一种自支撑结构的电极及其制备和应用的制作方法

文档序号:12724588阅读:781来源:国知局
一种自支撑结构的电极及其制备和应用的制作方法与工艺

本发明涉及超级电容器领域,尤其涉及超级电容器电极材料及其制备方法。



背景技术:

超级电容器是一种介于电池与传统静电容器之间的新概念能量储存器件,它具有更高的比电容,可储存的能量密度为传统静电容器的10倍以上,而与电池相比,超级电容器具有更大的功率密度,且充放电效率高、循环寿命长等特性。由于具有以上诸多的优越性,超级电容器技术的开发一直受到研究者的追捧。但是,超级电容器所面临的主要问题是能量密度比较低。电极材料的电化学活性直接决定器件的电容性能,因此,活性电极材料的开发便成为超级电容器研究和应用的重点。用于超级电容器的电极材料包括碳材料、金属氧化物、导电聚合物三大类。碳材料电极通过电解液与电极的界面处形成的双电层存储能量;金属氧化物及导电聚合物材料电极则通过快速可逆的氧化还原反应获得法拉第电容。法拉第电容一般远大于双电层电容。尽管贵金属氧化物具有较好的法拉第电容,但其昂贵的价格和剧毒性大大制约其作为超级电容器电极材料的应用。研究者尝试采用不同方法制备过渡金属氧化物来替代贵金属氧化物。

由于法拉第电容反应主要发生在材料表层,具有较高比表面的材料将具有更高的实际比电容,大电流充放电性能也会更好,因此将金属氧化物制成纳米材料,利用纳米材料的大比表面特性来提高其电化学性能是一个行之有效的策略,纳米线、纳米棒、纳米片等多种纳米结构近年来都有报道,均表现出较高的超电容性能。



技术实现要素:

本发明目的在于提供一种提高电容器能量密度的方法,制备一种具有自支撑结构的电极。

为实现上述目的,本发明采用的技术方案如下:

所述电极包括导电集流体、电极活性材料;电极活性材料以纳米棒阵列的形式原位生长于导电集流体表面,其中,电极活性材料为碳量子点包覆的金属氧化物,其在电极上的担量为0.5-30mg/cm2,其中优选1-10mg/cm2

所述导电集流体为碳布、碳纸、镍网、铜网、钛网中的一种,其厚度为10μm-1mm,孔隙率为10-90%。

所述电极活性材料为碳量子点包覆的金属氧化物纳米棒阵列;其中,碳量子点粒径0.7-5nm,晶面间距为0.1-0.5nm,孔径范围为0.7-3nm;金属氧化物纳米棒阵列直径为8-50nm,长度为0.5-2μm。

所述碳量子点与金属氧化物的质量比为(1:99)~(10:90)。

所述金属氧化物为氧化钴、氧化镍、氧化锰、氧化铁、氧化锌、氧化铜中的一种或二种以上。

所述自支撑结构电极可按如下过程制备而成:

1)取所需金属氧化物对应的盐与六次甲基四胺按摩尔比为1:1在溶剂中混合均匀后,加入碱溶液调PH值为8-10,搅拌0.5-5h后转移至水热反应釜中,形成溶液A;

2)将集流体以与液面呈45-90°角度放入溶液A中,其中优选90°,在80-120℃下反应12-48h,得到B;

3)将B清洗干净后加入至含有碳前躯体的溶液C中,C的添加量以浸没集流体为宜,50-100℃恒温12-48h,清洗干净后得C;

4)将C在Ar/N2条件下500-1000℃焙烧2-5h,得到目标产物D。

所述金属氧化物对应的盐为硝酸盐、醋酸盐、硫酸盐、碳酸盐、锰酸盐、氯化物中的一种;所述溶剂为水、乙醇、丙酮、异丙醇中的一种或两种以上;所述溶液A中固体物质浓度为1-50%;所述溶液C为N-N二甲基甲酰胺与水的混合物,其比例为(1:1)~(4:1);所述碳前躯体为间三苯甲酸、二甲基咪唑、环式糊腈中的一种;清洗剂为水、丙酮、N,N二甲基甲酰胺中的一种或二种以上;碱溶液为氨水、0.5-1M的氢氧化钠、0.5-1M氢氧化钾中的一种或两种以上。

所述电极及其制备方法可用于超级电容器中,也可用于超级电容器混合锂硫电池中。

本发明的有益结果为:

(1)本发明制备的自支撑结构的电极采用在导电基底表面原位生长碳量子点包覆的金属氧化物纳米线阵列,可有效提高活性物质利用率、增大活性表面、提高材料的扩散传质性能。一方面,与基底材料保持紧密接触的纳米结构阵列可为电子的快速传递提供有效的通道;传导电子可以从反应活性位沿着该通道迅速地转移到集流体上,而不会像 粉体材料那样,电子在无序的纳米晶颗粒间任意的穿行。并且,碳量子点对金属氧化物的包覆大大增加了金属氧化物的导电性。另一方面,原位生长免去了添加剂材料的使用,省去了对电极的压制工序。

(2)本发明制备的自支撑结构的电极利用结构的有效设计,实现对电子传导的有效管理,达到提高电池能量密度的目的。

(3)本发明制备的自支撑结构的电极制备过程简单可控,重复性好,易于大规模放大。

(4)本发明制备的自支撑结构电极通过对反应条件的控制,制备了一种生长在导电基底上的金属氧化物纳米线阵列,该材料具有特殊的形貌,作为超级电容器电极使用时,具有高的比电容,大电流密度下的倍率性能以及长期的循环性能。

本发明制备的电极在电池充放电过程中具有良好的电子传输能力,制备工艺简单。以此复合电极材料作为超级电容器正极,表现出良好的综合性能,具有良好的应用前景。

附图说明

图1为本发明的自支撑结构电极制备机理图;

图2为本发明制备的自支撑结构电极形貌图;

图3本发明制备的自支撑结构电极在三电极体系条件下测试的的电容特性图。

测试条件为:以本发明制备的自支撑结构的电极为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。

具体实施方式

下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。

实施例1

按摩尔比1:1取硝酸镍与六次甲基四胺在水中混合均匀后,加入28%的氨水调PH值为8,搅拌0.5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质质量浓度为10%,将4×4cm的碳布(其厚度为1mm,孔隙率为10%)45°斜放入溶液A中,80℃反应12h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(1:1));C的添加量以浸没集流体为宜,100℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下500℃焙烧5h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆 片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。

所得电极中金属氧化物在电极上的担量为0.5mg/cm2。碳量子点粒径3nm,晶面间距为0.1nm,孔径范围为0.7nm;金属氧化物纳米棒阵列直径为8nm,长度为0.5μm。碳量子点与金属氧化物的质量比为(1:99)。

实施例2

按摩尔比1:1取硝酸钴与六次甲基四胺在乙醇中混合均匀后,加入28%的氨水调PH值为10,搅拌5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为50%将4×4cm的泡沫镍垂直放入溶液A中,其厚度为1mm,孔隙率为90%,100℃反应24h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(4:1));C的添加量以浸没集流体为宜,50℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下1000℃焙烧2h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。

所得电极中金属氧化物在电极上的担量为30mg/cm2。碳量子点粒径2nm,晶面间距为0.5nm,孔径范围为3nm;金属氧化物纳米棒阵列直径为8nm,长度为50μm。碳量子点与金属氧化物的质量比为(10:90)。

实施例3

按摩尔比1:1取高锰酸钾与六次甲基四胺在水中混合均匀后,加入0.5M的氢氧化钠调PH值为9,搅拌5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为50%将4×4cm的碳纸垂直放入溶液A中,其厚度为10μm,孔隙率为60%,90℃反应24h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(3:1));C的添加量以浸没集流体为宜,70℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下900℃焙烧3h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极 体系,测试电极电容特性。

所得电极中金属氧化物在电极上的担量为10mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为1nm;金属氧化物纳米棒阵列直径为15nm,长度为2μm。碳量子点与金属氧化物的质量比为(5:95)。

实施例4

按摩尔比1:1取硝酸锌与六次甲基四胺在水中混合均匀后,加入0.5M的氢氧化钠调PH值为9,搅拌5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为50%将4×4cm的碳纸70°放入溶液A中,其厚度为10μm,孔隙率为60%,90℃反应24h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(3:1));C的添加量以浸没集流体为宜,70℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下900℃焙烧3h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。

所得电极中金属氧化物在电极上的担量为5mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为1nm;金属氧化物纳米棒阵列直径为15nm,长度为2μm。碳量子点与金属氧化物的质量比为(10:90)。

实施例5

按摩尔比1:1取醋酸镍与六次甲基四胺在水中混合均匀后,加入28%氨水调PH值为9,搅拌1h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为10%将4×4cm的泡沫镍垂直放入溶液A中,其厚度为1mm,孔隙率为80%,90℃反应24h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(3:1));C的添加量以浸没集流体为宜,70℃恒温24h,水、乙醇清洗干净后得C;C在Ar条件下900℃焙烧3h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。

所得电极中金属氧化物在电极上的担量为2mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为2nm;金属氧化物纳米棒阵列直径为10nm,长度为2μm。碳量子点 与金属氧化物的质量比为(7:93)。

自支撑结构电极形貌如图1所示,电容性如附图2所示。

实施例6

按摩尔比1:1取氯化铜与六次甲基四胺在水中混合均匀后,加入28%氨水调PH值为9,搅拌1h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为10%将4×4cm的泡沫铜垂直放入溶液A中,其厚度为1mm,孔隙率为80%,90℃反应24h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(3:1));C的添加量以浸没集流体为宜,70℃恒温24h,水、乙醇清洗干净后得C;C在Ar条件下900℃焙烧3h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。

所得电极中金属氧化物在电极上的担量为2mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为2nm;金属氧化物纳米棒阵列直径为10nm,长度为2μm。碳量子点与金属氧化物的质量比为(7:93)。

实施例8

按摩尔比1:1取碳酸钴与六次甲基四胺在水中混合均匀后,加入0.5M的氢氧化钠调PH值为9,搅拌5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为50%将4×4cm的碳纸垂直放入溶液A中,其厚度为10μm,孔隙率为60%,90℃反应24h,得到B;将B用异丙醇清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(3:1));C的添加量以浸没集流体为宜,70℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下900℃焙烧3h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。

所得电极中金属氧化物在电极上的担量为10mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为1nm;金属氧化物纳米棒阵列直径为15nm,长度为2μm。碳量子点与金属氧化物的质量比为(5:95)。

实施例9

按摩尔比1:1取硝酸锌与六次甲基四胺在水中混合均匀后,加入0.5M的氢氧化钠调PH值为9,搅拌5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为50%,将4×4cm的碳纸垂直放入溶液A中,其厚度为10μm,孔隙率为60%,90℃反应24h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中(C为N-N二甲基甲酰胺与水的混合物,其比例为(3:1));C的添加量以浸没集流体为宜,70℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下900℃焙烧3h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。

所得电极中金属氧化物在电极上的担量为10mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为1nm;金属氧化物纳米棒阵列直径为15nm,长度为2μm。碳量子点与金属氧化物的质量比为(5:95)。

实施例10

按摩尔比1:1取硝酸铁与六次甲基四胺在水中混合均匀后,加入28%的氨水调PH值为8,搅拌0.5h后转移至水热反应釜中,形成溶液A;,溶液A中固体物质浓度为10%,将4×4cm的碳布(其厚度为1mm,孔隙率为10%)垂直放入溶液A中,80℃反应12h,得到B;将B用丙酮清洗干净后加入至含有二甲基咪唑的溶液C中,(C为N-N二甲基甲酰胺与水的混合物,其比例为(1:1));C的添加量以浸没集流体为宜,100℃恒温12h,水、乙醇清洗干净后得C;C在Ar条件下500℃焙烧5h,得到目标产物D。将得到的产物剪切成直径为14mm小圆片,称重后,60℃真空干燥24h后,以此小圆片为工作电极,铂片为对电极,饱和甘汞为参比电极,6M氢氧化钾为电解液,组装三电极体系,测试电极电容特性。

所得电极中金属氧化物在电极上的担量为0.5mg/cm2。碳量子点粒径3nm,晶面间距为0.1nm,孔径范围为0.7nm;金属氧化物纳米棒阵列直径为8nm,长度为0.5μm。碳量子点与金属氧化物的质量比为(1:99)。

自支撑结构电极形貌如图2所示。可见,所得电极中金属氧化物在集流体上呈纳米线阵列排列。碳量子点包覆在金属氧化物表面。

从图3可看出,所得电极中金属氧化物在电极上的担量为2mg/cm2。碳量子点粒径1nm,晶面间距为0.5nm,孔径范围为2nm;金属氧化物纳米棒阵列直径为10nm,长度为2 μm。碳量子点与金属氧化物的质量比为(7:93)。

由结果可以看出,电极电容量能达到431F/g,是文献上报道的普通的氧化镍电极电容近10倍。这充分说明本发明制备的电极在一定程度上改善了活性物质的导电性,提高了活性物质的电化学可逆性,从而提高了电极的比电容。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1