一种无镨钕长寿命镍氢电池负极用储氢材料的制作方法

文档序号:12130051阅读:303来源:国知局
一种无镨钕长寿命镍氢电池负极用储氢材料的制作方法与工艺
本发明涉及一种La-Mg-Ni型储氢材料,尤其涉及一种无镨钕长寿命镍氢电池负极用储氢材料。
背景技术
:镍氢二次电池具有容量高、安全性好、无记忆效应和对环境零污染等特点,是国际上二次电池研究的重要方向,目前已被应用于混合动力汽车、小型电池、电动工具等诸多领域。近年来,随着研究的深入,具有AB3~3.8结构的新型稀土储氢合金作为镍氢电池负极活性物质,由于其合金电极容量高达360-410mAh/g,远高于传统AB5型储氢合金,而被逐渐应用于商业化生产中。但由于该类合金的特殊结构和Mg等易腐蚀元素的存在,使得合金在充放电循环过程中粉化、氧化、耐腐蚀性差等问题较AB5型合金更加严重,影响了电池寿命。目前针对La-Mg-Ni型储氢合金循环寿命较差的问题,多采用Pr、Nd、Gd等价格较高的稀土元素对La进行替代来提高合金的循环稳定性。就稀土应用而言,由于Pr、Nd等在光、电、磁等功能材料中的重要作用,使之成为极为“稀缺”的元素,相反,La、Ce、Y等元素则因自然储量相对较大,出现“过剩”现象。因此,开发无Pr、Nd和含La、Ce、Y等高丰度的稀土储氢材料,不但可以促进我国稀土资源的平衡利用,而且有助大幅度降低稀土储氢合金的成本,增加镍氢电池在市场上的竞争力,抵抗锂离子电池快速发展对镍氢电池造成的巨大冲击。同时,近年价格相对低廉的Sm也被逐渐引入稀土储氢合金中,研究表明,Sm元素单独替代La使储氢合金中AB3.5相结构含量减少AB5相结构含量增加[Yang-huanZhang,Zhong-huiHou,Bao-weiLi,Hui-pingRen,Guo-fangZhang,Dong-liangZhao.Aninvestigationonelectrochemicalhydrogenstorageperformancesoftheas-castand-annealedLa0.8-xSmxMg0.2Ni3.35Al0.1Si0.05(x=0-0.4)alloys.JournalofAlloysandCompounds537(2012)175-182]。在中国专利CN103361517A和CN103643084A中公开了添加Sm且具有超晶格晶体结构的储氢合金,但合金中含有Pr、Nd、Gd、Co等价格较高的元素,且未详细说明合金晶体结构的组成和合金的寿命等电化学性能。技术实现要素:本发明的目的在于提供一种无镨钕长寿命镍氢电池负极用储氢材料,在兼顾稀 土资源的综合利用和合金成本的基础上实现镍氢电池负极用稀土储氢材料的高容量和良好的抗腐蚀性。为实现上述目的,本发明采用以下技术方案:一种无镨钕长寿命镍氢电池负极用储氢材料,表示其成分组成的化学式为RE1-x-y(SmmYn)xMgyNiaAlbRc,其中RE为La、或La和Ce的混合稀土,R为Mn、Fe、Zn、Sn、Si、Mo和B中的一种或几种;且满足0<x≤0.8,0≤y≤0.2,1<m/n<10,3.3≤a+b+c≤3.8,0<b≤0.25,0≤c≤0.2。本发明主要通过调整La(或者La和Ce的混合稀土)、Sm和Y稀土元素的组成,提高合金中A2B7相的含量使储氢合金具有高容量的同时也显著提高了合金的循环稳定性,适量Y的添加调整了储氢合金的平台压使储氢合金具有优异的低温性能。在本发明的储氢材料中,具有P63/mmc或R空间群的(REMg)2Ni7型相的含量大于85%。本发明的储氢材料的制备方法为:将按照上述化学式配比好的原料,置于真空感应熔炼炉中,抽真空至1.0×10-2pa以下,通入压力为0.02-0.1MPa氩气和氦气混合气作为保护气体,加热进行熔炼,冷却后将合金锭置于真空热处理炉中,在氩气保护下1000℃热处理8小时。本发明的优点在于:本发明在兼顾稀土资源的综合利用和合金成本的基础上,提供了一种高容量和具有良好抗腐蚀性的镍氢电池负极用稀土储氢材料,该储氢材料中不含Co和Pr、Nd,具有较高的性价比。本发明的储氢材料中具有P63/mmc或R空间群的(REMg)2Ni7型相的含量大于85%,其充放电500周荷电保持率大于70%,且具有良好的高低温性能,可用于镍氢二次电池负极。附图说明图1为实施例3储氢材料的X-射线衍射图谱。图2为实施例3储氢材料的扫描电镜图。图3为实施例3储氢材料电极循环寿命与对比例的比较图。图4为实施例9储氢材料65℃下0.2C放电曲线与对比例的比较图。图5为实施例9储氢材料-40℃下0.2C放电曲线与对比例的比较图。具体实施方式以下通过实施例对本发明作进一步说明。以下实施方式仅用于对本发明进行举例说明而并非用以限定本发明的范围。根据表1中各成分合金进行配料,将配好的合金原料在抽真空至1.0×10-2pa以下,通入压力为0.02-0.1MPa氩气和氦气的混合气体进行感应熔炼,冷却后将铸锭置于真空热处理炉中,抽真空后通入氩气,在氩气保护下进行热处理,处理温度为1000℃,保温时间为8小时,待炉冷却到室温后再取出铸锭。表1实施例1-10与对比例的储氢材料的成分比较成分对比例La0.5Nd0.2Pr0.1Mg0.2Ni2.9Co0.5Al0.1实施例1La0.2Sm0.4Y0.2Mg0.2Ni3.2Al0.1实施例2La0.5Ce0.05Sm0.2Y0.05Mg0.2Ni3.2Al0.15Mn0.15实施例3La0.35Sm0.4Y0.05Mg0.2Ni3.3Al0.1Si0.1实施例4La0.25Sm0.4Y0.15Mg0.2Ni3.3Al0.12B0.08实施例5La0.33Sm0.4Y0.1Mg0.17Ni3.6Al0.2实施例6La0.37Sm0.35Y0.1Mg0.18Ni3.35Al0.15实施例7La0.2Sm0.5Y0.15Mg0.15Ni3.35Al0.15实施例8La0.3Ce0.05Sm0.35Y0.05Mg0.25Ni3.2Al0.1实施例9La0.35Ce0.05Sm0.35Y0.05Mg0.2Ni3.35Al0.15实施例10La0.5Ce0.1Sm0.2Y0.05Mg0.15Ni3.7Al0.1将热处理后的储氢合金通过机械破碎、研磨过筛,其中小于400目粉末用于X射线粉末衍射测试。采用CuKα射线,功率为40kV×300mA,采取步长0.02°,每步停留时间1s的步进扫描方式,2θ角范围为10°~90°。图1为实施例3储氢材料的X-射线衍射图谱。表2给出了实施例3储氢材料的X-射线衍射Rietveld分析结果,包括相结构、晶格参数、和各相的百分含量。结果表明,该储氢材料主要由A287型相构成,另外还含有少量的A5B19型相和微量的AB5型相。图2为实施例3储氢材料的扫描电镜图,从图中可见储氢材料相均匀分布,未发生偏析。表2实施例3的储氢材料中所含相的参数和各相比例将热处理后的储氢合金铸锭研磨成粉末,取160-200目之间的储氢合金粉。准确称取200mg储氢合金粉和800mg羰基镍粉,均匀混合后在16MPa压力下冷压10min,制成Φ16mm×1mm的电极片,置于对折泡沫镍中间冷压成型后与镍带点焊连接。测试装置为开口H型玻璃三电极测试系统,正极为[Ni(OH)2/NiOOH]电极,负极为储氢合金电极,参比电极为[Hg/HgO]电极,电解液为碱溶液,测试温度通过恒温水浴保持在298K。合金活化方式:将合金电极在开路下静止24h以保证充分润湿后,以60mA.g-1恒流充电450min,静置10min,然后以60mA.g-1恒流放电,截止电位为0.6V,静置10min,依次循环以达到最大放电容量。合金的循环稳定性测试采用三明治电极,正极为[Ni(OH)2/NiOOH],负极为储氢合金电极,电解液为6mol/LKOH+15g/LLiOH溶液。测试方法:300mA.g-1恒流充电84min,静置10min,然后300mA.g-1恒流放电,截止电位为1.0V,静置10min,依次循环。测试结果均列于表3中。进行高低温性能测试时,将活化好的电极在298K下60mA.g-1恒流充电450min,再在高低温箱中静置4小时恒温后进行放电,放电制度为60mA.g-1,环境温度为65℃和-40℃,放电截止电位为0.8V。表3储氢合金相结构、最大放电容量、循环寿命和荷电保持率比较表3是实施例与对比例结构和电化学性能的比较,结合图3所示,本发明制备的无镨钕长寿命储氢合金虽未添加Pr、Nd、Co等元素,但循环稳定性较高,充放电循环500周后荷电保持都在70%以上,荷电保持率也有所提升。如图4和图5所示,合金在65℃和-40℃下的放电容量可分别达到257mAhg-1和200mAhg-1,具有较好的高低温性能。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1