磁性部件及其制造方法_3

文档序号:8362834阅读:来源:国知局
之间存在磁通共享。也就是说,这些线圈使用通过单个磁性体各部分的共同磁通通路。
[0087]图5示出使用冲压金属、印刷技术或本领域已知的其它制造技术制成的大体平坦构件的示例线圈420。如图5所示,线圈420大体呈C形并且包括第一大体直的导电通路422、第二大体直的导电通路424以及第三导电通路426,且该第二大体直的导电通路相对于第一导电通路422以直角延伸,而第三导电通路相对于第二导电通路424以直角延伸并且沿与第一导电通路422大体平行的定向而延伸。线圈端部428、430限定在第一和第三导电通路422、426的远端处,且以导电通路422、424以及426通过线圈420设有3/4个匝圈。线圈420的内周缘限定中心磁通区域A(如图5中的虚线所示)。区域A限定内部区域,在线圈422中产生磁通时,磁通通路可通过该内部区域。或者说,区域A包括在导电通路422和导电通路426之间的位置处和在导电通路424和连接线圈端部428、430的假象线之间的位置处延伸的磁通通路。当在磁性体中采用了多个此种线圈420时,中心磁通区域可部分地彼此交迭,以使这些线圈相互地联接于彼此。虽然在图5中示出特定的线圈形状,但应认识到在其它实施例中,可使用具有类似效果的其它线圈形状。
[0088]图6示出在磁性体440中若干线圈420的横截面。在所示的实施例中,该磁性体由非磁性材料所围绕的磁性金属粉末颗粒所制成,其中相邻的金属粉末颗粒由非磁性材料彼此分离开。在其它实施例中可替代地使用其它磁性材料。这些磁性材料可具有分布式间隙特性,而这种特性避免了对于彼此须物理地间隔开的离散芯部件的需要。
[0089]诸如线圈420之类的线圈设置在磁性体440中。如图6所示,区域Al指代第一线圈的中心磁通区域,区域A2指代第二线圈的中心磁通区域,而区域A3指代第三线圈的中心磁通区域。根据这些线圈在磁性体440中的设置(S卩,线圈的间隔),区域A1、A2和A3会交迭、但并不完全交迭,从而在磁性体440的各处的不同部分中,线圈的相互联接会改变。具体地说,线圈可在磁性体中相对于彼此偏离或交错,从而由每个线圈限定的部分区域但并非所有区域与另一线圈交迭。此外,这些线圈可设置在磁性体中,使得每个线圈中的区域A的一部分并不与任何其它线圈交迭。
[0090]在磁性体440中的相邻线圈的区域A的非交迭部分中,由每个相应线圈所产生的磁通的一部分仅仅在产生该磁通的相应线圈的中心磁通区域中返回,但不通过相邻线圈的中心磁通区域A。
[0091]在磁性体440中的相邻线圈的区域A的交迭部分中,由每个相应线圈所产生的磁通的一部分在产生该磁通的相应线圈的中心磁通区域中返回,并且还通过相邻线圈的中心磁通区域A。
[0092]通过改变线圈中心磁通区域A的交迭和非交迭部分的程度,可改变线圈之间的耦合度。此外,通过沿正交于线圈平面的方向来改变分开的距离(即、通过将线圈定位在隔开的平面中),磁通通路的磁阻会在整个磁性体440中改变。相邻线圈的交迭中心磁通面积和它们之间的特定距离的乘积确定磁性体中共有的磁通通路通过该磁性体440可通过的横截区段区域。通过改变此种横截区段区域,磁阻可随相关的性能优点改变。
[0093]图27-33包括具有物理间隔开的尚散芯部件的传统磁性部件与本发明的分布式间隙芯部实施例的模拟和测试结果以及比较数据。图27-33中所示的信息还涉及使用参见6所描述方法的部件的示例实施例的耦合特性。
[0094]图7示意地示出具有多个线圈的磁性部件组件460,这些线圈如上所述在磁性体462内设置有部分地交迭和非交迭磁通区域A。虽然在组件460中示出四个线圈,但在其它实施例中可使用更多或更少数量的线圈。每个线圈与图5所示的线圈420相类似,但在替代实施例中可使用其它形状的线圈。
[0095]第一线圈由从磁性体462的第一面中伸出的线圈端部428a、430a所指代。第一线圈可在磁性体462中的第一平面中延伸。
[0096]第二线圈由从磁性体462的第二面中伸出的线圈端部428b、430b所指代。第二线圈可在磁性体462中与第一平面隔开的第二平面中延伸。
[0097]第三线圈由从磁性体462的第三面中伸出的线圈端部428c、430c所指代。第三线圈可在磁性体462中与第一和第二平面隔开的第三平面中延伸。
[0098]第四线圈由从磁性体462的第四面中伸出的线圈端部428d、430d所指代。第四线圈可在磁性体462中与第一、第二和第三平面隔开的第四平面中延伸。
[0099]第一、第二、第三和第四面或侧部如图所示限定大体正交的磁性体462。第一、第二、第三和第四线圈的相对应的中心磁通区域被发现以各种方式彼此交迭。四个线圈中每个线圈的中心磁通区域的一部分与其它线圈中任一线圈都不交迭。每个相应线圈的磁通区域A的其它部分与其它线圈中的一个线圈交迭。每个相应线圈的磁通区域的又一些其它部分与其它线圈中的两个线圈交迭。在另一部分中,每个相应线圈最接近图7所示磁性体462中心而定位的磁通区域与其它三个线圈中的每个线圈都交迭。因此,通过磁性体462中的不同部分在线圈耦合方面建立大量变化。此外,通过改变第一、第二、第三和第四线圈的平面的空间分隔关系,也可在磁通通路中提供大量变化的磁阻。
[0100]具体地说,线圈的平面之间的间隔无需是相同的,从而在组件中,一些线圈可定位成更接近(或者更远离)其它线圈。再次,每个线圈的中心磁通区域和沿正交于线圈平面的方向距离相邻线圈的间隔限定所产生的磁通通过该磁性体所通过的横截区段区域。通过改变线圈平面的空间分隔关系,与每个线圈相关联的横截区段区域可在线圈中的至少两个线圈之间改变。
[0101]类似于所描述的其它实施例,在一些应用中,组件中的各种线圈可联接于电源的不同相位。
[0102]图8示出具有两个线圈420a和420b的磁性部件组件470,这两个线圈在它们的磁通区域A中部分地交迭而部分地不交迭。如图9中的剖视图示出,两个线圈在磁性体472中位于不同的平面中。
[0103]图10示出具有两个线圈420a和420b的磁性部件组件480,这两个线圈在它们的磁通区域A中部分地交迭而部分地不交迭。如图11中的剖视图示出,两个线圈在磁性体482中位于不同的平面中。
[0104]图12示出具有四个线圈420a、420b、420c和420d的磁性部件组件490,这四个线圈在它们的磁通区域A中部分地交迭而部分地不交迭。如图11中的剖视图示出,四个线圈在磁性体492中位于不同的平面中。
[0105]图14-17示出磁性部件组件500的一实施例,该磁性部件组件500具有与图8和9中所示线圈构造相类似的线圈构造。线圈501和502包括围绕磁性体506的侧部延伸的回绕终端504。磁性体506可如上所述或者由本领域已知的技术所形成,并且可具有分层的或不分层的构造。该组件500可经由终端504而表面安装于电路板。
[0106]图34示出磁性部件组件620的另一实施例,该磁性部件组件具有耦合电感器并且说明它们与电路板设计布局的关系。磁性部件620可类似于上文所述来进行构造和操作,但可用于不同的电路板设计布局以实现不同的效果。
[0107]在所示的实施例中,磁性部件组件620适用于电压变换器电源应用,并因此在磁性体626内包括第一组导电绕组622a、622b、622c以及第二组导电绕组624a、624b、624c。绕组622a、622b、622c和绕组624a、624b、624c中的每个可例如在电感器本体中完成1/2个匝圈,但在其它实施例中,在绕组中所完成的匝圈可替代地是或多或少的。线圈可通过它们在磁性体626内的物理位置以及通过它们的形状而物理地彼此联接。
[0108]在图34中示出用于磁性部件组件620的示例电路板设计布局或“封装设计(footprints) ”630a和630b。如图34所示,设计布局630a和630b中的每个包括三个导电通路632、634和636,且这三个导电通路各自限定1/2个匝圈的绕组。使用已知技术将设计布局630a和630b设在电路板638上(如图34中的虚线所示)。
[0109]当磁性部件组件620表面安装于布置630a、630b、以将部件线圈622和624电连接于设计布局630a、630b时,可以观察到,对于每个相位所建立的整个线圈绕组通路是三个匝圈。部件620中的每半个匝圈的线圈绕组联接于电路板设计布局630a、630b中的半个匝圈绕组,并且绕组串联连接,从而使每个相位产生三个完整的匝圈。
[0110]如图34所示,相同的磁性部件组件620可替代地连接于另一电路板642 (在图34中以虚线示出)上的不同电路板设计布局640a、640b,以实现不同的效果。在所示出的示例中,设计布局640a、640b包括各自限定1/2个匝圈绕组的两个导电通路644、646。
[0111]当磁性部件组件620表面安装于设计布局640a、640b、以将部件线圈622和624联接于设计布置=局640a、640b时,可以观察到,对于每个相位所建立的整个线圈绕组通路是272个匝圈。
[0112]由于部件620的效果可通过改变其所连接的电路板设计布局而变化,因而该部件有时称作可编程的耦合电感器。也就是说,线圈的耦合度可根据电路板设计布局而改变。于是,虽然可提供基本上相同的部件组件620,但如果为这些部件提供不同的设计布局,这些部件的操作可根据它们与电路板连接的方式而不同。各种电路板设计布局可设在同一电路板的不同区域或者不同的电路板上。
[0113]许多其它变形也是可能的。例如,磁性部件组件可包括五个线圈,且每个线圈具有埋设在磁性体中的1/2个匝圈,并且该部件可用于至多十一个不同的且增大的电感值,使用者可以经由在电路板上布置导电迹线以完成绕组线匝的方式对电感值进行选择。
[0114]图35和36示出另一种磁性部件组件650,该磁性部件组件在磁性体656内具有耦合线圈652、654。如图36所示。线圈652、654在磁性体656中以对称方式耦合,同时在区域Al和A3中并不耦合。区域A2的耦合度可根据线圈652和654的分隔程度而改变。
[0115]图37示出具有以上述方式的耦合线圈的多相磁性部件与多个离散的非耦合磁性部件相比的优点,而多个离散的非耦合磁性部件利用传统的方式而用于每个相位。确切地说,当使用具有例如本文所描述线圈的耦合线圈的多相磁性部件时,至少部分地消除波纹电流。
[0116]图18-20示出另一种磁性部件组件520,该磁性部件组件在磁性体524内具有多个部分匝圈线圈522a、522b、522c以及522d。如图17所示,每个线圈522a、522b、522c和522d提供二分之一匝圈。虽然示出四个线圈522a、522b、522c和522d,但可替代地提供更多或更少数量的线圈。
[0117]每个线圈522a、522b、522c和522d可连接于例如可设在电路板上的另一半匝线圈。每个线圈522a、522b、522c和522d可设有能表面安装于电路板的回绕终端526。
[0118]图21-23示出另一种磁性部件组件540,该磁性部件组件在磁性体544内具有多个部分匝圈线圈542a、542b、542c和542d。可以看到线圈542a、542b、542c和542d具
当前第3页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1