微发光元件的制作方法

文档序号:14875795发布日期:2018-07-07 06:12阅读:210来源:国知局

本发明涉及微发光装置领域,具体涉及微发光元件。



背景技术:

在rgbleddisplay阵列mled(微发光二极管)结构中,一方面,利用转移材料固化或者半固化状态下的粘性(例如范德瓦力、磁性力)进行转移,容易因为转移力不足,而mled的转移良率低。

另一方面,由于mled间距比较接近,每颗mled由于发散角度的关系,彼此间会发光区有重迭部分,会产生crosstalk光干涉现象,即不同色之mled会互相干扰,因而造成颜色误差与颜色不均的现象,而例如:cn1378291a传统的常规尺寸led侧壁遮挡方法不易在mled工艺中应用,不利于大规模量产。



技术实现要素:

为解决背景技术中的问题,本发明公开了一种微发光元件,包括转移材料层、微发光二极管,转移材料层至少覆盖微发光二极管的顶面或侧面,转移材料层至少分为转移状态和稳定状态;

在转移状态下,转移材料层为柔性材料;

在稳定状态下,微发光二极管设置在转移材料层的凹槽中,凹槽的深度为0.1~5μm。

根据本发明,优选的,转移材料层材料包括bcb胶、硅胶或者环氧树脂。

根据本发明,优选的,凹槽具有柔性转移材料层受挤压产生的圆滑的内陷开口。

根据本发明,优选的,凹槽的深度为0.5~1.5μm。

在一些实施例中,微发光元件还包括位于转移材料层远离微发光二极管一侧的牺牲层。

根据一些实施例,优选的,牺牲层在远离转移材料层的一侧包括透光或者不透光的支架。

根据一些实施例,优选的,牺牲层材料包括gan、algan、ingan、gasin、gamgn中一种或任意种组合,这些牺牲层材料容易通过激光去除。

在另一些实施例中,转移材料层采用不透光材料,不透光材料至少包括反射材料或者吸光材料,通过不透光材料的形状或者构造设定出光角度。

根据另一些实施例,优选的,微发光二极管顶面对应位置的转移材料层具有出光孔洞,实创造顶面出光或者顶面电连接的条件。

根据本发明,优选的,微发光二极管可以依据微发光元件构造和出光需求选择为正装微发光二极管、倒装微发光二极管或者垂直微发光二极管。

为满足一些光应用需求,本发明还提供了一种微发光元件阵列,微发光元件阵列包括转移材料层和若干个微发光二极管,转移材料层至少覆盖微发光二极管的顶面或侧面,转移材料层至少具有转移状态和稳定状态;

在转移状态下,转移材料层为柔性材料;

在稳定状态下,微发光二极管设置在转移材料层的凹槽中,凹槽的深度为0.1~5μm。

根据本发明,优选的,转移材料层材料包括bcb胶、硅胶或者环氧树脂。

根据本发明,优选的,凹槽具有柔性转移材料层受挤压产生的圆滑的内陷开口。

根据本发明,优选的,凹槽的深度为0.5~1.5μm。

在一些实施例中,微发光元件阵列还包括位于转移材料层远离微发光二极管一侧的牺牲层。

根据一些实施例,优选的,牺牲层在远离转移材料层的一侧包括支架,通过出光需求选取透光或者不透光支架。

根据一些实施例,优选的,牺牲层材料包括gan、algan、ingan、gasin、gamgn中一种或任意种组合。

在另一些实施例中,微发光二极管顶面对应位置的转移材料层具有出光孔洞。

根据本发明,优选的,微发光二极管可以选择为正装微发光二极管、倒装微发光二极管或者垂直微发光二极管。

在另一些实施例中,相邻微发光二极管之间的转移材料层远离微发光二极管一面具有不透光材料。

根据另一些实施例,优选的,不透光材料镶嵌在转移材料层内。

根据另一些实施例,优选的,不透光材料为反射或吸光材料。

根据另一些实施例,优选的,包括金属或者非金属。

根据本发明,优选的,微发光元件阵列在微发光二极管一侧具有与微发光二极管键合的键合基板。

根据本发明,优选的,微发光二极管包括红光发光二极管、蓝光发光二极管、绿光发光二极管或其任意组合,已满足各种光元素的组合。

在上述微发光元件和微发光元件阵列的基础上,本发明还提供了一种微发光元件阵列的制作方法,包括步骤:

步骤(1)、提供支架;

步骤(2)、在支架上制作牺牲层;

步骤(3)、在牺牲层表面制作转移材料层,转移材料层至少分为转移状态和稳定状态,在转移状态下,转移材料层为柔性材料;

步骤(4)、用转移材料层转移微发光二极管阵列,转移材料层受微发光二极管挤压凹陷形成凹槽,微发光二极管夹持在转移材料层的凹槽中,凹槽的深度为0.1~5μm,得到微发光元件阵列。

根据本发明,优选的,制作方法包括步骤(5),步骤(5)在步骤(4)得到的微发光元件阵列键合到基板上。

根据本发明,优选的,凹槽的深度为0.5~1.5μm。

在一些实施例中,在步骤(5)之后,去除牺牲层和支架。

根据一些实施例,优选的,在步骤(2)之后、步骤(3)之前,离散地在牺牲层远离支架的表面设置光阻挡层,光阻挡层分布在相邻微发光二极管之间的牺牲层对应位置上。

根据一些实施例,优选的,步骤(3)的转移材料层采用不透光材料,不透光材料至少包括反射材料或者吸光材料。

根据一些实施例,优选的,在步骤(4)之后,至少包括对转移材料层开孔工艺,将靠近微发光二极管区域的部分转移材料层去除,将微发光二极管的顶面部分或者全部露出。

根据本发明,优选的,用转移材料层转移微发光二极管阵列的方法,转移方式包括压印或抓取。

本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。

附图说明

附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。

图1为本发明制作方法的步骤(1)~步骤(3)的示意图;

图2为本发明制作方法的步骤(4)的示意图;

图3为本发明制作方法的步骤(4)的示意图;

图4为本发明制作方法的步骤(5)的示意图;

图5为本发明制作方法的步骤(5)的示意图;

图6为本发明的转移材料层采用不透光材料的微发光元件阵列结构示意图;

图7为本发明单颗微发光元件示意图;

图8为本发明的转移材料层采用不透光材料的单颗微发光元件示意图;

图9为本发明的转移材料层受压过度时微发光二极管排列异常示意图。

图中标示:110、支架,120、牺牲层,130、转移材料层,131、凹槽,132、孔洞,200、微发光二极管,210、发光外延结构,220、电极,300、封装基板。

具体实施方式

下面便结合附图对本发明若干具体实施例作进一步的详细说明。但以下关于实施例的描述及说明对本发明保护范围不构成任何限制。

应当理解,本发明所使用的术语仅出于描述具体实施方式的目的,而不是旨在限制本发明。进一步理解,当在本发明中使用术语“包含”、"包括"时,用于表明陈述的特征、整体、步骤、元件、和/或封装件的存在,而不排除一个或多个其他特征、整体、步骤、元件、封装件、和/或它们的组合的存在或增加。

除另有定义之外,本发明所使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域的普通技术人员通常所理解的含义相同的含义。应进一步理解,本发明所使用的术语应被理解为具有与这些术语在本说明书的上下文和相关领域中的含义一致的含义,并且不应以理想化或过于正式的意义来理解,除本发明中明确如此定义之外。

现有的微发光元件的抓取方式,广泛采用的是通过真空吸力吸附微发光二极管芯粒或者利用材料表面包括范德瓦力在内的粘性力吸附微发光二极管芯粒,两种方案均因为微发光二极管芯粒过小,操作难度大,而转移良率不佳,生产成本难以降低。

下面公开一种微发光元件阵列的制作方法,该制作方法既包括了微发光元件阵列的制作,也包括了如何解决大量微发光元件转移过程中转移良率低的技术方案。

参看图1,步骤(1)、提供支架110,支架110可以透光或者不透光的材料,根据本实施例,出于对位操作性的考虑,比较推荐透光或透明的材料,例如选用蓝宝石。也有可能出于电路性能考虑,采用一些不透光的金属材料。

步骤(2)、在支架110上制作牺牲层120,本实施例主要采用金属有机气相沉积一层氮化镓基有机物,例如gan/algan、ingan、gasin、gamgn中的一种或者任意种组合,主要目的在于金属有机气相沉积具有良好的致密性,并且上述氮化镓基材料具有良好的透光性,方便在微发光元件转移时进行对位,也可以选择具有良好透光特性、广泛采用的牺牲层材料,例如光分解材料、化学分解材料。

步骤(3)、在牺牲层120表面制作转移材料层130,转移材料层130至少分为转移状态和稳定状态,转移状态主要是指在抓取微发光二极管200瞬间,稳定状态主要是指转移材料层130的常态,在选取一些柔性材料时,不排除转移状态即稳定状态,而重要的是在转移状态下,转移材料层130为柔性材料;

根据本实施例,提供几种可做选择的转移材料层130,例如:bcb胶、硅胶或者环氧树脂、紫外固化胶。

以紫外固化胶为例,在转移状态时,紫外固化胶为柔性材料,转移过程中紫外固化胶作与微发光二极管的抓取部,在施加紫外固化胶相对微发光二极管200的作用力后,紫外固化胶受微发光二极管200挤压形成凹槽,而微发光二极管200陷入凹槽中又受到紫外固化胶的挤压,通过挤压产生的夹紧力转移微发光二极管200。

而在一些实施例中,以bcb胶(benzocyclobutene苯并环丁烯)为例,在转移状态,对bcb胶进行加热,加热温度为180℃~250℃,加热时间为0.5h~2h,加热后bcb胶变成柔性半固化材料,此状态的bcb胶适合作为转移材料,由于bcb胶的耐热特性,在工艺中性能优于硅胶,硅胶微发光元件阵列与封装基板300共晶时,有可能由于共晶高温而变形,向微发光二极管200施加挤压,造成微发光二极管200排列不齐。本实施例加热时间过短或温度过低则bcb胶未达到合适的半固化效果,时间过长或温度过高则固化过度,无法形成有效的夹紧力,容易在转移过程中,造成微发光二极管松动。

参看图2和图3、步骤(4)、提供整齐排列的微发光二极管阵列,用转移材料层130同时转移复数个微发光二极管200,转移材料层130受微发光二极管200挤压凹陷形成凹槽131,以上述bcb胶作为转移材料层130为例,挤压力最佳为0.01kg/mm2~0.5kg/mm2,微发光二极管200夹持在转移材料层130的凹槽131中,凹槽131的深度为0.1~5μm,根据本发明优选的,凹槽131的深度为0.5~1.5μm,得到微发光元件阵列。

参看图4和图5,步骤(5)、微发光元件阵列键合到封装基板300上。接着通过化学分解或者物理分离去除牺牲层120和支架110,以本实施例的gan牺牲层120为例,利用激光去除牺牲层120并剥离支架110。为了降低剥离难度,也可能在一些实施方式中采样具有图形化表面的支架110。

在本实施例的实施过程中,为了满足一些光需求,像应用到显示器中,微发光二极管200包括多种波长,显示器中惯常采用的红绿蓝像素配合,分别选取红、绿、蓝波长的微发光二极管200,不同波长的微发光二极管200相邻排布,同时出于解决背景技术中crosstalk光色互相干涉的目的,在步骤(2)之后、步骤(3)之前,离散地在牺牲层120远离支架110的表面设置光阻挡层140,光阻挡层140分布在相邻微发光二极管200之间的牺牲层120对应位置上,在步骤(3)中制作转移材料层130覆盖到光阻挡层140之上,根据本实施例光阻挡层140可以选取吸光材料或者反射材料,本实施例选用铬作为光阻挡层140。

参看图6,作为上述光阻挡层140的替代方案,步骤(3)的转移材料层130可以采用不透光材料,不透光材料至少包括反射材料或者吸光材料,作为一种优选方案,本实施例采用在bcb胶中掺入tio2。如此制作的好处之一,在于可以利用转移材料层130的凹槽131构建出比较好的出光通道。

在一些实施方式中,需要在步骤(4)之后,至少包括对转移材料层130开孔工艺,将靠近微发光二极管200区域的部分转移材料层130去除,将微发光二极管200的顶面部分或者全部露出,以满足顶面出光需求或者通过微发光二极管200露出的表面,利用转移材料层反射罩状结构,增强出光效果也可以选择在构建顶面电路连接。

根据本实施例,可以预见的,用转移材料层130转移复数个微发光二极管200的方法,其转移方式包括压印或抓取。

参看图7,下面部分实施例公开了一种微发光元件,包括转移材料层130、微发光二极管200,转移材料层130至少覆盖微发光二极管200的顶面或侧面,转移材料层130至少分为转移状态和稳定状态;

在转移状态下,转移材料层130为柔性材料;

在稳定状态下,微发光二极管200设置在转移材料层130的凹槽131中,一种较佳实施条件下,微发光二极管200位于凹槽131的中央位置,代表凹槽131对微发光二极管200具有均匀的挤压力,凹槽131的深度为0.1~5μm,根据本发明,优选的,凹槽131的深度为0.5~1.5μm。

为了实现向微发光二极管200施加类似夹紧力的挤压功能,转移材料层130的材料的选取范围包括bcb胶、硅胶或者环氧树脂。凹槽131具有圆滑的内陷开口,内陷开口对微发光二极管200具有挤压力。

微发光元件还可以包括位于转移材料层130远离微发光二极管200一侧的牺牲层120,牺牲层120在远离转移材料层130的一侧包括透光或者不透光的支架,设置牺牲层120和支架110的主要目的是转移材料层130相对比较薄,可能无法提供足够稳定的支撑力,在键合到封装基板300之前,需要通过牺牲层120来与支架110连接,由支架110提供支撑。

根据本实施例,牺牲层120材料包括gan、algan、ingan、gasin、gamgn中一种或任意种组合,实际应用中,牺牲层120最佳选用透明易去除或者分解的材料。

参看图8,作为实施例的一种变形,转移材料层130采用不透光材料,不透光材料至少包括反射材料或者吸光材料。微发光二极管200顶面对应位置的转移材料层130具有出光或者供电路连接的通道孔洞。微发光二极管200不限于正装微发光二极管、倒装微发光二极管或者垂直微发光二极管等构造。

参看图4~6,为了解决市场对微发光元件阵列的需求,本实施例提供一种微发光元件阵列,微发光元件阵列包括转移材料层130和若干个微发光二极管200,转移材料层130至少覆盖微发光二极管200的顶面或侧面,转移材料层130至少具有转移状态和稳定状态;

在转移状态下,转移材料层130为柔性材料;

参看图9,转移材料层130受压过度、凹槽131深度过大则容易出现部分微发光二极管200受压旋转的情况,导致微发光二极管200排列不齐。因此,在稳定状态下,微发光二极管200设置在转移材料层130的凹槽131中,凹槽131的深度为0.1~5μm可实现较高的转移良率。根据本发明,进一步优选的,凹槽131的深度为0.5~1.5μm。

转移材料层130材料包括bcb胶、硅胶或者环氧树脂,凹槽131具有柔性转移材料层受挤压产生的圆滑的内陷开口。微发光元件阵列还包括位于转移材料层130远离微发光二极管200一侧的牺牲层120。牺牲层120在远离转移材料层130的一侧包括支架110,通过出光需求选取透光或者不透光支架110。牺牲层120材料包括gan、algan、ingan、gasin、gamgn中一种或任意种组合。

在另一实施变形中,微发光二极管200顶面对应位置的转移材料层130具有出光孔洞132。

微发光二极管200可以根据不同的需要,选择为正装微发光二极管、倒装微发光二极管或者垂直微发光二极管。

在另一些实施例中,相邻微发光二极管200之间的转移材料层130远离微发光二极管200一面具有不透光材料。不透光材料镶嵌在转移材料层130内或者分布在转移材料层130表面。不透光材料为反射或吸光材料。不透光材料不限于包括金属或者非金属。

作为封装件,微发光元件阵列在微发光二极管200一侧具有与微发光二极管200键合的键合基板300。

为了满足例如显示器的多种像素需求,微发光二极管包括红光发光二极管、蓝光发光二极管、绿光发光二极管或其任意组合,已满足各种光元素的组合,微发光二极管整体上看包含发光外延结构210及其电极220等一系列芯片构造。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1