及第2源极21连接。此外,二极管240的阴极与齐纳二极管230的阴极连接。
[0124]此外,电容器250在二极管240的阴极以及齐纳二极管230的阴极与第I源极11之间、与齐纳二极管230并联地设置。
[0125]二极管240防止来自电容器250侧的电荷的逆流。二极管240例如是PIN 二极管或肖特基势垒二极管。
[0126]根据本实施方式,在常关断型晶体管10与常开启型晶体管20的连接部发生了过电压的情况下,将其电荷暂时蓄积在电容器250中。并且,蓄积的电荷通过齐纳二极管230而向源极端子100侧释放。由此,抑制连接部的电压上升,防止常开启型晶体管20的栅极绝缘膜的漏电流的增大、栅极绝缘膜的破坏。此外,还防止电流崩塌。由此,半导体装置的可罪性提闻。
[0127]本实施方式中,由于将电荷暂时蓄积在电容器250中,所以能够使齐纳二极管230为便宜的寄生电容小的二极管。因而,能够使半导体装置便宜。
[0128]此外,电容器250的电容在常关断型晶体管10的第I源极11与第2源极21之间与二极管240的电容串联连接。对于二极管240而言,与仅由齐纳二极管构成的情况相比,能够选择寄生电容明显小的品种。因而,通过使二极管240的电容相对于电容器250的电容足够小,从而电容器250的电容的作为常关断型晶体管10的寄生电容的贡献变小。因此,能够抑制由寄生电容的增大导致的常关断型晶体管10的动作速度的降低、损耗的增加。
[0129]此外,通过设置电容器250,与第七实施方式那样的仅由齐纳二极管构成的情况相t匕,能够使齐纳二极管230的尺寸更小。因此,能够减小齐纳二极管230的漏电流。因而,能够实现低耗电的半导体装置。
[0130]此外,通过设置电容器250,对齐纳二极管230的响应速度的要求得到缓和。因而,能够使齐纳二极管230在距离上远离作为热源的常开启型晶体管20地配置。因而,能够抑制齐纳二极管230的温度成为高温而特性变动。
[0131](第九实施方式)
[0132]本实施方式的半导体装置与第七实施方式的不同点在于,还具备肖特基势垒二极管,该肖特基势垒二极管具有与第I源极连接的阳极、和与第I漏极连接的阴极,正向压降比常关断型晶体管的寄生体二极管的正向压降低,设置在第I源极与第I漏极之间,与第3齐纳二极管并联。以下,对于与第七实施方式重复的内容将说明省略。
[0133]图10是本实施方式的半导体装置的电路图。本实施方式的半导体装置中,与常关断型晶体管10并联地设置齐纳二极管(第3齐纳二极管)230。进而,与齐纳二极管230并联地设置肖特基势垒二极管260。
[0134]肖特基势垒二极管260的阳极与第I源极11连接。此外,肖特基势垒二极管260的阴极与第I漏极12以及第2源极21连接。
[0135]肖特基势垒二极管260的正向压降(Vf)比常关断型晶体管的寄生体二极管(未图示)的正向压降(Vf)低。并且,肖特基势垒二极管260在第I漏极12及第2源极21与第I源极11之间、与齐纳二极管(第3齐纳二极管)230并联地设置。
[0136]如第七实施方式那样,在没有设置肖特基势垒二极管260的情况下,在源极端子100相对于漏极端子200成为正电压的回流模式时,电流流过常关断型晶体管10的寄生体二极管。本实施方式中,设置具有比常关断型晶体管10的寄生体二极管的正向压降(Vf)低的正向压降(Vf)的肖特基势垒二极管260。由此,在回流模式时电流流过肖特基势垒二极管260。
[0137]肖特基势垒二极管与PIN二极管不同,仅利用多数载流子进行动作。因而,与PIN二极管相比,恢复(recovery)特性良好。由此,本实施方式中,除了第七实施方式的效果以夕卜,还能提高回流模式时的恢复特性。由此,能够实现可靠性以及恢复特性良好的半导体装置。由于耐压的大部分由常开启型晶体管20承担,所以肖特基势垒二极管260能够选择低耐压的品种。由此,能够在具备与低耐压品种相同的Vf特性、恢复特性的同时实现高耐压的体二极管动作。
[0138]此外,由于正向压降(Vf)小,所以回流模式时的导通损耗、开关损耗也能降低。此夕卜,通过肖特基势垒二极管260的寄生电容,连接部的过电压的施加被抑制。此外,通过肖特基势垒二极管260的漏电流,电荷能够从连接部释放,所以连接部的过电压的施加被抑制。因而,能够进一步实现可靠性提高的半导体装置。
[0139]另外,肖特基势垒二极管由于不具备对雪崩击穿的保证,所以优选的是肖特基势垒二极管260的耐压比常关断型晶体管10的雪崩击穿电压高。
[0140](第十实施方式)
[0141]本实施方式的半导体装置具备:常关断型晶体管,具有与源极端子连接的第I源极、第I漏极、与栅极端子连接的第I栅极;常开启型晶体管,具有与第I漏极连接的第2源极、与漏极端子连接的第2漏极、与栅极端子连接的第2栅极;以及齐纳二极管,具有与放电端子连接的阳极、和与第I漏极连接的阴极,齐纳电压比常开启型晶体管的第2源极与第2栅极间的耐压低,齐纳电压比常关断型晶体管的雪崩击穿电压低。
[0142]图11是本实施方式的半导体装置的电路图。关于将常关断型晶体管10与常开启型晶体管20串联连接而构成功率模块这一点,与第一实施方式相同。以下,对于与第一实施方式重复的内容将说明省略。
[0143]本实施方式的半导体装置具备源极端子100、漏极端子200、栅极端子300和放电端子400。并且,常关断型晶体管10具有与源极端子100连接的第I源极11、第I漏极12、与栅极端子300连接的第I栅极13。此外,常开启型晶体管20具有与第I漏极12连接的第2源极21、与漏极端子200连接的第2漏极22、与栅极端子300连接的第2栅极23。
[0144]进而,具备齐纳电压比常开启型晶体管20的第2源极与第2栅极间的耐压低的齐纳二极管70。此外,齐纳电压比常关断型晶体管10的雪崩击穿电压低。
[0145]齐纳二极管70的阳极与放电端子400连接。齐纳二极管70的阴极与第I漏极12以及第2源极21连接。
[0146]此外,在放电端子400上,经二极管80连接电源500。二极管80例如是PIN 二极管。电源500例如是对串联连接的常关断型晶体管10与常开启型晶体管20进行控制的控制电路的电源。
[0147]二极管80的阳极与放电端子400连接。此外,二极管80的阴极与电源500连接。二极管80抑制电流从电源500侧流入连接部。
[0148]根据本实施方式,在常关断型晶体管10与常开启型晶体管20的连接部产生了过电压的情况下,在过电压达到齐纳电压的时刻,电荷被齐纳二极管70释放,吸引到放电端子400。因而,抑制连接部的电压上升,防止常开启型晶体管20的栅极绝缘膜的漏电流的增大、栅极绝缘膜的破坏。此外,还防止电流崩塌。由此,半导体装置的可靠性提高。此外,通过使由于过电压而在连接部产生的电荷进入电源500而再生,能够实现半导体装置的系统整体的节能。
[0149]另外,齐纳电压优选根据电源500的电压和连接部所允许的电压的值来实现优化。例如,在电源500的电压为5V、连接部所允许的电压为20V的情况下,将齐纳电压调整为15V左右即可。
[0150](第^^一实施方式)
[0151 ] 本实施方式的半导体装置,在齐纳二极管与放电端子之间,还具备二极管,该二极管具有与齐纳二极管的阳极连接的阳极、和与放电端子连接的阴极,除此以外与第十实施方式相同。以下,对于与第十实施方式重复的内容将说明省略。
[0152]图12是本实施方式的半导体装置的电路图。
[0153]本实施方式的半导体装置与第十实施方式不同,二极管80设置在放电端子400与齐纳二极管70之间。例如,能够将图12的虚线框内做成I个半导体封装。
[0154]根据本实施方式也能得到与第十实施方式相同的效果。进而,通过将用于防止逆流的二极管80安装在半导体封装内,能够实现更紧凑的系统。
[0155]以上,在实施方式中,对于常关断型晶体管10,以Si (硅)的纵型MOSFET为例进行了说明,对于常开启型晶体管20,以GaN(氮化镓)类半导体的η沟道型HEMT为例进行了说明,但常关断型晶体管10和常开启型晶体管20不限于此。
[0156]说明了几个实施方式,但这些实施方式只是例示而并不意欲限定本发明的范围。这里所例示的半导体装置能够以其他方式实施,进而,在不脱离本发明精神的范围内,能够对这些实施方式进行省略、替换、变更。这些实施方式及其变形包含在权利要求的范围及其等同范围内。
【权利要求】
1.一种半导体装置,其特征在于, 具备: 常关断型晶体管,具有与源极端子连接的第1源极、第1漏极、与栅极端子连接的第1栅极;以及 常开启型晶体管,具有与上述第1漏极连接的第2源极、与漏极端子连接的第2漏极、与上述栅极端子连接的第2栅极。
2.如权利要求1所述的半导体装置,其特征在于, 在上述栅极端子与上述第2栅极之间还具备电平位移元件,该电平位移元件具有位移电压,使上述第2栅极侧的电压降低上述位移电压的量。
3.如权利要求2所述的半导体装置,其特征在于, 上述电平位移元件的上述位移电压,比上述常关断型晶体管导通时上述栅极端子被施加的栅极电压、与上述常关断型晶体管的导通电阻和额定电流之积的差小。
4.如权利要求2所述的半导体装置,其特征在于, 上述电平位移元件是第1齐纳二极管,上述第1齐纳二极管的阳极与上述第2栅极连接,上述第1齐纳二极管的阴极与上述栅极端子连接。
5.如权利要求2所述的半导体装置,其特征在于, 上述电平位移元件是第1 二极管,上述第1 二极管的阳极与上述栅极端子侧连接,上述第1 二极管的阴极与上述第2栅极侧连接,在上述栅极端子与上述第2栅极之间,与上述第1 二极管并联地设置第2 二极管,上述第2 二极管的阳极与上述第2栅极连接,上述第2 二极管的阴极与上述栅极端子连接。
6.如权利要求2所述的半导体装置,其特征在于, 上述电平位移元件的上述位移电压大于如下电压,该电压为:从上述常关断型晶体管导通时上述栅极端子被施加的栅极电压、与上述常关断型晶体管的导通电阻和额定电流之积的差中减去5V而得到的电压。
7.如权利要求1所述的半导体装置,其特征在于, 在上述栅极端子与上述第2源极之间,还具备串联连接的第3 二极管和第2齐纳二极管,上述第3 二极管的阴极与上述栅极端子连接,上述第2齐纳二极管的阴极与上述第2源极连接。
8.如权利要求1所述的半导体装置,其特征在于, 上述常开启型晶体管是GaN类半导体的HEMT。
9.如权利要求8所述的半导体装置,其特征在于, 上述常开启型晶体管具有源极场板。
10.如权利要求1所述的半导体装置,其特征在于, 上述常关断型晶体管是Si的纵型MOSFET。
11.如权利要求1所述的半导体装置,其特征在于, 上述常关断型晶体管断开时的上述第1源极与上述第1漏极间的耐压,比上述常开启型晶体管的上述第2源极与上述第2栅极间的耐压低。
12.如权利要求1所述的半导体装置,其特征在于, 还具备第3齐纳二极管,该第3齐纳二极管具有与上述第1源极连接的阳极、和与上述第1漏极以及上述第2源极连接的阴极,齐纳电压比上述常关断型晶体管的雪崩击穿电压低。
13.如权利要求12所述的半导体装置,其特征在于, 还具备: 第4 二极管,设置在上述第1漏极与上述第3齐纳二极管之间,具有与上述第1漏极连接的阳极、和与上述第3齐纳二极管的阴极连接的阴极;以及 电容器,在上述第4 二极管的阴极与上述第1源极之间,与上述第3齐纳二极管并联地设置。
14.如权利要求12所述的半导体装置,其特征在于, 还具备肖特基势垒二极管,该肖特基势垒二极管具有与上述第1源极连接的阳极、和与上述第1漏极连接的阴极,正向压降比上述常关断型晶体管的寄生体二极管的正向压降低,该肖特基势垒二极管在上述第1源极与上述第1漏极之间、与上述第3齐纳二极管并联地设置。
15.如权利要求4所述的半导体装置,其特征在于, 还具备基板、源极的引线、漏极的引线、栅极的引线, 在上述基板上,从上述源极的引线侧朝向上述漏极的引线侧,依次配置上述常关断型晶体管、上述常开启型晶体管, 在上述基板上,从上述源极的引线侧朝向上述漏极的引线侧,依次配置上述第1齐纳二极管、上述常开启型晶体管, 上述源极的引线与第1源极连接, 上述漏极的引线与上述第2漏极连接, 上述栅极的引线与上述第1栅极以及上述第1齐纳二极管的阴极连接。
16.一种半导体装置,其特征在于, 具备: 常关断型晶体管,具有与源极端子连接的第1源极、第1漏极、与栅极端子连接的第1栅极; 常开启型晶体管,具有与上述第1漏极连接的第2源极、与漏极端子连接的第2漏极、与上述栅极端子连接的第2栅极;以及 齐纳二极管,具有与放电端子连接的阳极、和与上述第1漏极连接的阴极,齐纳电压比上述常开启型晶体管的上述第2源极与上述第2栅极间的耐压低,上述齐纳电压比上述常关断型晶体管的雪崩击穿电压低。
17.如权利要求16所述的半导体装置,其特征在于, 在上述栅极端子与上述第2栅极之间还具备电平位移元件,该电平位移元件具有位移电压,使上述第2栅极侧的电压降低上述位移电压的量。
18.如权利要求17所述的半导体装置,其特征在于, 上述电平位移元件的上述位移电压,比上述常关断型晶体管导通时上述栅极端子被施加的栅极电压、与上述常关断型晶体管的导通电阻和额定电流之积的差小。
19.如权利要求16所述的半导体装置,其特征在于, 在上述齐纳二极管与上述放电端子之间还具备二极管,该二极管具有与上述齐纳二极管的阳极连接的阳极、和与上述放电端子连接的阴极。
20.如权利要求16所述的半导体装置,其特征在于, 上述放电端子与电源连接。
【文档编号】H01L29/778GK104253599SQ201410217166
【公开日】2014年12月31日 申请日期:2014年5月22日 优先权日:2013年6月25日
【发明者】池田健太郎 申请人:株式会社东芝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1