显示装置及其像素结构的制作方法

文档序号:14122773阅读:158来源:国知局
显示装置及其像素结构的制作方法

本发明涉及一种显示装置,且特别涉及一种显示装置及其像素结构。



背景技术:

一般来说,平面显示器包含驱动基板、显示介质层与对向基板,显示介质层位于驱动基板与对向基板之间,而可受驱动基板驱动以显示影像,并可受对向基板的保护。由于平面显示器在运送与使用过程中,会遭遇到各种不同的外力冲击,故如何提升平面显示器对外力冲击的耐受性为相关领域的重要课题之一。



技术实现要素:

本发明的的目的是提供一种可提升显示装置对于外力冲击的耐受性的显示装置及其像素结构。

依据本发明的一实施方式,一种像素结构包含主动元件、绝缘层以及像素电极。绝缘层设置在主动元件上。绝缘层具有凹陷以及贯穿孔。贯穿孔开设于凹陷的底面,围绕凹陷的绝缘层的一部分与围绕贯穿孔的绝缘层的另一部分是一体成形的。像素电极具有相连接的第一电极部以及第二电极部。第一电极部位于凹陷中。第一电极部的厚度小于凹陷的深度。第二电极部位于贯穿孔中并通过贯穿孔电性连接主动元件。

在部分实施方式中,绝缘层的材质为正光阻材料。

在部分实施方式中,像素结构还包含至少一个突出部。突出部突出于凹陷的底面。第一电极部具有开口。突出部贯穿开口。

在部分实施方式中,突出部与绝缘层是一体成形的。

在部分实施方式中,突出部的厚度等于凹陷的深度。

在部分实施方式中,突出部的材质为正光阻材料。

在部分实施方式中,凹陷的深度小于贯穿孔的深度。

在部分实施方式中,绝缘层的凹陷与贯穿孔是通过对绝缘层进行曝光与显影所形成的,其中贯穿孔的位置与凹陷的位置分别对应于在曝光时所采用的光罩的透光率不同的多个区域。

在部分实施方式中,绝缘层具有底绝缘部,设置在该主动元件上,该底绝缘部具有顶面以及底贯穿孔,该底贯穿孔开设于该顶面。绝缘层还具有顶绝缘部,设置在底绝缘部上并与底绝缘部包含相同材料,顶绝缘部中具有顶贯穿孔,顶贯穿孔连通底贯穿孔,且顶贯穿孔宽于底贯穿孔。像素电极的第一电极部位于顶贯穿孔中并位于底绝缘部的顶面上,第一电极部的厚度小于顶绝缘部的厚度,第二电极部位于底贯穿孔中并通过底贯穿孔电性连接主动元件。

在部分实施方式中,像素结构还包含至少一个突出部,位于顶贯穿孔中并突出于底绝缘部的顶面,该第一电极部具有开口,突出部贯穿开口。

在部分实施方式中,突出部的厚度等于顶绝缘部的厚度。

依据本发明的一实施方式,一种显示装置包含驱动基板、显示介质层以及保护盖板。驱动基板包含至少一个主动元件、绝缘层以及至少一个像素电极。绝缘层设置在主动元件上。绝缘层具有至少一个凹陷以及至少一个贯穿孔。贯穿孔开设于凹陷的底面。像素电极具有相连接的第一电极部以及第二电极部。第一电极部位于凹陷中。第一电极部的厚度小于凹陷的深度。第二电极部位于贯穿孔中并通过贯穿孔电性连接主动元件。显示介质层设置在驱动基板上。保护盖板设置在显示介质层上。显示介质层的一部分位于保护盖板与驱动基板的绝缘层之间。

在上述实施方式中,由于像素电极的第一电极部的厚度小于绝缘层的凹陷的深度,故第一电极部相对于绝缘层的顶面是下陷的,因此,当显示装置遭受外力撞击时,绝缘层可降低外力对第一电极部的冲击,从而防止第一电极部受损。换个方式来说,由于第一电极部的厚度小于顶绝缘部的厚度,故当显示装置遭受外力撞击时,顶绝缘部可降低外力对第一电极的冲击,从而防止第一电极部受损。如此一来,上述实施方式可提升显示装置对于外力冲击的耐受性。

以上所述仅是用以阐述本发明所欲解决的问题、解决问题的技术手段、及其产生的功效等等,本发明的具体细节将在下文的实施方式及相关附图中详细介绍。

附图说明

为让本发明的上述和其它目的、特征、优点与实施例能更明显易懂,结合附图说明如下:

图1绘示依据本发明一实施方式的显示装置的剖面图;

图2绘示图1所示显示装置的局部放大图;

图3绘示图1所示驱动基板的俯视图;

图4绘示依据本发明另一实施方式的显示装置的剖面图;

图5绘示图4所示驱动基板的俯视图;以及

图6至图8绘示依据本发明一实施方式的驱动基板的形成方法。

具体实施方式

以下将以附图公开本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,熟悉本领域的一般技术人员应当了解到,在本发明部分实施方式中,这些实务上的细节并非必要的,因此不应用以限制本发明。此外,为简化附图起见,一些公知惯用的结构与元件在附图中将以简单示意的方式绘示。

图1绘示依据本发明一实施方式的显示装置的剖面图。如图1所示,在本实施方式中,显示装置可包含驱动基板10、显示介质层20以及保护盖板30。显示介质层20设置在驱动基板10上,且可受驱动基板10所产生的电场所驱动而显示影像。保护盖板30设置在显示介质层20上,而可保护显示介质层20。驱动基板10包含多个主动元件100、绝缘层200以及多个像素电极300。绝缘层200设置在这些主动元件100上,而可覆盖这些主动元件100。这些像素电极300分别电性这些主动元件100,而可分别根据各自的主动元件100的状态产生适当的电场,以驱动显示介质层20显示影像。在部分实施方式中,每个主动元件100是独立驱动的,而单一的主动元件100、其所电性连接的单一像素电极300与绝缘层200可共同称为像素结构。

在部分实施方式中,绝缘层200具有凹陷201以及贯穿孔203。凹陷201具有最靠近主动元件100的底面202。贯穿孔203开设于凹陷201的底面202。像素电极300具有第一电极部310以及第二电极部320。第一电极部310与第二电极部320是相连接的。第一电极部310位于凹陷201中,且第一电极部310可覆盖凹陷201的底面202。也就是说,凹陷201的底面202可承托第一电极部310。第二电极部320位于贯穿孔203中,且第二电极部320可通过贯穿孔203电性连接主动元件100。换句话说,主动元件100的一部分电极被贯穿孔203所露出,而第二电极部320可覆盖或接触主动元件100的该露出的部分电极,以电性连接主动元件100。

第一电极部310具有厚度t1。凹陷201具有深度d。第一电极部310的厚度t1小于凹陷201的深度d。因此,第一电极部310相对于绝缘层200是下陷的,故当显示装置遭受外力撞击时,绝缘层200可降低外力对第一电极部310的冲击,从而防止第一电极部310受损。以落球测试为例,由于落球的尺寸通常为毫米级以上,而像素结构的尺寸通常为微米级,故落球的尺寸远大于像素结构的尺寸,因此,落球所造成的冲击力不会仅集中在凹陷201中,而会分散到绝缘层200的顶部,从而可降低第一电极部310所受到的冲击力。

在部分实施方式中,凹陷201的深度d可介于0.5~5微米,优选地可以是1微米≤d≤1.5微米。第一电极部310的厚度t1为纳米级,可以是40纳米≤t1≤50纳米。如此可更进一步地降低外力对像素电极300的冲击。在部分实施方式中,凹陷201具有宽度w,宽度w为微米级,可以是1微米≤w≤200微米,如此可使落球所造成的冲击力分散到绝缘层200的顶部,而帮助显示装置通过落球测试。

在部分实施方式中,凹陷201的宽度w大于贯穿孔203的宽度(未标注)。因此,位于凹陷201中的第一电极部310可具有比位于贯穿孔203中的第二电极部320更大的表面积。亦即,像素电极300的相对少部分位于贯穿孔203中,以起到电性连接主动元件100的功能,而像素电极300的相对多部分则位于凹陷201的底面202上,以提供足够的电场给显示介质层20。

在部分实施方式中,凹陷201的深度d小于贯穿孔203的深度(未标注)。如此可使贯穿孔203足够深,以允许第二电极部320电性连接主动元件100,并使得凹陷201不致于过深而影响凹陷201下方的主动元件100,甚至露出主动元件100的源极与漏极(未标注于本图中)。

在部分实施方式中,显示介质层20的一部分会位于绝缘层200的凹陷201中。例如,显示介质层20可为电泳显示介质层,其包含多个微胶囊21。微胶囊21可部分地位于凹陷201中且部分地位于绝缘层200的顶部上。如此一来,当显示装置受到外力撞击时,微胶囊21所承受的力量不会完全施加于像素电极300的第一电极部310上,而可至少部分地由绝缘层200所承受,从而防止像素电极300受损。

图2绘示图1所示显示装置的局部放大图。如图2所示,绝缘层200具有凹陷201,亦即,绝缘层200可包含底绝缘部210以及顶绝缘部220。底绝缘部210设置在主动元件100上。底绝缘部210具有底贯穿孔211以及顶面212。顶绝缘部220设置在底绝缘部210上。顶绝缘部220中具有顶贯穿孔221。顶贯穿孔221位于底贯穿孔211上方,并连通底贯穿孔211,且顶贯穿孔221宽于底贯穿孔211。第一电极部310位于顶贯穿孔221中,且第一电极部310系位于底绝缘部210之顶面212上。也就是说,底绝缘部210之顶面212可承托或支撑第一电极部310。第二电极部320位于底贯穿孔211中,且第二电极部320通过底贯穿孔211电性连接主动元件100。

在部分实施方式中,顶绝缘部220具有厚度t2。第一电极部310的厚度t1小于顶绝缘部220的厚度t2。故当显示装置遭受外力撞击时,顶绝缘部220的顶面222可降低外力对第一电极部310的冲击,从而防止第一电极部310受损。

在部分实施方式中,底绝缘部210围绕绝缘层200的贯穿孔203,顶绝缘部220围绕绝缘层200的凹陷201。在部分实施方式中,底绝缘部210与顶绝缘部220是一体成形的,亦即二者之间可不包含其它黏着材料。由于底绝缘部210与顶绝缘部220是一体成形的,故可提升这两者所共同形成的绝缘层200的结构强度。

在部分实施方式中,底绝缘部210与顶绝缘部220可包含相同材料。例如,其材质可为正光阻材料,其可包含树脂及感光剂(sensitizer),但并不以此为限。如此一来,凹陷201与贯穿孔203可由曝光显影所形成,其详细形成方法将于下文中说明。

在部分实施方式中,保护盖板30与围绕凹陷201的顶绝缘部220可被显示介质层20所隔开。也就是说,显示介质层20的一部分位于顶绝缘部220与保护盖板30之间。

在部分实施方式中,第一电极部310与第二电极部320是一体成形的,以提升这两者所共同形成的像素电极300的结构强度。在部分实施方式中,第一电极部310与第二电极部320可包含相同导电材料。例如,其材质可包含金属例如铝(aluminum)、铂(platinum)、银(silver)、钛(titanium)、钼(molybdenum)、锌(zinc)、锡(tin)、铬(chromium)或其它适合的金属或合金,但本发明并不以此为限。于其它实施方式中,像素电极300的材质也可包含透明导电材料。

在部分实施方式中,显示装置还可包含共电极层40。共电极层40位于保护盖板30与显示介质层20之间,而可受保护盖板30所保护,并与驱动基板10共同提供显示介质层20适当的电场。在部分实施方式中,共电极层40的材质为透明导电材料,例如其材质可包含金属氧化物例如氧化铟锡(ito)、氧化铟锌(izo)、氧化铝锌(azo)、氧化铝铟(aio)、氧化铟(ino)、氧化镓(gao);纳米碳管、纳米银颗粒;有机透明导电材料、或其它适合的透明导电材料,但本发明并不以此为限。

在部分实施方式中,主动元件100可为薄膜电晶体。主动元件100可包含源极110、通道层120、栅极130以及漏极140。漏极140的一部分被绝缘层200的贯穿孔203露出,像素电极300的第二电极部320可通过贯穿孔203接触漏极140的露出部分。如此,主动元件100可控制像素电极300的第一电极部310所产生的电场,以控制显示介质层20的显示影像。

在部分实施方式中,每个微胶囊21包含多个深色带电粒子22及与其电荷相异的多个浅色带电粒子23。共电极层40与像素电极300所产生的电场可影响深色带电粒子22与浅色带电粒子23的位置。

图3绘示图1所示驱动基板10的俯视图。如图3所示,在部分实施方式中,绝缘层200的顶绝缘部220(图中的网点区域)可围绕像素电极300。故高度较高的顶绝缘部220可帮助降低外力对像素电极300的冲击。

在部分实施方式中,如图3所示,驱动基板10还可包含扫描线410与资料线420。扫描线410与资料线420位于绝缘层200的顶绝缘部220下方。换句话说,扫描线410与资料线420在基材400(可参阅图2)上表面的正投影,与凹陷201(可参阅图2)在基材400上表面的正投影是不重叠的。

图4绘示依据本发明另一实施方式的显示装置的剖面图。如图4所示,在部分实施方式中,显示装置的驱动基板10a还可包含突出部500。突出部500突出于凹陷201的底面202。第一电极部310具有开口311。突出部500贯穿第一电极部310之开口311,而相对第一电极部310所突出,以降低外力对第一电极部310的冲击。优选地,突出部500具有厚度t3,而第一电极部310的厚度t1小于突出部500的厚度t3。因此,当显示装置遭受外力撞击时,突出部500的上表面510可降低外力对第一电极部310的冲击,从而防止第一电极部310受损。因此,本实施方式可通过绝缘层200及突出部500来缓冲外力对第一电极部310的冲击,更进一步地保护像素电极300免于因为外力而受损。

在部分实施方式中,突出部500与绝缘层200是一体成形的,故可提升这两者的结构强度。绝缘层200与突出部500可包含相同材料,例如其可为正光阻材料,包含树脂及感光剂,但并不以此为限。如此一来,凹陷201与突出于凹陷201的突出部500可由曝光显影所形成。

在部分实施方式中,如此,突出部500与绝缘层200可共同分摊显示装置所遭受到的外力。突出部500位于顶绝缘部220的顶贯穿孔221中,且突出部500突出于底绝缘部210的顶面212,突出部500的厚度t3可等于凹陷部201的深度d,以助于降低外力对底绝缘部210上的第一电极部310的冲击。

图5绘示图4所示驱动基板10a的俯视图。如图5所示,第一电极部310可具有多个开口311,驱动基板10a可包含多个突出部500。这些突出部500位于绝缘层200的凹陷201中,并分别贯穿第一电极部310的这些开口311,而相对第一电极部310所突出的。在部分实施方式中,突出部500的上表面510的轮廓可为圆形、椭圆形、矩形、三角形或其它多边形,但本发明不以此为限。

图6至8绘示依据本发明一实施方式的驱动基板的形成方法。如图6所示,可先在基材400上形成主动元件100,再在主动元件100上形成绝缘层200,其中绝缘层200可由正光阻材料所形成,接着通过曝光显影来形成适当的凹陷与贯穿孔。在部分实施方式中,绝缘层200可利用旋涂(spincoating)的方式将正光阻材料涂布于主动元件100上,再对此被涂布的正光阻材料加热,以完成正光阻材料的软烤。

接着,可提供灰阶光罩900于绝缘层200上方。灰阶光罩900包含透光率不同的第一区域901、第二区域902及第三区域903。然后,通过灰阶光罩900对绝缘层200进行曝光。由于第一区域901、第二区域902与第三区域903的透光率不同,通过第一区域901、第二区域902与第三区域903的光量(如图6中长度不同的垂直箭头所示)也会不同。

接着,在图7中,可对前述曝光后的绝缘层200进行显影,而形成凹陷201、位于凹陷201之底面202的贯穿孔203、以及相对凹陷201突出的顶绝缘部220。贯穿孔203的位置对应于灰阶光罩900的第一区域901,凹陷201的位置对应于灰阶光罩900的第二区域902,而顶绝缘部220的位置对应于灰阶光罩900的第三区域903。由图6及图7可知,凹陷201与贯穿孔203是通过对绝缘层200进行曝光与显影所形成的,而贯穿孔203的位置与凹陷201的位置分别对应于在曝光时所采用的光罩的透光率不同的区域。

接着,在图8中,可在绝缘层200上形成像素电极300。进一步来说,可在凹陷201中共形地(conformal)形成第一电极部310,并在贯穿孔203中共形地形成第二电极部320。上述像素电极300的形成方式可为物理气相沉积、化学气相沉积或电镀,但本发明并不以此为限。在像素电极300的形成过程中,顶绝缘部220可被遮罩(例如硬遮罩)所遮蔽,故像素电极300不会形成在顶绝缘部220上。在部分实施方式中,像素电极300的形成方式也可为将导电材料整面性地形成在绝缘层200上,接着再利用图案化工艺将位于凹陷201与贯穿孔203外的导电材料移除,而留下位于凹陷201与贯穿孔203中的导电材料,以形成像素电极300。

虽然本发明已以实施方式公开如上,然其并非用以限定本发明,任何本领域一般技术人员,在不脱离本发明的精神和范围内,当可作各种的该动与润饰,因此本发明的保护范围当视权利要求所界定的为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1