半导体装置以及半导体装置的制造方法与流程

文档序号:17578601发布日期:2019-05-03 20:43阅读:126来源:国知局
半导体装置以及半导体装置的制造方法与流程

本发明涉及半导体装置以及半导体装置的制造方法。



背景技术:

近年来,以igbt(insulatedgatebipolartransistor:绝缘栅双极型晶体管)为中心,功率半导体模块广泛应用于电力变换装置。功率半导体模块是内置一个或者多个功率半导体芯片来构成变换连接的一部分或整体的功率半导体器件。

图9是示出现有的功率半导体模块的构成的截面图。如图9所示,功率半导体模块具备:功率半导体芯片21、绝缘基板22、导电性板23、散热板30、金属基板24、端子壳体25、金属端子26、金属引线27、盖28和封装树脂29。功率半导体芯片21是igbt或者二极管等功率半导体芯片,搭载于导电性板23上。将在陶瓷基板等绝缘基板22的正面具有铜等的导电性板23,在背面具有铜等的散热板30而成的部件称作层叠基板。层叠基板利用焊锡接合于金属基板24。在金属基板24粘接有端子壳体25。端子壳体25为了固定将信号引出到外部的金属端子26,由聚苯硫醚(pps:polyphenylenesulfide)等热塑性树脂嵌件成型而成。金属端子26以锡焊被固定在层叠基板上,贯通盖28而突出到外部。金属引线27将功率半导体芯片21和金属端子26电连接。盖28由与端子壳体25相同的热塑性树脂构成。封装树脂29作为对层叠基板22的沿面以及基板上的功率半导体芯片21进行绝缘保护的封装材料,填充到端子壳体25内。

作为封装树脂29,通常使用硅树脂和/或环氧树脂。硅树脂和/或环氧树脂的尺寸稳定性、耐水性/耐药品性以及电绝缘性高,适合用作封装树脂。

半导体模块具有使其薄型化、小型化、大电流容量化的趋势。因此,正在研究不设置端子壳体、金属基板、盖的模塑型的半导体模块。模塑型的半导体模块是将具备功率半导体芯片的基板放在模具中由封装树脂进行模塑成型而成。

对于模塑型的半导体模块而言,填充封装树脂29时的孔隙(气泡)的产生成为课题。例如,公知有以下构造的半导体装置:具有用于将模腔内的空气向外部排出的气孔,并在各个模腔的内表面,具有连结到气孔的、树脂无法进入的大小的微槽(例如,参见专利文献1)。另外,公知有以下结构的半导体装置:在即使产生孔隙也不会对产品的品质产生不良影响的位置,使捕获伴随着树脂封装工序而产生的残留空气的凹部与裸片焊盘(diepad)的槽部连通而形成(例如,参见专利文献2)。

现有技术文献

专利文献

专利文献1:日本特开平7-171862号公报

专利文献2:日本特开2010-267850号公报



技术实现要素:

技术问题

由于在安装了功率半导体芯片的导电性板的正面残留的孔隙(气泡)而导致在功率半导体芯片的周边有产生封装树脂的剥离的隐患。因此,具有功率半导体芯片绝缘不良,功率半导体模块的可靠性降低的隐患。尤其是,对于搭载了多个功率半导体芯片的半导体模块而言,树脂填充时的树脂流动变得复杂,具有孔隙残留在导电性板的正面,功率半导体模块的可靠性降低的隐患。

本发明为了解决上述现有技术的问题,其目的在于提供一种能够防止由导电性板上的孔隙引起的封装树脂的剥离而导致的绝缘不良,提高可靠性的半导体装置以及半导体装置的制造方法。

技术方案

为了解决上述课题,达到本发明的目的,本发明的半导体装置具有以下特征。半导体装置具备:导电性板,将半导体元件搭载于该导电性板的正面;以及封装树脂,将上述导电性板的至少正面封入到该封装树脂的内部。在上述导电性板的正面,在被封入的上述封装树脂的流体合流的区域设置有捕获气泡的构造。

另外,本发明的半导体装置的特征在于,在上述的发明中,上述导电性板为矩形的形状,上述封装树脂从上述导电性板的长边侧的一个注入口注入,上述封装树脂的流体合流的区域是隔着上述半导体元件位于与上述封装树脂相反的一侧的长边的角的区域。

另外,本发明的半导体装置的特征在于,在上述的发明中,上述导电性板为矩形的形状,上述封装树脂从上述导电性板的长边侧的多个注入口注入,上述封装树脂的流体合流的区域被设置于与上述封装树脂的注入侧相反的一侧的长边的中央。

另外,本发明的半导体装置的特征在于,在上述的发明中,上述导电性板为矩形的形状,上述封装树脂从上述导电性板的短边侧的注入口注入,上述封装树脂的流体合流的区域被设置于与上述封装树脂的注入侧相反的一侧的短边的中央。

另外,本发明的半导体装置的特征在于,在上述的发明中,捕获上述气泡的构造被设置为与上述封装树脂的流体的矢量的方向垂直。

另外,本发明的半导体装置的特征在于,在上述的发明中,捕获上述气泡的构造为槽或孔形状。

另外,本发明的半导体装置的特征在于,在上述的发明中,具备层叠基板,上述层叠基板具有在正面搭载了上述半导体元件的导电性板、绝缘基板和散热板,上述封装树脂将上述半导体元件、上述导电性板和上述绝缘基板封入到内部,并露出上述散热板的背面。

另外,本发明的半导体装置的特征在于,在上述的发明中,在上述导电性板与上述绝缘基板之间具备薄导电板,在上述薄导电板不设置捕获上述气泡的构造。

为了解决上述课题,达到本发明的目的,本发明的半导体装置的制造方法具有以下特征。首先,进行第一工序,在导电性板的正面,将捕获气泡的构造形成于封装树脂的流体合流的区域。接着,进行第二工序,将半导体元件搭载于上述导电性板的正面。接着,进行第三工序,注入上述封装树脂,将上述半导体元件和上述导电性板的正面封入到内部。

根据上述发明,用于捕获气泡(孔隙)的气袋被设置于导电性板。被气袋捕获的孔隙位于功率半导体芯片的导电性板周围,不会使剥离产生。另外,被捕获的孔隙由于不会从气袋逸出,因此不会移动到对功率半导体模块的电气可靠性的劣化产生影响的位置。因此,功率半导体芯片不会成为绝缘不良,功率半导体模块的可靠性不会降低。

技术效果

根据本发明的半导体装置以及半导体装置的制造方法,实现能够防止由导电性板上的封装树脂的剥离而引起的绝缘不良,提高可靠性的效果。

附图说明

图1是示出实施方式1的功率半导体模块的构成的截面图。

图2是示出实施方式1的功率半导体模块的构成的俯视图。

图3是示出在实施方式1的功率半导体模块中的孔隙的捕获的截面图。

图4a是示出在实施方式1中树脂注入位置的数量与气袋的位置之间的关系的俯视图(之一)。

图4b是示出在实施方式1中树脂注入位置的数量与气袋的位置之间的关系的俯视图(之二)。

图4c是示出在实施方式1中树脂注入位置的数量与气袋的位置之间的关系的俯视图(之三)。

图5是示出实施方式1的功率半导体模块的气袋的构造的截面图。

图6是示出实施方式1的功率半导体模块的气袋的另一构造的俯视图。

图7是示出实施方式2的功率半导体模块的构成的截面图。

图8是示出实施方式1的功率半导体模块的另一构成的截面图。

图9是示出现有的功率半导体模块的构成的截面图。

图10是示出模塑型的功率半导体模块的构成的俯视图。

符号说明

1、21功率半导体芯片

2、22绝缘基板

3、23导电性板

4、30散热板

6、26金属端子

9、29封装树脂

10气袋(airpocket)

11孔隙

12导电性薄膜

24金属基板

25端子壳体

27金属引线

28盖

具体实施方式

以下参照附图,详细说明本发明的半导体装置以及半导体装置的制造方法的优选的实施方式。发明人锐意研究的结果发现:通过在成型时被封入的封装树脂的流体合流的区域设置用于捕获孔隙的槽(气袋),从而能够防止由导电性板上的封装树脂的剥离引起的绝缘不良。

(实施方式1)

图1是示出实施方式1的功率半导体模块的构成的截面图。在功率半导体模块中,在作为绝缘基板2的一侧的面的正面配置铜等的导电性板3,在作为另一侧的面的背面配置铜等的散热板4来构成层叠基板。在层叠基板的导电性板3的正面介由未图示的导电接合层而搭载有多个功率半导体芯片1。并且,在功率半导体芯片1的正面布置有未图示的金属引线。另外,也可以代替金属引线而介由未图示的导电接合层来连接金属端子。另外,也可以通过未图示的导电接合层来安装具备金属端子(插入销)的插入式印刷基板。另外,也可以在功率半导体芯片1的正面安装引线框。在功率半导体模块具有导电性板3、金属端子、引线框等金属部件。并且,这些部件的表面由封装树脂9覆盖。另外,在导电性板3的正面设有用于捕获孔隙的气袋10。关于气袋10的位置、形状、大小等,在后面描述。

功率半导体芯片1由硅(si)、碳化硅(sic)、氮化镓(gan)等材料构成。功率半导体芯片1包括igbt(insulatedgatebipolartransistor:绝缘栅双极型晶体管)、功率mosfet(metaloxidesemiconductorfieldeffecttransistor:金属氧化物半导体场效应晶体管)等开关元件。这样的功率半导体芯片1,例如在背面具备漏电极(或者集电极)作为主电极,在正面具备栅电极和源电极(或者发射极)作为主电极。

另外,根据需要,功率半导体芯片1包括sbd(schottkybarrierdiode:肖特基势垒二极管)、fwd(freewheelingdiode:续流二极管)等二极管。这样的功率半导体芯片1在背面具备阴极电极作为主电极,在正面具备阳极电极作为主电极。上述的功率半导体芯片1的背面侧的电极利用接合材料(省略图示)接合到预定的导电性板3的正面。

层叠基板具有绝缘基板2、在绝缘基板2的背面形成的散热板4、以及在绝缘基板2的正面形成的导电性板3。绝缘基板2由在导热性方面优异的、氧化铝、氮化铝、氮化硅等高导热性的陶瓷构成。散热板4由在导热性方面优异的铜、铝、铁、银、或者含有这些中的至少一种的合金等金属构成。导电性板3由在导电性方面优异的铜、铝、或者含有这些中的至少一种的合金等金属构成。作为具有这样的构成的层叠基板,例如能够使用dcb(directcopperbonding:直接铜键合)基板、amb(activemetalblazed:活性金属钎焊)基板。层叠基板能够使在功率半导体芯片1产生的热介由导电性板3、绝缘基板2和散热板4而传导至半导体装置外部。另外,层叠基板也可以是金属基底基板。金属基底基板是在由铝或者铜等金属构成的散热板4上层叠由树脂构成的绝缘层、再在绝缘层上层叠导电性板3而构成。

封装树脂9能够使用热固化性树脂或者热塑性树脂。并且还可以包括粘接助剂。另外,根据目的,例如还可以包括由二氧化硅、氧化铝、氮化硼、氮化铝等无机粒子构成的微型填料和/或纳米填料来作为无机填充剂。

热固化性树脂能够使用环氧树脂。作为环氧树脂优选使用在一个分子中至少具有2个以上的环氧基的环氧树脂,例如,列举出双酚ad型、双酚f型、导入了烯丙基的双酚a型树脂、苯酚酚醛清漆(phenolnovolak)型环氧树脂、甲酚酚醛清漆(cresolnovolak)型环氧树脂、多官能环氧树脂、脂环式环氧树脂、萘型环氧树脂等,但环氧树脂并不限定于此。环氧树脂能够单独地,或者混合两种以上来使用。在混合而使用的情况下,在将环氧树脂的总质量设为100质量份时,更优选为含有50质量份以上的双酚a型。在此说明,在使用热固化性树脂通过传递成型进行模塑的情况下,模具温度优选为使环氧树脂液化的120℃~200℃。

热塑性树脂能够使用聚苯硫醚(pps)树脂和/或聚对苯二甲酸丁二醇酯(pbt:polybutyleneterephtalate)树脂。在此说明,在使用热塑性树脂通过注塑成型进行模塑的情况下,优选料筒温度为250℃~350℃,模具温度为100℃~200℃。

粘接助剂为螯合剂,能够使用铝系螯合物、钛系螯合物、锆系螯合物中的任一种或将两种以上混合使用。另外,也可以根据目的在封装树脂9中包含固化剂。作为固化剂有胺系固化剂例如脂肪族二胺、脂肪族聚胺、芳香胺、环胺,咪唑系固化剂,酸酐系固化剂例如脂肪族酸酐、脂环酸酐、芳香酸酐,聚硫醇系固化剂例如液体聚硫醇、聚硫树脂等、能够单独或者将两种以上混合而使用,但是固化剂并不限定于此。

接合材料能够使用焊锡、导电性粘接剂、银(ag)、铜(cu)纳米粒子等的金属烧结体等。

图2是示出实施方式1的功率半导体模块的构成的俯视图。图2是从上侧(盖8一侧)观察图1的功率半导体模块的绝缘基板2而得到的俯视图。如图2所示,封装树脂9从矩形的层叠基板的长边方向(符号b的方向)被注入到模塑模具的模腔内。

被注入的封装树脂9如图2所示从层叠基板的上表面观察,如箭头v1、v2、v3那样呈放射状地在模塑模具的模腔内扩散。这时,箭头v1的封装树脂9碰撞到与模塑模具的模腔的注入口对置的长边,在长边侧沿箭头v4的方向扩散。同样地,箭头v3的封装树脂9与模塑模具的模腔的短边碰撞,在短边侧沿箭头v5的方向扩散。另外,箭头v2的封装树脂9在功率半导体芯片1之上进行扩散。

这些封装树脂9在模塑模具的模腔的角的区域d,即,隔着功率半导体芯片1位于与封装树脂9的注入侧相反的一侧的边的角的区域d合流。在本发明中,在封装树脂9合流的区域d设置有气袋10。通过该气袋10能够捕获孔隙。在此,孔隙是指封装树脂9中产生的空气的团块(气泡)。

气袋10例如是在导电性板3上挖出的槽,通过使孔隙陷入到槽,从而捕获孔隙。为了容易地捕获孔隙,气袋10优选设置在与封装树脂9的流体的矢量的方向垂直的方向上。例如,在气袋10是槽的情况下,优选在层叠基板的正面(导电性板3上)将槽设置在与箭头v5或箭头v4垂直的方向。该情况下,所捕获的孔隙停止,不继续流动。另外,能够防止像将气袋10设置为与流体的矢量的方向平行的情况那样,所捕获的孔隙继续流动,并在气袋10的边缘蓄积,使孔隙集中在一个位置。

气袋10位于与功率半导体芯片1分开的位置。位于即使孔隙被气袋10捕获,对功率半导体模块的电气可靠性的劣化也没有影响的位置。因此,被气袋10捕获的孔隙不会在功率半导体芯片1的导电性板3周围使封装树脂9产生剥离。另外,被捕获的孔隙由于不会从气袋10逸出,所以不会移动到对功率半导体模块的电气可靠性的劣化产生影响的位置。因此,功率半导体芯片1不会绝缘不良,功率半导体模块的可靠性不会降低。

另外,在绝缘基板2、模塑模具的模腔为矩形的形状且从矩形的长边侧注入封装树脂9的情况下,气袋10的位置被设置在隔着功率半导体芯片1的相反一侧的边的角的区域d。另外,在绝缘基板2、模塑模具的模腔为矩形的形状且从矩形的短边侧注入封装树脂9的情况下,由于封装树脂9的流体在隔着功率半导体芯片1的相反一侧的边的中央付近(图10的区域c)合流,因此优选在这里设置气袋10。

通常,设置气袋10的位置根据绝缘基板2、模塑模具的模腔的形状、封装树脂9的注入位置而不同。因此,就设置气袋10的位置而言,例如,优选通过树脂流动模拟来求出封装树脂9的流体合流的位置,并将气袋10设置于该求出的位置。也可以不进行树脂流动模拟,而通过实际的实验来求出封装树脂9的流体合流的位置。

接着,说明由气袋10进行的孔隙的捕获。图3是示出在实施方式1的功率半导体模块中的孔隙的捕获的截面图。向模塑模具的模腔注入封装树脂9是在将金属端子6固定到模具的下表面的状态下进行的。即,在当重力g沿图3的箭头方向作用时,将层叠基板置于最上方,层叠基板的导电性板3的下方具有功率半导体芯片1的状态下进行。

在该状态下,当封装树脂9被注入时,孔隙11由于比封装树脂9轻,因此,如图3的箭头e那样,向上侧(与重力g相反的一侧)前进,到达安装有功率半导体芯片1的导电性板3的正面。在导电性板3的正面作为气袋10而设置有槽,孔隙11通过夹于槽而被捕获。据此,通过将槽设置于导电性板3,从而能够捕获孔隙11。

另外,封装树脂9的流体合流的位置也根据封装树脂9的注入位置的数量而不同。因此,设置气袋10的位置优选基于封装树脂9的注入位置的数量而改变。图1是封装树脂9的注入位置的数量为1的情况。图4a、图4b、图4c是示出在实施方式1中树脂注入位置的数量与气袋的位置之间的关系的俯视图。

这里,图4a是封装树脂9的注入位置为2个的情况,图4b是封装树脂9的注入位置为3个的情况,图4c是封装树脂9的注入位置为4个的情况。另外,分别是从矩形的长边侧注入封装树脂9的情况的例子。

在图4a的情况下,被注入的封装树脂9与图2的情况相同地,如箭头v1、v2、v2’、v3、v3’那样呈放射状地在模塑模具的模腔内扩散。对从左侧(符号b1)的注入位置注入封装树脂9的情况进行说明。该情况下,由于注入位置相对于长边的中央向短边侧偏移,因此箭头v2的封装树脂9和箭头v3的封装树脂9与模塑模具的模腔的短边碰撞,在短边侧沿箭头v4的方向前进,接着,与模塑模具的模腔的长边碰撞,在长边侧沿箭头v5的方向扩散。另外,箭头v1的封装树脂9与模塑模具的模腔的长边碰撞。此时,由于箭头v2的封装树脂9和箭头v3的封装树脂9在长边侧沿箭头v5的方向扩散,因此,被其推挤而在长边侧沿箭头v6的方向扩散。

另外,箭头v3’的封装树脂9与从右侧(符号b2)的注入位置沿箭头v3的方向前进的封装树脂9碰撞,如箭头v7那样沿着朝向长边的方向前进。另外,箭头v2’的封装树脂9与从右侧(符号b2)的注入位置沿箭头v2的方向前进的封装树脂9碰撞,进而被箭头v3’的封装树脂9推挤,如箭头v7那样,沿着朝向长边的方向前进。如箭头v7那样沿着朝向长边的方向前进的封装树脂9与长边碰撞,并沿着与箭头v6相反的方向继续扩散。

如此,在如图4a那样注入位置为2个的情况下,与短边平行地前进的流体变多,因此封装树脂9的流体合流的位置成为与注入封装树脂9的一侧相反的边的中央附近的区域d。因此,通过在区域d设置气袋10,从而能够捕获孔隙。

虽然省略封装树脂9的详细的流动的说明,但在封装树脂9的注入位置为3个的图4b的情况下,与图4a的情况同样地,封装树脂9的流体合流的位置成为与注入封装树脂9的一侧相反的边的中央附近的区域d。然而,由于与短边平行地前进的流体变得更多,因此如图4b所示,区域d比图4a的情况更靠近中央部,并且区域d的面积变窄。因此,与图4a的情况同样地,通过在区域d设置气袋10,从而能够捕获孔隙。

虽然省略封装树脂9的详细的流动的说明,但在封装树脂9的注入位置为4个的图4c的情况下,与图4a的情况同样地,封装树脂9的流体合流的位置成为与注入封装树脂9的一侧相反的边的中央附近的区域d。然而,由于与短边平行地前进的流体比图4b更多,因此如图4c所示,区域d比图4b的情况更靠近中央部,并且区域d的面积变窄。因此,与图4b的情况相比,能够使设置气袋10的区域缩小。在该情况下,也与图4a、图4b的情况同样地,通过在区域d设置气袋10,从而能够捕获孔隙。

这里,气袋10例如能够设置为导电性板3的槽。因气袋10,导电性板3的体积会减少槽的部分的量。导电性板3是为了功率半导体芯片1的背面电极彼此的连接和/或功率半导体芯片1的散热而设置的。若导电性板3的体积减少,则导电性板3的电阻增加,散热能力降低,因此设置气袋10的区域更优选为较窄。

接着,说明气袋10的构造。图5是示出实施方式1的功率半导体模块的气袋的构造的截面图。气袋10是设置于导电性板3的正面的槽,图5是槽的截面图。槽优选高度h为500μm以上,宽度w为500μm以上。

由于引起导电性板3上的封装树脂9的剥离的孔隙是直径为500μm以上的孔隙,因此为了捕获该孔隙而将宽度w设为500μm以上。另外,为了使捕获到的孔隙不从气袋10逸出,而将高度h设为500μm以上。设置于导电性板3上的气袋10可以不贯通而在导电性板3的中部停止。另外,气袋10也可以贯通导电性板3而到达绝缘基板2。另外,气袋10也可以贯通导电性板3并且还形成于绝缘基板2。但是,气袋10不贯通到层叠基板的下表面。

另外,气袋10的侧面与底面所呈的角度θ优选为90°以上。这是因为,该情况下,开口部的面积比底面的面积大,孔隙容易进入,易于捕获孔隙。

另外,图6是示出实施方式1的功率半导体模块的气袋的另一构造的俯视图。如图6所示,气袋10可以不是槽而是孔的形状。在该情况下,也优选孔的深度为500μm以上,直径为500μm以上,侧面与底面所呈的角度θ为90°以上。另外,通过将气袋10设为孔,从而在没有捕获孔隙的气袋中,封装树脂9对导电性板3的锚固效果更好,因此能够使绝缘基板2与封装树脂9之间的密接性比槽的情况提高。这里,作为气袋10的形状,示出了槽和孔的形状。然而,只要是能够捕获孔隙即可,也可以是其他的形状。

据此,由于气袋10能够捕获孔隙,因此在本发明的半导体装置中,与现有的半导体装置相比,能够使用容易产生孔隙的封装树脂。这是因为,由于气袋10捕获孔隙,因此即使产生孔隙,也不会对半导体装置的可靠性产生影响。

这里,将不具备气袋的功率半导体模块的情况作为比较例进行说明。图10是示出模塑型的功率半导体模块的构成的俯视图。在模塑模具中,封装树脂29例如从矩形的绝缘基板22的短边方向(符号b的方向)注入。该情况下,被注入的封装树脂29在模腔内2路以上的封装树脂29合流的区域(图10的区域c)产生孔隙。另外,在封装树脂29合流的区域(图10的区域c)能够看到称作焊缝的线状痕迹。由于在区域c不具备气袋,因此该孔隙在层叠基板22的表面向周围扩展,在层叠基板22的角的较宽范围产生封装树脂29的剥离。在功率半导体芯片21的导电性板23的周围也产生剥离,具有功率半导体芯片21成为绝缘不良,功率半导体模块的可靠性降低的隐患。

另外,在本发明的半导体装置中,能够使用粘度低的封装树脂9。具体地,能够使用粘度为1000pa·sec(帕斯卡秒)以下的封装树脂9。若粘度低,则封装树脂9迅猛地注入到模塑模具的模腔,因此容易产生孔隙,在现有的半导体装置中,不能使用粘度低的封装树脂9。然而,在本发明中,由于气袋10捕获孔隙,因此能够使用粘度低的封装树脂9。就粘度低的封装树脂9而言,能够将封装树脂9以短时间注入到模塑模具的模腔,因此能够缩短用于制造半导体装置的时间。

另外,例如,在本发明的半导体装置的制造方法中,能够使注入到模塑模具的模腔的封装树脂9的注入速度比现有的半导体装置更高速。当高速地注入时,容易产生孔隙,在现有的半导体装置的制造方法中,注入速度在孔隙难以产生的速度以下。然而,在本发明中,由于气袋10捕获孔隙,因此能够将封装树脂9高速地注入。当高速地注入时,能够将封装树脂9短时间地注入到模塑模具的模腔,因此能够缩短用于制造半导体装置的时间。

实施方式1的功率半导体模块如下进行制造。就制造方法而言,首先,准备在绝缘基板2的正面设置有导电性板3,并在背面设置有散热板4的层叠基板。接着,在导电性板3的正面上的封装树脂9的流体合流的区域形成气袋10。例如,可以通过在导电性板3进行蚀刻来形成气袋10。此外,可以通过在导电性板3对铜块进行锡焊来形成气袋10,可以对导电性板3进行冲压而制作槽来形成气袋10。

接着,在设置于层叠基板的导电性板3的正面安装功率半导体芯片1,将功率半导体芯片1和导电性板3进行电连接。接着,通过金属引线等将功率半导体芯片1与金属端子6之间进行电连接。据此,组装形成有开关电路的功率半导体电路部件。

接着,在树脂成型用的模塑模具内,将功率半导体电路部件组入并填充由环氧树脂等硬质树脂构成的封装树脂9。封装树脂9的成型可以是传递成型、注塑成型。据此,图1所示的实施方式的功率半导体模块完成。

以上,如上述说明,根据实施方式1的半导体装置,在导电性板的正面设置用于捕获孔隙的气袋。被气袋捕获到的孔隙位于功率半导体芯片的导电性板周围,不会使剥离产生。另外,被捕获的孔隙不会从气袋逸出,因此不会移动到对功率半导体模块的电气可靠性的劣化产生影响的位置。因此,功率半导体芯片不会绝缘不良,功率半导体模块的可靠性不会降低。

(实施方式2)

接着,对实施方式2的半导体装置的构造进行说明。图7是示出实施方式2的功率半导体模块的构成的截面图。实施方式2的功率半导体模块与实施方式1的功率半导体模块不同点在于,绝缘基板2与导电性板3之间设置有导电性薄膜12。

导电性薄膜12例如为铜制的薄膜,在导电性薄膜12上不设置气袋10。在气袋10为槽和/或孔的情况下,槽和/或孔不设置于导电性薄膜12。通过设置导电性薄膜12从而能够将由气袋10分开的区域电连接,能够将由气袋10分开的区域设为相同电位。由于是相同电位,因此能够防止在由气袋10分开的区域之间放电。

这样的功率半导体模块的制造方法,首先,准备在绝缘基板2的正面设置有导电性薄膜12,并在背面设置有散热板4的层叠基板。接着,在导电性薄膜12的正面上接合导电性板。这时,在封装树脂9的流体合流的区域形成气袋10。例如,可以在导电性薄膜12的正面,避开封装树脂9的流体合流的区域,将导电性板3通过锡焊和/或铜焊等进行接合,从而形成气袋10。或者,可以将导电性板3通过加压和/或粘接等进行接合,从而形成气袋10。此外,可以预先在导电性板3通过蚀刻形成气袋10,并以将气袋10配置在封装树脂9的流体合流的区域的方式进行接合。可以对导电性板3进行冲压来制作槽,从而形成气袋10。据此,在导电性板3的正面上的封装树脂9的流体合流的区域形成气袋10。接着,与实施方式1同样地,安装功率半导体芯片1,将功率半导体芯片1和设置在层叠基板上的导电性板3进行电连接。然后,与实施方式1同样地,图7所示的实施方式2的功率半导体模块完成。

以上,如上述说明,根据实施方式2的半导体装置,具有与实施方式1的半导体装置相同的效果。并且,实施方式2的半导体装置在绝缘基板与导电性板之间设置有导电性薄膜。如此,能够将由气袋分开的区域电连接,设为相同电位。因此,能够防止在由气袋分开的区域之间放电。

在上述实施方式1中,说明了在由绝缘基板2和导电性板3构成的层叠基板上搭载功率半导体芯片1的形态,但也可以是没有层叠基板的形态。图8是示出实施方式1的功率半导体模块的另一构成的截面图。如图8所示,也可以是没有绝缘基板2而功率半导体芯片1搭载在导电性板3的正面上的形态。该情况下,气袋10设置于导电性板3的正面上。在这样的形态中,气袋10的位置、形状、大小等也与实施方式1相同。另外,该情况下,气袋10不贯通至导电性板3的下表面。

通过这样的构成,从而与实施方式2同样地,能够将由气袋10分开的区域电连接,并设为相同电位。因此,能够防止在由气袋10分开的区域之间放电。另外,通过使气袋10不贯通到导电性板3的下表面,从而使孔隙不在半导体装置的表面露出而能够防止外观缺陷。

以上,本发明并不限定于上述的实施方式,能够在不脱离本发明的宗旨的范围内进行各种改变。例如,本发明以金属引线将半导体芯片和金属端子进行电连接,热固化性树脂填充到壳体内的半导体装置的封装为例进行了说明,但是也可以应用于将在壳体的内侧相互分开而配置的半导体芯片以及电路基板的导体层彼此通过引线框而电连接的引线框构造、通过柱电极以及印刷布线基板而电连接的柱构造的半导体装置的封装。

工业上的可利用性

如上,本发明的半导体装置以及半导体装置的制造方法对应用于变换器等电力变换装置、各种工业用机械等的电源装置和汽车的动力控制单元等的功率半导体装置而言有用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1