锂离子电池正极材料的制备方法

文档序号:7065368阅读:1148来源:国知局
锂离子电池正极材料的制备方法
【专利摘要】本发明公开了一种晶面择优生长的单晶MoO3锂离子电池正极材料的制备方法,其特征在于:将收集好的甘蔗渣用去离子水清洗,烘干,再将所得甘蔗渣模板放入1-10%的钼酸铵水溶液中浸渍,甘蔗渣和钼酸铵水溶液的重量比为1-7∶93-99,待模板完全浸透后取出,并于60℃烘干;再将干燥后的吸附有钼酸铵的甘蔗渣模板在空气气氛中,控制温度400-600℃,煅烧时间2-5小时,得到MoO3锂离子电池正极粉体材料。本发明方法简单、成本低、环保性好,制备的晶面择优生长的单晶MoO3,单晶及择优生长材料可提高材料的电导性及改善其循环稳定性,具有很好的经济效益和社会效益,绿色环保。
【专利说明】晶面择优生长的单晶MoO3锂离子电池正极材料的制备方法

【技术领域】
[0001]本发明属于锂离子电池【技术领域】,涉及一种晶面择优生长的单晶MoO3锂电离子电池正极材料的制备方法。

【背景技术】
[0002]锂离子电池由于其容量高、能量密度大、使用安全等优势,已被广泛应用于便捷式电子设备、航天、军工等领域。在锂离子电池的组成中,电极材料占据了相当重要的位置,所以大量的研究者都对电极材料做了深入研究,并取得了一定的成果。
[0003]MoO3是过渡族金属氧化物中研究较广的金属氧化物,它具有多重化学价态,热稳定性和化学稳定性强。一般来说,MoO3具有三种不同的晶型:正交α相MoO3,单斜β相MoO3和六方h相MoO3。其中,a-MoO3由于其良好的热稳定性和独特的层状结构被广泛应用于锂离子电池。因为这种稳定的层状结构为锂离子的嵌入和脱嵌提供了有利的条件。MoOJt为锂离子电池电极正极材料,其理论比容量高达670mAh/g。但是,MoO3作为锂电电极材料仍存在低的离子电导率和电子电导率的问题,从而导致其高倍率充放电性能不佳。另外,由于在循环过程中锂离子的嵌入与脱出造成较大的体积膨胀从而导致了其容量的快速衰减。所以大量的研究都致力于提高其倍率性和改善其循环稳定性。ifei等人通过水热法制备了锂化的MoO3纳米片,15次循环之后容量保持率为92%,而未锂化的MoO3容量保持率仅为 60%(L.Q.Mai, B.Hu, ff.Chen, Y.Y.Qi, C.S.Lao, R.S.Yang, Y.Daij Z.L Wang, Lithiated MoO3 Nanobelts with Greatly Improved Performance forLithium Batteries, Advanced Materials, 19 (2007) 3712-3716)。Varishetty MadhuMohan用水热法制备了 MoO3/聚苯胺纳米片复合材料,首圈放电比容量为228 mAhg—S而且25 圈循环后容量只剩余 171 mAhg"1 (V.M.Mohan, W.Chenj K.Murakami, Synthesis,structure and electrochemical properties of polyaniIine/Mo03 nanobelt compositefor lithium battery, Materials Research Bulletin, 48 (2013) 603-608) 0 ReddeppaNadimicherla等人用PVP作为表面活性剂,Mo粉和H2O2水热制备了 MoO3纳米片,50次循环之后有 56.3% 的容量保持率(Reddeppa Nadimicherlaj Yueli Liuj Keqiang Chen, WenChen.Electrochemical performance of new a -MoO3 nanobelt cathodematerials forrechargeable L1-1on batteries.Solid State Sciences, 34 (2014) 43-48)。
[0004]单晶结构材料具有完整的结构和好的结晶性,因而有利于提高材料的电导率和锂离子在其中的扩散。例如,Wu等人通过固相反应法制备了单晶LiV3O8纳米片,并显示了良好的电化学性能(Weizhong Wuj Jie Ding, Hongrui Peng, Guicun L1.Electrochemicalperformance of new a -MoO3 nanobelt cathodematerials for rechargeable L1-1onbatteries.Solid State Sciences, 34 (2014) 43-48)。Hiroaki Uchiyama 通过沉淀法制备了单晶网状结构的SnO电极材料,同样显示了良好的电化学性能(Hiroaki UchiyamajEiji Hosonoj Itaru Honmaj Haoshen Zhou, Hiroaki Ima1.A nanoscale meshedelectrode of single-crystalline SnOfor lithium-1on rechargeable batteries.Electrochemistry Communicat1ns, 10 (2008) 52 - 55)。
[0005]另外,晶体结构中某些晶面优先生长能够改善电子在基体和电解液之间的传输,因此能提1?电导率和材料的循环性能。例如,Kim等人以琼脂糖为I旲版在碳化的基底上制备了(111)晶面优先生长的Co3O4负极材料,成功的改善了其循环稳定性(Gil-Pyo KimjSoomin Park, Inho Namj Junsu Park and Jongheop Y1.Preferential growth ofCo3O4 anode material with improved cyclic stability for lithium-1on batteries.Journal of Materials ChemistryAj I(2013) ,3872)0
[0006]根据现有文献Khemchand Dewangan等人用水热法制备了单晶非均质生长的MoO3纳米纤维,并显不了较好的电化学性能(Khemchand Dewanganj Nupur NikkanSinhaj Prashant K.Sharmaj Avinash C.Pandey.N.Munichandraiah and N.S.Gajbhiye Synthesis and characterizat1n of single-crystalline a -Mo03nanofibers forenhanced L1-1on intercalat1n applicat1ns.CrystEngCommj 13 (2011)927 -933)。等人用水热法成功合成了单晶MoO3纳米片,并显示了良好的电化学性能(B.Gaoj H.Fan, X.Zhang, Hydrothermal synthesis of single crystal MoO3 nanobeltsand their electrochemical properties as cathode electrode materials forrechargeable lithium batteries, Journal of Physics and Chemistry of Solids, 73(2012) 423-429)。但是还没有用甘蔗渣作为模板制备单晶非均质生长的MoO3的报道。
[0007]本发明通过用农业废弃物甘蔗渣为植物模板,通过对模板的复制制备了(OkO)晶面择优生长的单晶Mo03。而且制备的MoO3有着较好的电化学性能。本发明的制备方法不仅简单、低成本,而且还有着绿色环保等优点。


【发明内容】

[0008]本发明的目的是针对现有技术的不足,提供一种制备简便、低成本及环保的制备晶面择优生长的单晶MoO3锂离子电池正极材料的制备方法。
[0009]本发明是这样实现的:
一种晶面择优生长的单晶MoO3锂离子电池正极材料的制备方法,其特征在于:
a、将收集好的甘蔗渣用去离子水清洗,烘干,再将所得甘蔗渣模板放入钥酸铵水溶液中浸溃,待模板完全浸透后取出,并于60°C烘干;
b、再将干燥后的吸附有钥酸铵的甘蔗渣模板在空气气氛中高温煅烧得到MoO3锂离子电池正极粉体材料。
[0010]以上所述的钥酸铵水溶液是由1-10重量份的钥酸铵与90-99重量份的去离子水组成。
[0011]以上所述的浸溃为甘蔗渣和钥酸铵水溶液的重量比为1-7: 93-99。
[0012]以上所述的甘蔗渣要求不发霉不变质。
[0013]以上所述的高温煅烧是控制温度400_600°C,煅烧时间2-5小时。
[0014]本发明的优点和积极效果:
本发明方法简单、成本低、环保性好,制备的晶面择优生长的单晶MoO3,单晶及择优生长材料可提高材料的电导性及改善其循环稳定性,具有很好的经济效益和社会效益,绿色环保。

【专利附图】

【附图说明】
[0015]图1是采用本发明制备的MoO3的X射线衍射图;
图2为采用本发明制备的MoO3的SEM图;
图3为采用本发明制备的MoO3的选区电子衍射图;
图4为采用本发明制备的MoO3的恒流充放电曲线;
图5为为采用本发明制备的MoO3的循环稳定性曲线。

【具体实施方式】
[0016]下面结合附图和实施例对本发明作进一步说明本发明的突出特点,仅在于说明本发明而绝不限本发明。
[0017]实施例1
取I重量份钥酸铵水溶液(I重量份钥酸铵溶解于99重量份去离子水中),再将99重量份甘蔗渣浸入上述溶液中。待甘蔗渣完全浸透后将其取出,在烘箱中60°C烘干。然后把吸附有钥酸铵的甘蔗渣在空气中500°C煅烧3小时获得MoO3粉体。图1为最终产物的XRD图,从图中可以看出产物是MoO3 (卡号为35-0609),从图中可看出其(OkO)晶面优先生长。从产物的扫描电镜相片可以得知MoO3粉体的形貌为带状(图2),从透射电镜选区电子衍射图(图3)的衍射斑点可以看出所制备的粉体是具有良好结晶性的单晶结构材料。
[0018]将制备得到的MoO3粉体装成的半电池进行恒流充放测试,结果如图4所示,可发现本发明的电极材料在100mA/g的电流密度下的比容量为302mAh/g,在2000mA/g的电流密度下的比容量为104mAh/g。除此之外,电极有着较好的循环稳定性,在100mA/g的电流密度下100次循环之后有92%的容量保持率。可作为锂离子电池电极材料使用(图5)。
[0019]实施例2
取I重量份钥酸铵水溶液(10重量份钥酸铵溶解于90重量份去离子水中),再将99重量份甘蔗渣浸入上述溶液中。待甘蔗渣完全浸透后将其取出,在烘箱中60°C烘干。然后把吸附有钥酸铵的甘蔗渣在空气中400°C煅烧5小时获得MoO3粉体。XRD测试表明所得产物也为MoO3 (卡号为35-0609)。从产物的扫描电镜相片可以得知MoO3粉体的形貌为带状。
[0020]将制备得到的MoO3粉体装成电池进行恒流充放电测试,可发现本发明的粉体在100mA/g的电流密度下的比容量为298mAh/g,在2000mA/g的电流密度下的比容量为90mAh/g,除此之外,在100mA/g的电流密度下100次循环之后有89%的容量保持率。可作为锂离子电池电极材料使用。
[0021]实施例3
取I重量份钥酸铵水溶液(3重量份钥酸铵溶解于97重量份去离子水中),再将99重量份甘蔗渣浸入上述溶液中。待甘蔗渣完全浸透后将其取出,在烘箱中60°C烘干。然后把吸附有钥酸铵的甘蔗渣在空气中600°C煅烧2小时获得MoO3粉体。XRD测试表明所得产物也为MoO3 (卡号为35-0609)。从产物的扫描电镜相片可以得知MoO3粉体的形貌为带状。
[0022]将制备得到的MoO3粉体装成电池进行恒流充放电测试,可发现本发明的粉体在100mA/g的电流密度下的比容量为278mAh/g,在2000mA/g的电流密度下的比容量为77mAh/g,除此之外,在100mA/g的电流密度下100次循环之后有84%的容量保持率。可作为锂离子电池电极材料使用。
[0023]实施例4
取7重量份钥酸铵水溶液(I重量份钥酸铵溶解于99重量份去离子水中),再将93重量份甘蔗渣浸入上述溶液中。待甘蔗渣完全浸透后将其取出,在烘箱中60°C烘干。然后把吸附有钥酸铵的甘蔗渣在空气中450°C煅烧4小时获得MoO3粉体。XRD测试表明所得产物也为MoO3 (卡号为N0.35-0609)。从产物的扫描电镜相片可以得知MoO3粉体的形貌为带状。
[0024]将制备得到的MoO3粉体装成电池进行恒流充放电测试,可发现本发明的粉体在100mA/g的电流密度下的比容量为280mAh/g,在2000mA/g的电流密度下的比容量为97mAh/g,除此之外,在100mA/g的电流密度下100次循环之后有87%的容量保持率。可作为锂离子电池电极材料使用。
[0025]实施例5
取3重量份钥酸铵水溶液(I重量份钥酸铵溶解于99重量份去离子水中),再将97重量份甘蔗渣浸入上述溶液中。待甘蔗渣完全浸透后将其取出,在烘箱中60°C烘干。然后把吸附有钥酸铵的甘蔗渣在空气中550°C煅烧3小时获得MoO3粉体。XRD测试表明所得产物也为MoO3 (卡号为35-0609)。从产物的扫描电镜相片可以得知MoO3粉体的形貌为带状。
[0026]将制备得到的MoO3粉体装成电池进行恒流充放电测试,可发现本发明的粉体在100mA/g的电流密度下的比容量为300mAh/g,在2000mA/g的电流密度下的比容量为90mAh/g,除此之外,在100mA/g的电流密度下100次循环之后有86%的容量保持率。可作为锂离子电池电极材料使用。
[0027]实施例6
一种晶面择优生长的单晶MoO3锂离子电池正极材料的制备方法,其特征在于:将收集好的甘蔗渣用去离子水清洗,在烘箱中60°C烘干,再将所得甘蔗渣模板放入5%的钥酸铵水溶液中浸溃,甘蔗渣和钥酸铵水溶液的重量比为6: 94,待模板完全浸透后取出,并于60°C烘干;再将干燥后的吸附有钥酸铵的甘蔗渣模板在空气气氛中,控制温度500°C,煅烧时间3小时,得到单晶MoO3锂离子电池正极粉体材料。
【权利要求】
1.一种晶面择优生长的单晶此03锂离子电池正极材料的制备方法,其特征在于: ^将收集好的甘蔗渣用去离子水清洗,烘干,再将所得甘蔗渣模板放入钥酸铵水溶液中浸溃,待模板完全浸透后取出,并于60烘干; I再将干燥后的吸附有钥酸铵的甘蔗渣模板在空气气氛中高温煅烧得到1003锂离子电池正极粉体材料。
2.根据权利要求1所述的晶面择优生长的单晶此03锂离子电池正极材料的制备方法,其特征在于:所述的钥酸铵水溶液是由1-10重量份的钥酸铵与90-99重量份的去离子水组成。
3.根据权利要求1所述的单晶1003锂离子电池正极材料的制备方法,其特征在于:所述的浸溃为甘蔗渣和钥酸铵水溶液的重量比为1-7: 93-99。
4.根据权利要求1所述的晶面择优生长的单晶1003锂离子电池正极材料的制备方法,其特征在于:所述的甘蔗渣要求不发霉不变质。
5.根据权利要求1所述的晶面择优生长的单晶1003锂离子电池正极材料的制备方法,其特征在于:所述的高温煅烧是控制温度400-6001,煅烧时间2-5小时。
6.根据权利要求1所述的晶面择优生长的单晶1003锂离子电池正极材料的制备方法,其特征在于:将收集好的甘蔗渣用去离子水清洗,在烘箱中601烘干,再将所得甘蔗渣模板放入5%的钥酸铵水溶液中浸溃,甘蔗渣和钥酸铵水溶液的重量比为6: 94,待模板完全浸透后取出,并于601烘干;再将干燥后的吸附有钥酸铵的甘蔗渣模板在空气气氛中,控制温度5001,煅烧时间3小时,得到1003锂离子电池正极粉体材料。
【文档编号】H01M4/48GK104466149SQ201410788967
【公开日】2015年3月25日 申请日期:2014年12月19日 优先权日:2014年12月19日
【发明者】颜东亮, 徐华蕊, 朱归胜, 张欢 申请人:桂林电子科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1