超级电容器电极用凝胶状交联且未干燥的水性聚合物组合物、气凝胶和多孔碳及其制备方法与流程

文档序号:11105844阅读:1194来源:国知局

有机气凝胶非常有希望用作热绝缘体,因为它们的热导率可能仅为0.012W.m-1K-1,即,接近由二氧化硅气凝胶获得的那些热导率(0.010W.m-1K-1)。实际上,它们是高度多孔性(微孔和介孔都存在)且具有高比表面积和高孔体积。

高比表面积的有机气凝胶一般由间苯二酚-甲醛(简写为RF)树脂制备。这些树脂特别有利于获得这些气凝胶,因为它们便宜、可以在水中使用并且能够根据制备条件(试剂之间的比例、催化剂的选择等)而获得各种孔隙度和密度。另一方面,通过此树脂形成的凝胶一般是通过前体缩聚获得的不可逆的化学凝胶,并且其不能再处理。此外,此凝胶以高转化率变为疏水性并沉淀,从而在材料中引起机械应力,并因此造成更大的弱点。因此,针对材料的低密度,必须使用足够温和以避免凝胶结构的破裂或收缩以及比表面积的损失的将水干燥的方法。这通常涉及溶剂与醇的交换,随后利用诸如CO2等超临界流体进行干燥(如文献US-A-4 997 804中所述),或者冻干。这些技术复杂且昂贵,因此希望开发可通过更简单的干燥方法获得的具有高比表面积的有机气凝胶。

间苯二酚-甲醛有机气凝胶可在惰性气氛下于超过600℃的温度热解,从而获得碳气凝胶(即,多孔碳)。有利的是,这些碳气凝胶不仅作为在高温下稳定的热绝缘体,而且作为超级电容器的电极的活性材料。

应当牢记,超级电容器是特别有利于需要以高功率传输电能的应用的电能储存系统。其快速充电和放电的能力以及其相比于高功率电池增加的寿命使其成为许多应用的有希望的候选。超级电容器一般由具有高比表面积、浸在离子型电解质中并由称为“隔板”的绝缘膜隔开的两个导电性多孔电极的组合构成,这实现了离子导电性并且避免了电极之间的电接触。各电极与使电流与外部系统交换的金属集流器接触。

由于使用比表面积最大化的碳基电极和双电化学层的极端细度(通常几纳米厚),超级电容器内能达到的容量远高于由常规电容器达到的容量。这些碳基电极必须导电以确保电荷的输送,必须是多孔的以确保离子电荷的输送以及在大表面积上形成双电层,并且必须是化学惰性的以避免任何耗能的寄生反应。

作为制备超级电容器电极的现有技术,可提到文章“在干燥过程中维持间苯二酚-甲醛孔隙度的新方法:利用阳离子型聚电解质稳定溶胶-凝胶纳米结构,Mariano M.Bruno等,2010”。此文章公开了由RF的含水化学凝胶产生的介孔整体型碳,所述凝胶除了基于碳酸钠的碱性催化剂C之外,还包含由聚(二烯丙基二甲基氯化铵)构成的阳离子型聚电解质P,其能够保持凝胶在其风干(即,既无溶剂交换,又没有利用超临界流体的干燥)之后的多孔性。通过将R和F在C和P的存在下于70℃直接聚合24小时而制备整体型凝胶,其中摩尔比R:F:C:P=1:2.5:9×10-3:1.6×10-2,并且相应的浓度为[4M]:[10M]:[0.036M]:[0.064]。此外,此文章在第30页(左栏第一段)还提到:作为“对照”实例,以与用于整体型凝胶的P/R摩尔比相比高10倍的P/R摩尔比制备了粉末形式的凝胶。在P的数均分子量等于4763g/mol的情况下,由此推断出用于制备整体型凝胶和粉末状凝胶的P/R重量比分别为0.69和6.91。

所述文章中提出的整体型不可逆化学凝胶的主要缺点在于:具有非常低的粘度,这使其完全不适于以小于2mm的厚度涂布,特别是对于难以有效干燥的大体积凝胶;需要将整体型有机气凝胶转化为气凝胶粉末(以便在有或没有粘合剂的情况下团聚,从而获得最终电极)的中间步骤。因此,从整体型出发,必须经过昂贵且不是很好控制的研磨步骤。

在所述文章中,对于作为对比提出的粉末形式的化学凝胶,其缺点在于获得的产率非常低,并且多孔碳比表面积非常低(仅为约4m2/g)。

申请人提交的本申请PCT/IB2013/059206提出了用于超级电容器电极的有机气凝胶以及其整体型多孔碳形式的热解物,其一般通过以下步骤获得:

-在与上述文章相似的阳离子型聚电解质和催化剂的存在下,将间苯二酚-甲醛前体溶解在水中,从而获得水溶液;

-使此溶液预聚合直至其沉淀,从而获得形成流变流体化物理凝胶的预聚物;

-以小于2mm的厚度将形成此凝胶的沉淀的预聚物涂布或成型;

-在湿烘箱中将此涂布或成型的凝胶交联并干燥,从而获得多孔的干凝胶;并且

-使干凝胶热解,从而获得多孔碳。

以已知的方式,为了增加超级电容器的能量密度,还优选的是使用成卷的构造,其中所述超级电容器或所述超级电容器的各单元为绕轴成卷的圆柱体形式,其由涂布有基于活性材料的电极的金属集流器层和隔板组成。由于无法适配或弯曲的碳基活性材料的刚性,此圆柱形构造中不能使用整体型电极。此外,对于高功率运行,必须使用厚度小于200μm的活性材料层,且整体型多孔碳在此低厚度下一般过于脆弱。

为了将多孔碳引入超级电容器电极,由文献US-B2-6 356 432、US-A1-2007/0146967和US-B2-7 811 337中具体知晓将多孔碳以微粒的形式分散在无活性有机粘合剂中及溶剂中,然后将所得糊状物涂布在集流器上。然后能够获得小于200μm的沉积厚度,并使相应的电极成卷,从而形成圆柱形超级电容器,这归结于多孔碳可以以微粒形式获得。

为了获得这些微粒形式的多孔碳,一般将如上所述的碳整料粉碎,这呈现出许多缺点。具体而言,在整体材料的合成期间,通常将R和F前体的混合物置于封闭的模具中,从而在反应后形成凝胶。然而,为了限制混合物对模具的粘附,必须提供具有通常氟化的无粘性涂层的模具,这产生了高成本。此外,较厚的整体材料的凝胶化和干燥极其漫长(约一日至数日),整体材料的研磨也产生了高度增加的成本,并且可以证明难以控制所得微粒的直径。

因此,在过去一直寻求着开发合成微粒形式的有机气凝胶粉末的直接方法,如文献US-A-5 508 341中描述的,其提出了包括以下步骤的这种合成方法:

-将诸如间苯二酚-甲醛等前体的水性有机相分散在矿物油中或与水不混溶的有机溶剂中;

-加热所得分散液;

-进行分离以去除非水性有机相;

-使水与有机溶剂(例如丙酮)进行交换;

-利用超临界流体进行干燥以获得有机气凝胶;并且可选地

-进行热解,从而获得多孔碳。

此方法使得能够获得直径为1μm~3mm且比表面积相对较高的气凝胶微球。然而,正如利用超临界流体进行干燥这个步骤,其具有需要使用矿物油或有机溶剂(这是昂贵的)这一缺点。

文献US-A1-2012/0286217还描述了合成多孔碳纳米球的方法,其依次包括对诸如间苯二酚-甲醛等前体的混合物添加水,使水与有机溶剂交换,干燥以提取此溶剂,并且将所得气凝胶碳化。

后一种方法具有在干燥步骤之前需要有机溶剂的缺点。此外,气凝胶以可能造成毒性问题的纳米颗粒形式获得。最后,材料的孔隙度是不确定的。

本发明的目的是提供能够直接以微粒的形式形成非整体型有机气凝胶的凝胶状、交联且未干燥的水性聚合物组合物,其在通过简单且廉价的方法获得的同时克服了上述缺点,并且具有不需要使用有机溶剂或超临界干燥的快速干燥。

此目的的实现在于,本申请人刚好发现,出乎意料地,在RF前体和水溶性阳离子型聚电解质P的水性相中预先溶解,然后将通过此溶解获得的预聚物沉淀,随后将预聚物溶液在水中稀释,使得能够获得流变流体化(剪切稀化)物理凝胶的微粒的水性分散液,其通过交联以及随后的简单烘箱干燥而以高产率形成粉末状气凝胶以及其多孔碳的热解物,尽管如此分散,但其孔隙度和比表面积都非常高,并且主要是微孔性的。

因此,基于至少部分由多羟基苯R和甲醛F的缩聚而得的树脂并包含至少一种水溶性阳离子型聚电解质P的本发明的凝胶状、交联且未干燥的水性组合物是由在水性介质中交联的流变流体化物理凝胶微粒的水性分散液形成的组合物。

将注意到,凝胶状微粒分散液形式的本发明的此凝胶状组合物使得能够避免为了满意地干燥现有技术的整体型凝胶而需要的研磨凝胶步骤,并且通过简单的烘箱干燥而直接产生粉状气凝胶。

还将注意到,有利的是,相比于在封闭的模具中实施的上述现有技术的凝胶化过程,此水性分散液能够以减短的时间获得本发明的凝胶状组合物。

术语“凝胶”意图以已知方式指代胶状材料和液体的混合物,其通过胶状溶液的絮凝和聚结自发地或在催化剂的作用下形成。应当注意在化学凝胶和物理凝胶之间进行区分,第一种凝胶具有由于化学反应造成的结构并且在定义上不可逆,而对于第二种凝胶而言,大分子链之间的聚集是可逆的。

还应当注意,术语“剪切稀化凝胶”或“流变流体化凝胶”意图指代具有非牛顿且时间无关的流变行为的凝胶,其有时还被描述为假塑性,并且特征在于,当剪切率梯度增加时,其粘度降低。

不同于在与水混合时能够形成分散液的水分散性聚合物,术语“水溶性聚合物”意图指代可在不加添加剂(特别是表面活性剂)的情况下可以溶于水中的聚合物。

还将注意到,凭借着剪切稀化可逆性凝胶,本发明的组合物具有能够以薄层的形式使用并且机械性质得到改善的优点。相比之下,现有技术的未改性RF树脂由其前体直接形成不可逆的化学凝胶,其不能以薄层的形式涂布,并且在凝胶的热解期间以低厚度扭曲。

申请人实际上发现了所述阳离子型聚电解质P具有促凝剂效果,并且能够抵消多羟基苯R的酚盐的电荷,并因此限制预聚物胶体之间的排斥,促进缩聚反应以低转化率形成和聚结聚合物纳米颗粒。此外,由于沉淀发生在本发明的组合物的交联之前,因此在凝胶形成时,高转化率下的机械应力较低。

因此,相比于现有技术的水性凝胶,本发明的凝胶状组合物可以更简单更快速地干燥(通过简单的烘箱干燥)。相比于通过溶剂交换和超临界CO2进行的干燥,此种烘箱干燥实际上进行起来要简单的多,并且对与凝胶生产成本的不利影响较少。

还将注意到,所述至少一种聚电解质P能够在此种烘箱干燥之后保持凝胶的高孔隙度,并且对其给予与高比表面积和高孔体积相匹配的低密度,其规定了本发明的此凝胶主要是微孔性的,这有利的是使得由此种热解的凝胶构成的超级电容器电极能够具有高比能和高容量。

根据本发明的另一特征,在液体介质中利用激光衍射粒度分析仪测得的所述微粒的体积中值粒度可以为1μm~100μm。

将注意到,这些微粒不同于形成上述文献US-A1-2012/0286217中获得的气凝胶的可能有毒的纳米颗粒。

有利的是,所述水性分散液中的所述凝胶的重量分数(其表征所述预聚物溶液的稀释)可以为10%~40%,优选为15%~30%。

同样有利的是,P/R重量比可小于0.5,优选为0.01~0.1。

根据本发明的另一特征,所述凝胶可以是沉淀的预聚物,所述预聚物是多羟基苯R、甲醛F、所述至少一种阳离子型聚电解质P和酸性或碱性催化剂C在水性溶剂W中的水溶液的预聚合和沉淀的反应产物,所述组合物不含任何有机溶剂。

有利的是,此预聚合和沉淀反应产物可包括:

-所述至少一种阳离子型聚电解质P,其重量分数为0.2%~3%;和/或

-所述多羟基苯R和所述水性溶剂W,R/W重量比为0.01~2,优选为0.04~1.3。

可用于本发明的组合物的所述至少一种聚电解质P可以是完全溶于水且离子强度低的任何阳离子型聚电解质。

优选地,所述至少一种阳离子型聚电解质P是选自由季铵盐、聚(氯化乙烯基吡啶鎓)、聚(乙烯亚胺)、聚(乙烯基吡啶)、聚(烯丙胺盐酸盐)、聚(甲基丙烯酸乙酯基三甲基氯化铵)、聚(丙烯酰胺-co-二甲基氯化铵)及其混合物组成的组中的有机聚合物。

还更优选地,所述至少一种阳离子型聚电解质P是包含源于选自聚(卤化二烯丙基二甲基铵)的季铵的单元的盐,并且优选为聚(二烯丙基二甲基氯化铵)或聚(二烯丙基二甲基溴化铵)。

在作为可用于本发明的所述树脂的前体的聚合物中,可举出通过至少一种多羟基苯型单体和至少一种甲醛单体的缩聚而产生的那些聚合物。此聚合反应可涉及超过两种不同的单体,其他单体可选地为多羟基苯型单体。可使用的多羟基苯优选为二羟基苯或三羟基苯,优选为间苯二酚(1,3-二羟基苯)或者间苯二酚与选自邻苯二酚、对苯二酚和间苯三酚的另一种化合物的混合物。

例如,可以按R/F摩尔比为0.3~0.7使用多羟基苯R和甲醛F。

同样有利的是,利用剪切速率为50转/分钟的布氏粘度计在25℃测得的形成本发明的组合物的所述剪切稀化物理凝胶的所述预聚物在非交联状态的粘度可以大于100mPa.s,且优选为150mPa.s~10 000mPa.s,规定了在20转/分钟时,此粘度大于200mPa.s,优选大于250mPa.s。

本发明的非整体型有机气凝胶通过干燥上面针对本发明描述的所述凝胶状、交联且未干燥的组合物而产生,并且此气凝胶由通过在烘箱中加热而干燥的所述微粒的粉末形成,在液体介质中利用激光衍射粒度分析仪测得的所述干燥微粒的体积中值粒度为10μm~80μm。

将注意,如下文所示,气凝胶微粒的此粒度特别适合于获得引入了此气凝胶的热解物的超级电容器电极的最佳特性。

有利的是,所述气凝胶可具有均主要为微孔、优选超过60%微孔的比表面积和孔体积。

将注意到,与例如在Mariano M.Bruno等人的上述文章中获得的那些等介孔结构(其在定义上的特征在于孔径在2nm~50nm内)相反,这种基本上微孔的结构在定义上的特征在于孔径小于2nm。

同样有利的是,所述气凝胶可具有小于或等于40mW.m-1.K-1的热导率(其也与上述文章相反),因而属于超绝缘材料家族。

本发明的非整体型多孔碳通过在一般高于600℃的温度下进行的所述有机气凝胶的热解而产生,并且此多孔碳由微球粉末形成,在液体介质中利用激光衍射粒度分析仪测得的所述微球的体积中值粒度为10μm~80μm,优选为10μm~20μm。

有利的是,所述多孔碳可具有:

-大于或等于500m2/g的总比表面积,包括大于400m2/g的微孔比表面积和小于200m2/g的介孔比表面积(其与产生粉末形式凝胶的试验的上述文章相反);和/或

-大于或等于0.25cm3/g的孔体积,包括大于0.15cm3/g的微孔体积。

本发明的电极可用于通过浸入水性离子型电解质而装配超级电容器单元,所述电极覆盖金属集流器,并且此电极包括所述非整体型多孔碳作为活性材料且厚度小于200μm。优选的是,此电极有绕轴成卷的几何结构,例如为近似圆柱形。

为了获得本发明的电极,将本发明的多孔碳微球直接引入油墨中,并且将它们涂布到金属集流器上,然后将其干燥。

将注意到,一对这种非常薄的电极优选以圆柱形式成卷,使其能够在超级电容器上给予非常高的能量密度。

制备所述凝胶状、交联且未干燥的水性聚合物组合物的方法依次包括:

a)在所述至少一种阳离子型聚电解质P或者酸性或碱性催化剂C的存在下将所述多羟基苯R和甲醛F溶解在水性溶剂W中,从而获得水溶液;

b)使a)中获得的所述溶液预聚合直至其沉淀,从而获得形成所述剪切稀化物理凝胶的沉淀预聚物,所述预聚合优选在温度高于40℃的油浴中进行,例如在45℃~70℃下进行;

c)冷却所述预聚物,优选地冷却至低于20℃的温度;

d)在所述水性溶剂中稀释所述预聚物,从而形成所述凝胶的微粒的所述水性分散液;并且

e)通过加热所述分散液使所述预聚物在水性分散液中交联。

优选的是,在步骤a)中,所述至少一种阳离子型聚电解质P和所述多羟基苯R按P/R重量比小于0.5、优选为0.01~0.1使用。

优选的是,在步骤a)中:

-所述至少一种阳离子型聚电解质P按重量分数为0.2%~3%使用;和/或

-所述多羟基苯R和所述水性溶剂W按R/W重量比为0.01~2、优选为0.04~1.3使用。

作为步骤a)中可用的催化剂,可举出例如酸性催化剂,例如盐酸、硫酸、硝酸、乙酸、磷酸、三氟乙酸、三氟甲磺酸、高氯酸、草酸、甲苯磺酸、二氯乙酸或甲酸的水溶液;或者碱性催化剂,例如,碳酸钠、碳酸氢钠、碳酸钾、碳酸铵、碳酸锂、氨水、氢氧化钾和氢氧化钠。

同样优选的是,步骤d)在10℃~30℃的温度下进行,并且所述水性分散液中的所述预聚物的重量分数为10%~40%,优选为15%~30%。

有利的是,步骤e)的加热在回流下伴随搅拌且于80℃~110℃的温度下进行至少1小时,以使所述凝胶完全聚合。

同样有利的是,此方法可包括:在步骤e)之后,对所述交联的预聚物的所述水性分散液施加分离步骤f),其包括沉降和除去所述分散液的上层清水,或者过滤所述分散液。

根据本发明的另一特征,有利的是,此方法可不使用任何有机溶剂以及任何获得整体型凝胶以及随后研磨整体型凝胶的步骤。

根据本发明制备所述非整体型有机气凝胶的方法为在既没有溶剂交换又没有利用超临界流体的干燥的情况下,所述凝胶状、交联且未干燥的组合物通过在烘箱中进行加热而干燥。

将注意到,因此不需要使用现有技术的昂贵设备和工具,特别是与复杂的研磨和干燥步骤有关的设备和工具。

本发明的其它特征、优点和细节将在阅读以非限制性说明的方式给出的本发明的一些示例性实施方式的如下描述时显现。

根据本发明制备凝胶状且交联的组合物以及由此而得的气凝胶和多孔碳的实施例,与“对照”实施例进行比较:

下述实施例阐述了以下物质的制备:本发明的三种凝胶状、交联且未干燥的组合物G1~G3;粉末形式的本发明的三种气凝胶AG1~AG3,其分别通过加热而由所述组合物得到;以及本发明的三种多孔碳C1~C3,其分别通过气凝胶AG1~AG3的热解获得,与凝胶状且交联的“对照”组合物G0、也为粉末形式的气凝胶AG0和由此而得的多孔碳C0进行比较。

申请人在Mariano M.Bruno等人的上述文章(其通过比较试验的方式提出了非整体型凝胶的制备)第30页呈现的所述“对照”实施例中陈述的条件下制备了G0凝胶、AG0气凝胶和C0多孔碳。

为了获得有机凝胶G0~G3,使用以下试剂在催化剂C和聚电解质P的存在下使间苯二酚R与甲醛F缩聚:

-来自Acros Organics的间苯二酚(R),纯度98%;

-来自Acros Organics的甲醛(F),纯度37%;

-由碳酸钠或盐酸组成的催化剂(C);和

-聚(二烯丙基二甲基氯化铵)(P),纯度35%(在水W的溶液中)。

这些试剂以下表1中列出的量和比例使用,其中

-R/W:间苯二酚与水的重量比;

-R/F:间苯二酚与甲醛的摩尔比;

-R/C:间苯二酚与催化剂的摩尔比;和

-P/R:聚电解质与间苯二酚的重量比。

1)凝胶状且交联的组合物G1、气凝胶AG1和多孔碳C1的制备:

a)为了制备凝胶G1,首先将间苯二酚溶解在甲醛中。随后向其中加入碳酸钙溶液和由聚(二烯丙基二甲基氯化铵)的35%溶液组成的添加剂,同时将其搅拌15分钟。所得混合物的pH约为6.5。

其次,使无粘性混合物在浸入70℃油浴的反应器中预聚合30分钟。随后将形成的预聚物冷却至15℃,随后于25℃在水中稀释至25%。将所得混合物回流以使RF凝胶完全聚合(交联)。随后获得交联凝胶G1的微粒的水性分散液。稀释和回流的条件呈现在下表2中。

b)为了制备气凝胶AG1,静置分散液以使凝胶G1的颗粒沉降。除去上清液分散剂,并将所得湿粉末在70℃的烘箱中放置2小时,从而将这些微粒干燥。

c)为了制备多孔碳C1,将气凝胶AG1在800℃于氮气下热解,从而获得微球。

2)凝胶状且交联的组合物G2、气凝胶AG2和多孔碳C2的制备:

a)为了制备凝胶G2,首先将间苯二酚溶解在甲醛中。随后向其中加入碳酸钙溶液和由聚(二烯丙基二甲基氯化铵)的35%溶液组成的添加剂,同时将其搅拌15分钟。所得混合物的pH约为6.5。

其次,使无粘性混合物在浸入45℃油浴的反应器中预聚合45分钟。随后将形成的混合物在4℃的冷冻机中放置24小时。然后将形成的预聚物在水中稀释。随后将所得混合物回流以使RF凝胶完全聚合(交联)。随后获得交联凝胶G2的微粒的水性分散液。稀释和回流的条件列出在表2中。

b)为了制备气凝胶AG2,静置分散液以使凝胶G2的颗粒沉降。除去上清液分散剂,并将所得湿粉末在90℃的烘箱中放置12小时,从而将这些微粒干燥。

c)为了制备多孔碳C2,将气凝胶AG2在800℃于氮气下热解,从而获得微球。

3)凝胶状且交联的组合物G3、气凝胶AG3和多孔碳C3的制备:

a)为了制备凝胶G3,首先将间苯二酚溶解在甲醛中。向其中添加由聚(二烯丙基二甲基氯化铵)的35%溶液组成的添加剂,随后添加甲醛,最后添加HCl催化剂。然后将混合物搅拌15分钟。所得混合物的pH为1.8。

其次,使无粘性混合物在浸入70℃油浴的反应器中预聚合45分钟。随后将形成的混合物在4℃的冷冻机中放置24小时。然后将形成的预聚物在水中稀释。随后将所得混合物回流以使RF凝胶完全聚合(交联)。随后获得交联凝胶G3的微粒的水性分散液。稀释和回流的条件列出在表2中。

b)为了制备气凝胶AG3,静置分散液以使凝胶G3的颗粒沉降。除去上清液分散剂,并将所得湿粉末在90℃的烘箱中放置12小时,从而将这些微粒干燥。

c)为了制备多孔碳C3,将气凝胶AG3在800℃于氮气下热解,从而获得微球。

表1:

表2:

对于所得各个凝胶G0~G3、气凝胶AG0~AG3和多孔碳C0~C3,通过液体方法利用MasterSizer 3000激光衍射粒度分析仪测量体积中值粒度。下表3给出了由此测得的这些粒度值。

表3:

这些测量值具体显示了本发明的气凝胶AG1和AG3以及多孔碳C1和C2为体积平均粒度50μm~70μm的微粒形式。

通过来自Micromeritics公司的Tristar 3020和ASAP 2020仪器,对所得各有机气凝胶AG0~AG3和各多孔碳C0~C3还利用77K的氮吸附技术进行了表征。比表面积(分别为总比表面积、微孔比表面积和介孔比表面积)和孔体积(分别为总孔体积和微孔体积)结果呈现在下表4中。

表4:

这些结果显示出,尽管使用了水性分散液,本发明的有机气凝胶AG1~AG3和多孔碳C1~C3各自具有高到足以引入到超级电容器电极中的比表面积(大于500m2/g或者甚至大于600m2/g)和孔体积,其中对于此比表面积,微孔分数大于80%或者甚至大于90%;而对于此孔体积,微孔分数大于60%或者甚至大于80%。与此相反,申请人证实所述文章的“对照”试验的多孔碳C0具有明显过低的比表面积,以至不可用作超级电容器电极的活性材料。

此外,分别由多孔碳C1、C2和C3制备碳电极E1、E2和E3。为此,按照本申请人名义下的文献FR-A1-2 985 598的实施例1中所述方法将水与粘合剂、导电性填料、各种添加剂以及各多孔碳的这些微球混合。将所得制剂在金属集流器上涂布随后交联。利用以下装置和试验电化学测量电极E2的容量。

将通过隔板隔开的两个相同电极经由三电极接口串联地安装在超级电容器的测量单元中,所述超级电容器含有水性电解质(LiNO3,5M)并且通过Bio-Logic VMP3恒电势器/恒流器控制。第一电极对应于工作电极,第二电极形成对电极,并且参比电极是甘汞电极。

通过使系统以1A/g的恒定电流I进行充电-放电循环而测量此容量。由于电势随着传输的电荷而线性变化,故从充电和放电时的斜率p推导出超级电容器系统的容量。由此测得的电极E2的比容量为90F/g。

最后,根据热线技术利用Neotim热导率计在22℃测量根据本发明获得的粉状气凝胶AG3的热导率,并且由此测得的该热导率为30mW.m-1.K-1

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1