基于三维石墨烯框架的高性能超级电容器的制造方法

文档序号:10540964阅读:662来源:国知局
基于三维石墨烯框架的高性能超级电容器的制造方法
【专利摘要】电化学电容器包括电极对和布置于该电极对之间的电解质。该电极对中的至少第一电极包括石墨烯框架膜,且该石墨烯框架膜包括具有形成于石墨烯片材中的纳米孔的互连的石墨烯片材。
【专利说明】
基于三维石墨烯框架的高性能超级电容器
[0001] 相关申请的交叉引用
[0002] 本申请要求享有于2013年11月8日提交的美国临时申请序列第61/902,083号的权 益,该临时申请的内容通过引用以其整体并入本文。
技术领域
[0003] 本公开内容大体上涉及电化学能量储存且更具体地涉及基于石墨稀电极的电化 学电容器(EC)。
[0004] 背景
[0005] EC也被称作超级电容器,它代表用于能量储存和移动电源供应器的有吸引力的技 术。EC通常呈现出优越的功率密度和循环寿命,但却呈现出比传统电池的能量密度低至少 一个数量级的相对差的能量密度。电极材料是EC的重要部件且在很大程度上控制着其最终 性能。已经付出了大量的努力来着重于开发出能够增大能量密度而不会牺牲功率密度或循 环寿命的电极材料。目前的EC通常使用多孔活性碳电极来构建,这样的电极通常具有约80-120F g-1的重量比电容(gravimetric capacitance)和比铅酸电池(约25_35Wh kg-〇低得 多的约4_5Wh kg-1的堆叠能量密度(stack energy density)。
[0006] 石墨烯最近因其高的固有电导率、优良的机械柔性、约263(??^1的特别大的理论 表面积以及约550F g-1的理论重量比电容而作为EC电极材料被研究。然而,由于石墨烯片材 (graphene sheet)之间存在强的JT-JT相互作用,它们倾向于重新堆叠以形成类似石墨的粉 末或膜,这能够严重减小表面积并降低离子扩散速率,产生难以令人满意的重量比电容(在 有机电解质中,通常〈180F g4)和相对低的充电/放电速率。
[0007] 除了重量比电容外,评价用于EC的电极材料的另一个品质因数是体积比电容 (volumetric capacitance)。对于大多数电极,通常要权衡考虑重量比电容和体积比电容。 例如,高度多孔的电极可以提供大的比表面积且可以有利于离子扩散以用于高的重量比电 容,但会因其相对低的堆积密度而可能具有较低的体积比电容。另一方面,更致密的电极可 以提高体积比电容,但会降低离子可到达的表面积和离子扩散速率,从而导致较低的重量 比电容和差的倍率性能(rate performance)。因此,为了开发出具有高的能量密度和功率 密度的实用的EC而期望获得高的重量比电容和高的体积比电容两者,同时保持优良的倍率 能力(rate capability),这存在艰巨的挑战。
[0008]针对此背景,提出了开发本文所描述的需求。
[0009] 概述
[0010] EC对于其在多个领域,诸如电动交通工具、移动电子设备以及电源供应器等等中 的潜在应用是合意的。然而,EC的广泛用途因它们相对低的能量密度而受到限制。正如本公 开内容的一些实施方案所解释的,通过使用具有分层的多孔结构的三维(3D)石墨烯框架作 为高性能的、无粘结剂的EC电极来极大地改善能量密度。机械地压制的石墨稀框架满足了 合意的EC电极的若干标准,包括高的电导率、高的离子传输速率和离子可到达的表面积以 及高的堆积密度,产生前所未有的重量比电容和体积比电容。在一些实施方案中,石墨烯框 架电极能够在有机电解质中提供约298F g<(或更多)的重量比电容和约212F cnf3(或更 多)的体积比电容。更通常地,在约lAg<电流密度(或lOAgi或另一种更高的或更低的电流 密度)下的重量比电容是至少约180F g-\至少约200F g-\至少约220F g-\至少约240F g -\至少约250F g-1、至少约260F g-1或至少约280F g-S且多达约320F g-\多达约360F g 一1、多达约400F g-\多达约440F g-1或更多,且在约lAg-1电流密度(或10Ag-1或另一种更高 的或更低的电流密度)下的体积比电容是至少约1 〇〇F cnf3、至少约120F cnf3、至少约140F cm-3、至少约160F cm-3、至少约180F cm-3、至少约200F cm-3或至少约210F cm-3,且多达约 240F cm-3、多达约280F cm-3、多达约320F cm-3、多达约360F cm-3或更多。在一些实施方案 中,石墨稀框架电极可以提供至少约80Wh kg-\至少约90Wh kg-\至少约lOOWh kg-\至少 约llOWh kg-1或至少约120Wh kg'且多达约150Wh kg-1或更多的重量能量密度,和至少约 50Wh L-\至少约60Wh L-\至少约70Wh L-\至少约80Wh L-1或至少约90Wh L-S且多达约 120Wh Γ1或更多的体积能量密度。此外,一些实施方案中的完全包装的设备的堆叠可以分 别提供约20Wh kg-1或更多(例如,约30Wh kg-1或更多、或约35Wh kg-1或更多)的重量能量密 度和约30Wh I/1或更多(例如约40Wh I/1或更多,或约49Wh Γ1或更多)的体积能量密度,这 接近铅酸电池的那些。获得这样高的能量密度弥补了 EC与电池之间的鸿沟,且可以在多种 应用中给移动电源供应器开劈机会。
[0011] 本公开内容的一些方面涉及EC。在一些实施方案中,EC包括电极对和布置于该电 极对之间的电解质。该电极对中的至少第一电极包括石墨烯框架膜,且该石墨烯框架膜包 括具有形成于石墨烯片材中的纳米孔的互连的石墨烯片材。
[0012] 本公开内容的其他方面涉及电极结构。在一些实施方案中,电极结构包括集流体 和连接至集流体的基于石墨烯的凝胶。基于石墨烯的凝胶包括互连的石墨烯片材,且具有 约O.lg cnf3或更多的堆积密度。
[0013]在其他实施方案中,电极结构包括集流体和连接至集流体的基于石墨烯的凝胶。 基于石墨烯的凝胶包括互连的石墨烯片材和吸附到石墨烯片材上的电化学活性的分子物 质。
[0014] 本公开内容的另外的方面涉及一种形成石墨烯框架的方法。在一些实施方案中, 该方法是一步工艺,该一步工艺是在还原性条件下加热包括蚀刻剂和石墨烯氧化物的混合 物以使石墨稀氧化物还原成石墨稀,在石墨稀中形成纳米孔,并将石墨稀自组装成石墨稀 框架。
[0015] 在其他实施方案中,该方法是两步或多步工艺,该两步或多步工艺是初始地在石 墨烯氧化物片材中形成纳米孔,随后在还原性条件下加热石墨烯氧化物片材的分散体以使 石墨烯氧化物片材还原成石墨烯片材,并且将石墨烯自组装成石墨烯框架。
[0016] 还预期本公开内容的其他方面和实施方案。前面的概述和以下的详述并不意味着 将本公开内容限制于任何特定的实施方案,而仅仅意味着描述了本公开内容的一些实施方 案。
[0017] 附图简述
[0018] 为了更好地理解本公开内容的一些实施方案的性质和目的,应该结合附图参考以 下的详细描述。
[0019]图1:作为用于EC电极的材料的有孔(holey)石墨烯框架(HGF)的示意图。(a、b)无 孔石墨烯框架(无孔GF或作为速记形式的GF) (a)和HGF(b)的初始溶剂化的三维(3D)大孔结 构。(c、d)溶剂化的无孔GF(c)和HGF(d)的压制膜。(e、f)无孔GF(e)和HGF(f)膜的特写视图, 且箭头强调了离子传输路径。无孔GF膜中的离子行进较长的距离以找到石墨烯片材的断裂 边缘以穿过无孔GF膜中的石墨烯片材的每一层,而HGF的有孔石墨烯片材中的纳米孔可以 起到相邻的石墨烯层之间的离子传输捷径的作用以极大地加快越过整个HGF膜的离子传 输。
[0020]图2:根据本公开内容的实施方案的EC的示意图。
[0021 ]图3:HGF的制备和结构表征。(a)HGF和HGF膜的制备过程的示意图。(b)示出独立式 HGF的照片。(c)HGF的内部微结构的扫描电镜(SEM)图像。比例尺,Ιμπι。(d)HGF中的有孔石墨 烯片材的透射电镜(TEM)图像。比例尺,lOnmde)用于比较的GF中的无孔石墨烯片材的TEM 图像。比例尺,lOnmdf)示出在机械压制之前和之后的HGF的照片,且在插图中示出压制的 HGF膜的柔性。(g)压制的HGF膜的横截面的SEM图像。比例尺,Ιμπι。
[0022]图4: HGF-EC和GF-EC在约6Μ ΚΟΗ中的电化学表征。(a)HGF-EC和GF-EC在约 1 OOOmV 的高扫描速率下的CV曲线。(b)HGF-EC和GF-EC在约100A gl勺高电流密度下的恒电流充 电/放电曲线。(c) HGF-EC和GF-EC的比电容相对于不同电流密度的比较。(d) HGF-EC和GF-EC 的奈奎斯特标绘图。插图示出高频区域的特写视图。(e)相角相对于频率的伯德标绘图。(f) HGF-EC在约25Agi电流密度下的循环稳定性。
[0023] 图5:HGF-EC在E^OMBF4/AN中的电化学表征。(a、b)HGF-EC的CV曲线(a)和恒电流充 电/放电曲线(bhk^GF和GF电极的比电容相对于不同电流密度的比较。(d、e)HGF电极的 重量比电容(d)和体积比电容(e)相对于不同电流密度(分别是约lmg cnf2和约1 Omg cnf2的 石墨稀的面积质量加载量(areal mass loading)) df^HGF-EC在约20Ag4电流密度下的循 环稳定性。
[0024]图6:HGF_EC与其他现有技术中的能量储存技术的能量密度和功率密度的比较。 (a) -个HGF膜电极和一个组装的对称HGF-EC的照片。(b)由不同碳材料制造的EC的重量能 量密度和体积能量密度(由每个EC中的两个电极的总重量或总体积归一化)和体积堆叠能 量密度(由包括两个电极、两个集流体、电解质和一个分隔物而无包装物的整个EC的体积归 一化)。电极材料的面积质量加载量:活性炭(AC:约5mg cnf2到约10mg cnf2)、单壁碳纳米管 (SWNT:约5mg cnf2)、活性微波剥离的石墨稀氧化物(α-MEGO:约2.5mg cnf2)、电解质介导的 石墨稀(EMG:约10mg cm-2)、HGF(约10mg cm-2)。(c)与铅酸电池、锂离子电池、商业EC相比较 的HGF-EC的重量能量密度相对于重量功率密度的Ragone标绘图。(d)与铅酸电池、锂薄膜电 池、商业活性炭EC相比较的HGF-EC的体积能量密度相对于体积功率密度的Ragone标绘图。 能量密度和功率密度由包括两个电极、两个集流体、电解质、一个分隔物以及包装物的整个 设备堆叠的实际重量或体积归一化。
[0025]图7:对石墨烯氧化物(G0)和冻干的HGF和GF的X-射线光电子光谱学(XPS)、拉曼与 热重分析(TGA)表征。(a)XPS调查光谱和(b)Cls光谱。(c)拉曼光谱。(d)TGA曲线。所有的结 果证实了在所制备的GF和HGF中G0的有效脱氧。XPS研究示出G0的C/0原子比是约2.1到GF和 HGF的约9.3和约8.5的C/0原子比,这与从使用CE 440元素分析仪进行的燃烧元素分析测定 的结果一致(G0、GF和HGF的C/0比分别是约1.8、约9.1和约8.2)。在HGF中观察到的比在GF中 观察到的略高的拉曼光谱中的D/G比和略大的重量损失可以归因于HGF中的纳米孔周围的 另外的缺陷和氧官能团。
[0026]图8 : HGF的X-射线衍射(XRD)表征。(a)在冻干之前和之后的HGF的XRD图。冻干的 HGF示出衍射峰在约25°,对应于约0.36nm的d间距,这接近石墨的d间距(约0.33nm)〇 Scherrer方程可以用于推出堆叠的石墨稀片材的厚度是约lnm,这对应于冻干的HGF的孔壁 中的石墨烯片材的平均层数是约2.8。相比之下,所制备的湿HGF示出从约20°到约50°的范 围内的宽得多的衍射峰,这可能是因为水被限制在HGF网络内,且还表明石墨烯片材沿着其 堆叠方向(沿着C-轴)的差的有序性。(b)在机械压制之前和之后的HGF的XRD图。衍射峰示出 类似的峰宽和强度,表明HGF中的石墨烯片材内的初始布置并未通过机械压制被显著改变 (例如,没有明显的重新堆叠),且HGF的大的可到达表面积能够被很好地维持。
[0027]图9:不同放大倍数的有孔石墨烯片材的高分辨率TEM(HRTEM)图像。
[0028] 图10:不同浓度的H2〇2的对照实验。(a)示出由约0、约0.3%、约3%和约30%的H 2〇2 (按重量计)获得的产物的照片。对于约30 %的H2〇2,水性分散体中的GO片材在水热反应期间 被完全蚀刻,产生无色的澄清溶液。(b、c)由约3%的H2〇2获得的HGF中的有孔石墨烯片材的 低放大倍数(b)和高放大倍数(c)的TEM图像。
[0029]图11:N2(77K)吸附-解吸附测试。(a)冻干的HGF和GF的犯等温线和(b)密度泛函理 论的孔径分布。(c)冻干的未压制和压制的HGF的他等温线和(d)DFT孔径分布。
[0030] 图12:有机电解质中的HGF的以约5mV/s的扫描速率的3电极循环伏安法(CV)测试, 且Ag/AgCl和Pt箱分别作为参比电极和对电极。
[0031] 图13:具有大的面积质量加载量的HGF膜(约10mg石墨烯/cm2)的HGF-EC在有机电 解质中的电化学表征。(a、b)HGF-EC的CV曲线(a)和恒电流充电/放电曲线(b)。。)具有不同 的面积质量加载量的HGF电极的比电容相对于不同电流密度的比较。(d)具有HGF膜的不同 面积质量加载量的HGF-EC的奈奎斯特标绘图。
[0032] 图14:由纯EMMBF4和EMMBF4/AN分别作为电解质的HGF-EC的电化学表征和比较。 (a)以约50mV/s的扫描速率的CV曲线。(b)纯EMIMBF4中的恒电流充电-放电曲线。(c)约lmg/ cm2的面积质量加载量的重量比电容相对于电流密度。(d)约1 Omg/ cm2的面积质量加载量的 重量比电容相对于电流密度(e)在纯EM頂BF4中的分别约lmg/cm 2和约lOmg/cm2的面积质量 加载量的体积比电容相对于电流密度。(f)具有纯EMIMBF4以及约lOmg/cm 2的面积质量加载 量的HGF-EC的泄漏电流曲线。HGF-EC的泄漏电流是约2yA/F,这与商业超级电容器的泄漏电 流(约l-3yA/F)差不多。
[0033]图15 :HGF-EC在水性电解质和有机电解质中的奈奎斯特标绘图。插图示出高频区 域的特写视图。由于有机电解质的较低的离子电导率,对于有机电解质的较大的半圆表明 有机电解质中的电荷转移电阻大于水性电解质中的电荷转移电阻。可以通过外推图的竖直 部分至实轴而推出HGF-EC的等效串联电阻(ESR)在水性电解质中是约0.6 Ω,而在有机电解 质中是约2.5 Ω。虽然有机电解质中的ESR大于水溶液中的ESR,但是该差异(约4倍)远小于 化学还原的石墨烯的其他研究的差异(约10到20倍),这表明有机电解质离子扩散到HGF的 孔中比其他研究中更有效。
[0034]图16:具有不同堆积密度的GF膜和HGF膜的超电容性能的比较。较低堆积密度的GF 膜和HGF膜(约0.12g/cm3)通过在约0.5MPa的较小的压力下压制来制备,且用于构建超级电 容器的电极并与高堆积密度的电极(约〇.71g/cm 3)进行比较。(a)具有约0.12g/cm3和约 0.71g/cm3的堆积密度的GF膜在约50mV/s的扫描速率下的CV曲线。(b)具有约0.12g/cm 3的堆 积密度的GF膜的恒电流充电-放电曲线。(c)具有约lmg/cm2的面积质量加载量的GF膜的重 量比电容相对于电流密度。(d)具有约0.12g/cm 3和约0.71g/cm3的堆积密度的HGF膜在约 50mV/s的扫描速率下的CV曲线。(e)具有约0.12g/cm 3的堆积密度的HGF膜的恒电流充电-放 电曲线。(f)具有约lmg/cm2的面积质量加载量的HGF膜的重量比电容相对于电流密度。与GF 膜相比,当堆积密度从约0.12g/cm3增大到约0.71g/cm3时,HGF膜示出电容保留从约lA/g到 约ΙΟΟΑ/g(约4%相对于约13%)的小得多的下降,这表明有孔石墨烯片材能够促进致密膜 电极中的有效的离子扩散以用于快速的充电和放电过程。
[0035]图17:示出不同的基于碳的EC在有机电解质中的性能的表1。此表中示出的代表性 的多孔碳材料的比电容值被仅活性电极材料的质量归一化(而不考虑聚合物或导电添加 剂)。除了商业活性炭外,此表中示出的体积堆叠能量密度(E v-i?)并不包括包装物。
[0036]图18:a)前体的水分散体和通过冻干所制备的官能化石墨烯水凝胶(FGH)和气凝 胶的照片。FGH的内部微结构的b)低放大倍数和c)高放大倍数的SEM图像。d )G0和冻干的FGH 的XRD图。e)G0和官能化(FG)水溶液的UV-可见光光谱。插图示出低浓度(约0. lmg/mL)的G0 和FG的水分散体的照片。单层G0(f)和FG(g)片材的AFM图像。h)G0膜和冻干的FGH的Cls XPS 的图。
[0037]图19:a)基于FGH的和基于未官能化的石墨烯水凝胶(GH)的对称超级电容器在约 5mV/s的扫描速率下的CV曲线。b)两种设备在约lA/g的电流密度下的恒电流充电/放电曲 线。c)比电容相对于不同电流密度的比较。d)基于FGH的超级电容器在约ΙΟΑ/g的电流密度 下的循环稳定性。插图示出设备在约5mV/s下在第一次和第10000次恒电流充电/放电循环 后的CV曲线。
[0038]图20: a)柔性FGH薄膜电极的数码照片。FGH膜的内部微结构的b)低放大倍数和c) 高放大倍数的SEM图像。d)基于FGH的柔性固态超级电容器的数码照片。e)具有作为电解质 和分隔物的H2S0 4-PVA聚合物凝胶的固态设备的示意图。
[0039] 图21: FGH电极在H2S〇4_PVA凝胶电解质中和在约1M H2S〇4水性电解质中的(a)在约 10mV/s下的CV曲线和(b)比电容的比较。(b)中的插图示出在约lA/g下的恒电流充电/放电 曲线的一个循环。c)在不同弯曲角度下的基于FGH的柔性固态超级电容器在约10mV/ S下的 CV曲线。d)弯曲状态的固态设备在约10A/g的电流密度下的循环稳定性。插图示出设备的恒 电流充电/放电曲线。三个串联的超级电容器组e)在约10mV/s下的CV曲线和f)在约lA/g下 的恒电流充电/放电曲线的一个循环。插图示出由串联设备开启的绿色LED的照片。
[0040]图22:未加载的FGH(左侧)和支撑多达约7100倍其自身干重(约2.8mg)的重量(约 20g)的FGH的照片(右侧)。
[00411图23: FGH框架的壁的典型TEM图像和相应的电子衍射图,表示约2-4个不明方向的 结晶石墨烯层。
[0042]图24:冻干的FGH的(a)氮吸附和解吸附等温线和(b) BJH孔分布。
[0043] 图25:冻干的GH和FGH的(a)XRD图和(b)Cls XPS图。基于XRD的结果(a),FGH(约 3.56人)具有比GH(约3.71 Λ)略小的层间距离,表明在FGH中石墨烯片材内的脱氧和电子 共辄的恢复比在GH中更有效。另一方面,XPS的结果(b)表明FGH中高得多的氧含量,这可以 在很大程度上归因于吸附的氢醌分子。
[0044]图26: (a)基于FGH的超级电容器在不同扫描速率下的CV曲线。(b)基于FGH的超级 电容器在不同电流密度下的恒电流充电/放电曲线。
[0045] 图27: (a)在约2mA下充电到约1.0V且保持在约1.0V持续2小时的基于FGH的固态超 级电容器的泄漏电流曲线。(b)设备在约1.0V下充电约15min后的自放电曲线。
[0046]图28:示出化学改性的石墨烯的超电容性能的表2。
[0047]图29:示出基于石墨烯的赝电容器的超电容性能的表3。注意到:表2和3中示出的 基于其他化学改性的石墨烯和基于石墨烯的赝电容器的所报道的比电容值通常是基于活 性电极材料的质量。与不含添加剂的FGH电极相比,聚合物粘结剂(通常是聚四氟乙烯)和导 电添加剂(通常是炭黑)中的一个或两个用于与活性材料混合以制造超级电容器的电极。这 些添加剂占整个电极材料的约10_20wt. %,这在归一化成电极的总质量时将进一步降低比 电容。
[0048]图30:示出基于碳纳米材料的固态超级电容器的性能的表4。
[0049] 详述
[0050]为了解决实际的EC的挑战,本公开内容的实施方案涉及用作EC电极材料的3D石墨 烯框架及其制备。一些实施方案中的石墨烯框架具有分层的多孔结构,且可以被用在无粘 结剂(或基本上无粘结剂)和无导电添加剂(或基本上无导电添加剂)的具有优良的电导率、 高的离子传输速率、大的离子可到达的表面积以及高的堆积密度的EC电极中,由此提供具 有高的重量比电容和体积比电容以及高的能量密度的EC。
[0051] 如将被理解的是,石墨烯是碳的同素异形体,且其结构通常是被堆积在蜂窝状晶 格中的SP2-键合的碳原子的一个原子厚度的片材。在一些实施方案中,石墨烯以具有基本 上单层碳原子的薄片材的形式被提供,其可以被设想成未卷起的碳纳米管,然而还预期双 层或其他多层石墨烯。
[0052] 在一些实施方案中,3D石墨烯框架中的石墨烯片材具有纳米孔,这些纳米孔形成 在石墨烯片材的平面内或基面内,且石墨烯框架可以被称为有孔石墨烯框架(HGF)。在一些 实施方案中,HGF通过蚀刻石墨烯中的纳米孔,然后将石墨烯自组装成3D网络结构来形成。 在其他实施方案中,3D石墨烯框架中的石墨烯片材可以基本上不含平面内的纳米孔,且石 墨稀框架可以被称为无孔石墨稀框架(无孔GF)。石墨稀框架的结构,无论是有孔的还是无 孔的,均可以呈凝胶的形式,且在一些实施方案中,凝胶可以被水合以形成水凝胶,或可以 用另外的溶剂或其他液体介质溶剂化。在其他实施方案中,凝胶的液体介质可以被空气替 代以形成气凝胶。
[0053]首先转向图1,图1例证根据本公开内容的实施方案的无孔GF和HGF。石墨烯框架通 过使石墨烯片材(有孔的或无孔的)共辄成独立式的3D网络来形成。石墨烯框架的结构满足 用于合意的EC电极的若干个标准(图1)。
[0054]例如,3D网络中的石墨烯片材是高度互连的且互锁在一起的以减轻它们的重新堆 叠并维持具有大比表面积的高度多孔的单块结构(图la),比表面积诸如基于亚甲基蓝吸附 的多达约1030m2g- 1或更多,或更通常地,至少约500m2g-1、至少约600m2g- 1、至少约700m2g一1、 至少约800m2g-\至少约900m 2g-1或至少约1000m2g-S且多达约1300m2g-\多达约1500m 2g一 \ 多达约1700m2g'或多达约200(?^1或更多。在有孔石墨烯片材内形成平面内纳米孔(图 lb)可以进一步增大比表面积,诸如多达基于亚甲基蓝吸附的约1560m2g4或更多,或更通常 地,至少约 l〇〇〇m2g-1、至少约 1100m2g-1、至少约 1200m2g-1、至少约 1300m2g-1、至少约 1400m2g-1 或至少约ΙδΟΟπιΥ1,且多达约ΠΟΟπιΥ1、多达约200011^'多达约230011^'或多达约 250011? -1 或更多。
[0055] 作为另一个实施例,石墨烯框架初始地至少部分或基本上全部被水合(或以其他 方式溶剂化),且可以允许直接交换电解质以确保大部分的或基本上整个表面积被电解质 润湿或是电解质离子可到达的且因而是电化学活性的。此水合程度在其他电极材料中难以 实现,诸如其他多孔碳材料。
[0056] 作为另一个实施例,具有互锁的石墨烯片材的水合的(或以其他方式溶剂化的)石 墨烯框架可以被机械压制以形成独立式的致密的石墨烯框架膜(图lc、d),几乎没有或完全 没有重新堆叠以获得高的堆积密度,同时维持初始水合(或以其他方式溶剂化的)条件。通 过机械压制,堆积密度可以是约〇.71g cnf3或更多,或更通常地,至少约O.lg cnf3、至少约 0.2g cm-3、至少约0.3g cm-3、至少约0.4g cm-3、至少约0.5g cm-3、至少约0.6g cm-3或至少 约0.7g cnf3,且多达约0.8g cnf3、多达约0.9g cnf3、或多达约lg cnf3或更多。
[0057] 作为另一个实施例,石墨烯框架膜呈现出优良的电导率,比如多达约1000S πΓ1或 更多,这比活性炭的电导率(约10-100S πΓ1)高约一个到两个数量级且还是两倍好于活性石 墨烯的电导率(500S πΓ1)。更通常地,石墨烯框架膜的电导率可以是至少约500S πΓ1、至少 约600S m-\至少约700S m-\至少约800S m-\至少约900S m-1或至少约1000S m-S且多达 约1300S πΓ1、多达约1500S πΓ1、或多达约2000S πΓ1或更多。高的电导率允许石墨烯框架膜 被直接用作EC电极,且省去了聚合物粘结剂和导电添加剂(或包括减少水平的聚合物粘结 剂和导电添加剂)。包括聚合物粘结剂和导电添加剂可能会增加电极制备的复杂度,且还可 能对比电容性能施加不利影响。
[0058]作为另外的实施例,石墨烯框架中的孔是足够大的且很好地集成到分层的多孔结 构中以形成畅通通道的高度连续的网络,即使在高度压制的形式下也便于离子有效传输贯 穿基本上整个网络。具体地,石墨烯片材被组装形成互连的3D大孔网络,且石墨烯片材之间 的孔的尺寸范围从亚微米到若干微米,诸如从约5nm、从约10nm、从约100nm,或从约500nm, 且多达约1M1、多达约5μπι、多达约ΙΟμπι或更多,且孔壁包括单层或几层石墨烯片材。与无孔 GF(图le)相比,有孔石墨烯片材中的平面内纳米孔一起是足够大的以起到不同的石墨烯层 之间的离子扩散捷径的作用以极大地加快离子传输遍及基本上整个膜并促进离子到达基 本上整个表面积(图If)。平面内纳米孔的尺寸可以是从约lnm、从约2nm、从约3nm、从约4nm 或从约5nm,且多达约10nm、多达约20nm、多达约50nm、多达约100nm或更多。例如,平面内纳 米孔的尺寸可以从约lnm到约100nm或从约lnm到约10nm。这些特征的组合或子组合允许石 墨烯框架获得高的体积比电容,同时保持高的重量比电容和优良的倍率能力。
[0059]在一些实施方案中,石墨烯框架通过将石墨烯自组装成3D网络结构来形成。在一 些实施方案的HGF的情况中,可以采用一步工艺,即石墨烯氧化物(G0)还原形成石墨烯与在 石墨烯内形成纳米孔的组合。具体地,受控量的H 2〇2(或另外的合适的蚀刻剂)可以与石墨烯 氧化物(G0)分散体组合,或可以被引入到石墨烯氧化物(G0)分散体中。混合物可以经受水 热过程,诸如通过密封在反应釜中并在从约100 °C到约250 °C (或从约130 °C到约250 °C)的温 度下加热约2小时到约10小时以得到机械牢固的单块HGF。在水热过程期间,G0片材可以被 还原并自组装成具有互连的3D大孔网络的水凝胶。H 2〇2可以部分氧化并蚀刻G0缺陷位点周 围的碳原子,留下碳空位,其逐渐扩张成纳米孔。还预期的是,根据两步工艺,纳米孔的形成 可以关于GO片材的还原并自组装成凝胶顺序地进行。
[0060] 形成石墨烯框架的其他实施方案包括:(1)通过水热、化学和电化学还原中的一种 或更多种的基于水凝胶的还原的G0; (2)通过作为交联剂的聚合物辅助的G0的胶凝化,聚合 物诸如聚乙烯醇、聚亚乙基亚胺、DNA、蛋白质等等;(3)由小分子促进的G0的胶凝化,小分子 诸如鲸蜡基三甲基溴化铵(或CTAB)、氨基酸、核苷、多价阳离子等等;(4)由纳米材料促进的 G0的胶凝化,纳米材料诸如碳纳米管;(5)通过真空过滤的基于水凝胶的还原的G0; (6)通过 冻干的冰模板;(7)真空离心蒸发;(8)模板引导法,诸如化学气相沉积、聚苯乙烯胶体模板 和液滴模板;以及(9)纳米颗粒作为石墨烯片材之间的间隔物以调节或控制孔隙率。
[0061] 本公开内容包括石墨烯框架的另外的实施方案。例如,一些实施方案中的石墨烯 框架可以并入一种或更多种赝电容性材料以提高比电容并提供具有高能量密度的相应的 不对称超级电容器。石墨烯框架中赝电容性材料的质量加载量可以是至少约lwt. %、至少 约5wt. %、至少约10wt. %、至少约15wt. %或至少约20wt. %,且多达约30wt. %、多达约 50wt. %、多达约70wt. %、或多达约90wt. %或更多。赝电容性材料的示例包括电化学活性 的分子物质(例如具有多达约l〇〇〇g πιοΓ1或多达约500g πιοΓ1的分子量),诸如氢醌和包括 羟基或允许吸附到或连接到石墨烯片材的表面上的其他官能化部分的其他电化学活性的、 芳族的或非芳族的、饱和的或不饱和的分子物质。赝电容性材料的另外的示例包括导电聚 合物,诸如含氮的芳族聚合物(例如聚吡咯类、聚咔唑类、聚吲哚类、聚苯胺类以及聚氮杂环 庚三稀类化〇17&26口;[116))、含硫的芳族聚合物(例如聚(3,4-亚乙基二氧基噻吩))、聚噻吩 类、聚芴类、聚亚苯基、聚芘类、聚奧类、聚萘类、聚乙炔类以及聚(对-亚苯基亚乙烯基)。赝 电容性材料的另外的示例包括电化学活性的金属氧化物和金属氢氧化物,诸如呈氧化还原 活性的纳米颗粒的形式,该纳米颗粒由诸如钌氧化物(例如Ru02)、锰氧化物(例如Μη0 2)、镍 氧化物(例如NiO)、钴氧化物(例如Co203或Co 304)、镍氢氧化物(例如Ni (0H)2)以及混合的金 属氧化物和金属氢氧化物的材料形成。将赝电容性材料并入到石墨烯框架中可以经由将赝 电容性材料吸附到石墨烯片材上,将赝电容性材料生长到石墨烯片材上,或将赝电容性材 料与石墨烯片材混合或将赝电容性材料在石墨烯片材中分散来发生。预期的是,赝电容性 材料的并入可以关于G0片材的还原和自组装成凝胶组合地进行或顺序地进行。
[0062] 本文描述的石墨烯框架电极材料可以用于多种EC和其他电化学能量储存设备。例 如,石墨烯框架电极材料可以用于对称的EC和不对称的EC,对称的EC诸如双层电容器和赝 电容器,不对称的EC诸如混合电容器。
[0063] 图2示出EC 200的示意图,EC 200包括电极对204和208以及布置于电极204和208 之间的电解质206。电极204和208中的任一个或两个可以包括本文描述的石墨烯框架膜或 可以由本文描述的石墨烯框架膜形成。此外,电极204和208中的任一个或两个可以在石墨 烯框架膜中并入赝电容性材料。电解质206可以是水性电解质、有机电解质或凝胶电解质。 如图2所示,EC 200还包括一对集流体202和210,且电极204和208分别被连接至集流体202 和210。电极204和集流体202(或电极208和集流体210)-起可以对应于EC 200的电极结构。 在一些实施方案中,还预期的是,可以省略集流体202和210中的任一个或两个。 实施例
[0064] 以下的实施例描述了本公开内容的一些实施方案的特定方面以为本领域普通技 术人员阐释并提供描述。实施例不应该被解释为限制本公开内容,因为实施例仅仅提供了 用于理解和实践本公开内容的一些实施方案的特定方法学。
[0065] 实施例1
[0066] 用于高效的电容能量储存的有孔石墨烯框架(HGF)
[0067] HGF的制备和表征。通过一步工艺来制备HGF,该一步工艺基本上同时低温蚀刻石 墨烯中的纳米孔和将石墨烯自组装成三维(3D)网络结构(图3a)。将受控量的H2〇2水溶液添 加到分散良好的石墨烯氧化物(G0)水分散体中。在内衬有特氟龙(Teflon)的反应釜中密封 混合物并在约180°C下加热约6小时以得到机械牢固的单块HGF(图3b)。在水热过程期间,G0 片材被缩减(图7)且自组装成水凝胶,水凝胶具有互连的3D大孔网络(图3c),其孔径范围在 亚微米到若干微米且孔壁包括单层或几层石墨烯片材(图8)。同时,H 2〇2分子可以部分氧化 并蚀刻在G0的更有活性的缺陷位点周围的碳原子,留下碳空位,其逐渐扩张成纳米孔。由于 缺陷碳位点大致分布遍及G0的基面,因而蚀刻过程可以横跨基本上整个石墨烯片材发生以 产生大量的几个纳米的平面内孔(图3d和图9)。在不添加 H2〇2的对照实验中,获得包括无孔 石墨烯片材的GF(图3e)。此外,过量的H 2〇2将导致更剧烈的蚀刻,扩大了有孔石墨烯的孔径 并将它们断裂成小片(图10)。因此,HGF变得脆弱而不适用于不含粘结剂的EC电极。氮吸附_ 解吸附测试示出冻干的HGF具有约830m 2g-1的131〇11^1161^1]111161:1:-161161'(1^1')比表面积,这 显著大于无孔GF的比表面积(约26(??^ 1)(图lla、b)。由于用于制备BET样品的冻干可能诱 导一些石墨烯层的部分重新堆叠并减小表观比表面积,因而亚甲基蓝吸附法也用于更准确 地测定HGF的溶剂化表面积是约1560m Y1,且无孔GF的溶剂化表面积是约1030m Y1。
[0068]由于具有高度多孔的结构和优良的机械稳定性,可以使用液压机来极大地压制所 制备的HGF以形成堆积密度增加了几乎60倍的独立式的致密HGF膜。例如,一件具有约12mg cnf3堆积密度的约1-cm厚的HGF可以被压制成具有约0.71g cnf3堆积密度的约140μπι厚的柔 性膜(图3f、g)。HGF在压制前和压制后的X射线衍射(XRD)研究示出类似的衍射峰宽度和强 度,这表明HGF内的石墨烯片材之间的初始布置没有被压制显著改变(图8)。同时,受压制的 HGF膜呈现出约810m2g-1的BET比表面积,接近未受压制的HGF的BET比表面积(约830m 2g一1) (图llc、d),这进一步表明在受压制的HGF膜内几乎没有发生重新堆叠。这可以归因于石墨 烯片材的牢靠地互锁,这允许机械压制以减小孔径而不显著改变石墨烯和其3D互连的多孔 结构的堆叠特性。重要的是,这些受压制的HGF膜可以呈现出约1000S πΓ1的优良的电导率, 且是足够机械牢固的以被直接用作EC电极。为了开发HGF用于电容性能量储存的潜能,使用 受压制的HGF膜作为两个电极制造了一系列对称的基于HGF的EC(HGF-EC),且在水性电解质 和有机电解质中研究了它们的电化学特性。一个电极中的HGF的面积质量加载量是约lmg cnf 2的石墨烯。作为对照实验,受压制的无孔GF膜也被用于产生GF-EC。除非另外规定,否则 下文所有的电化学结果均是基于受压制的HGF膜和受压制的GF膜。
[0069] HGF在水性电解质中的电化学性能。循环伏安法(CV)(图4a)和恒电流充电/放电研 究(图4b)示出与GF-EC相比的用于HGF-EC的极大增强的电化学性能。在约1 OOOrnV ?Γ1的高扫 描速率下的接近矩形的CV曲线和在约100Α 的高电流密度下的接近三角形的充电/放电 曲线表明在整个HGF电极中近乎理想的电双层(EDL)电容行为和有效的电解质离子传输。CV 曲线中看到的弱的宽峰对可能是因为来自HGF的石墨烯片材上的残余含氧基团的氧化还原 反应的次要贡献。另外,很明显,HGF-EC在放电曲线开始时呈现出比GF-EC(约0.26V)更小的 约0.12 V的压降(IR降)(图4 b),从这可以分别推导出H G F - E C的约0.6 Ω的等效串联电阻 (ESR)和GF-EC的约1.3Ω的ESR。从充电/放电曲线可以推导出比电容值(图4CKHGF电极呈 现出在约lAg<电流密度下约310F 的超高重量比电容。相比之下,无孔GF电极的重量比 电容是在约lAg<下约208F g<。在电流密度增加到多达约lOOA/g后,HGF电极保留其初始电 容的约76% (约237F g',而无孔GF仅示出约63%的电容保留(约131F g'。
[0070] 使用电化学阻抗谱(EIS)来探测HGF内的离子传输性质。约100kHz和约lOmHz频率 范围内的频率响应分析产生了奈奎斯特标绘图(图4d)。该标绘图以低频区域内的竖直曲线 为特征,这表明近乎理想的电容行为。高频区域的特写观察揭示了从竖直曲线到45°瓦伯格 区域、随后的半圆的转变(图3d,插图KHGF-EC呈现出较短的45°区域和较小直径的半圆,这 表明HGF电极内较低的电荷转移电阻和更有效的电解质扩散。通过外推标绘图的竖直部分 到实轴,分别获得HGF-EC的约0.65 Ω的ESR和GF-EC的约1.25 Ω的ESR,这与恒电流充电/放 电研究(图4b)-致。应该注意到,EC的ESR与电极的电阻和电极内的离子扩散电阻两者相 关。虽然GF膜具有比HGF膜更好的电导率(约1400S/m相对于约1000S/m),但HGF膜具有好得 多的离子扩散性质(图4d ),这导致HGF-EC的充电/放电曲线中较低的ESR和较小的IR降。
[0071] HGF-EC和GF-EC的相角对频率的依赖性示出两种设备的相角在低频下接近-90°, 这证实为理想的电容行为(图4e)。在-45°相角下的特征频率fo标记出电阻阻抗和电容阻抗 相等的点。HGF-EC和GF-EC分别呈现出约5.88Hz的f 〇和约2.04Hz的f 〇,这相当于HGF-EC的约 〇.17s的时间常数T〇( = l/fQ),这是GF-EC的时间常数(约0.49s)的约三分之一且远低于常 规的基于活性碳的EC的时间常数(约10s)。此HGF-EC的快速频率响应进一步表明HGF电极内 显著增大的离子传输速率。HGF-EC的循环测试示出在约25Ag<的高电流密度下经过20000次 循环后约95%的电容保留(图4f),证明了设备的优良的电化学稳定性。这些研究证明了 HGF 电极不仅呈现出比GF电极高得多的比电容,而且还示出在高的充电/放电速率下极大改善 的倍率能力和电容保留,这可以归因于较高的离子可到达的表面积和在HGF的分层的多孔 网络中更快速的离子传输(参见图le、f)。
[0072] HGF在有机电解质中的电化学性能。由于储存在EC中的能量与电压的平方成比例, 因而对EC来说更合意的是有机电解质,这是因为与水性电解质相比,有机电解质的较宽的 电化学窗口。为此,对HGF-EC在1-乙基-3-甲基四氟硼酸咪唑鑰/乙腈(EMMBF4/AN)电解质 中的电化学性能进行了进一步的测试。CV测试示出甚至在约500mV ?Γ1的高扫描速率下从约 0到约3.5V的矩形曲线(图5a)。同时,恒电流充电/放电曲线示出在放电曲线的初始点处具 有小压降的接近对称的三角形形状(在约50Ag<电流密度下约0.26V)(图5b)。两个结果都表 明HGF-EC中优良的EDL电容行为和非常低的ESR(约2.6Ω )。在约5mV ?Γ1的低扫描速率下的 三电极CV测试(图12)示出几乎没有赝电容贡献。HGF电极示出在约lAg<电流密度下约298F gl勺令人印象深刻的重量比电容(图5c ),比水性电解质低约4 % (约31 OF )。将电流密度 增大至约100Ag4,HGF电极保持约202F 的高重量比电容。获得有机电解质中这样高的重 量比电容(约298F g<)导致前所未有的约127Wh kg<的重量能量密度(图17:表1),其与铅 酸电池电极的理论值(约165Wh kg<)差不多。基于它们的约0.71 g cnf3的堆积密度,HGF电 极的体积比电容和能量密度被分别计算为约212F cnf3和约90Wh Γ1(表1)。
[0073] 为了评估EC设备的实际潜能,合意的是,比较通过包括两个电极、集流体、电解质、 分隔物(和包装物)而不是仅活性电极材料的整个EC堆叠的总重量或总体积归一化的能量 密度值(堆叠能量密度)。为此,合意的是增加电极材料的含量(例如电极材料的面积质量加 载量)以使堆叠能量密度最大。然而,这并不总是那么简单,原因在于更厚的电极常常可能 增大ESR而降低离子扩散速率,导致电容性能的急剧劣化,这能够因此限制实际设备中可实 现的堆叠能量密度。
[0074]为了评估用于实际的EC的HGF电极的性能,对具有约1 Omg cnf2的石墨稀的面积质 量加载量的厚得多的HGF电极(厚度约140μπι)的电化学性质进行了测试(图7),该面积质量 加载量与许多商业EC中包含的碳量差不多。由于HGF电极内高的电导率和优良的离子扩散, 随着质量加载量从约lmg cnf2增加到约10mg cnf2,HGF电极的重量比电容在约lAg^1下从约 298Fg-1到约262Fg-S降低了约12% (图5d),且具有约3.6Ω的略微增加的ESR,这进而产生 了约112Wh kg<的重量能量密度。因此,HGF电极的体积比电容和体积能量密度分别略微降 低到约186F cnf3(图5e)和约79Wh Γ1。重量分析的值和体积分析的值均高于具有大的面积 质量加载量的包括活性炭、碳纳米管和石墨烯的碳基材料的先前报道(表1)。
[0075] 具有EMMBF4/AN电解质的HGF-EC也呈现出优良的循环稳定性,在约20Ag-1的高电 流密度下在10000次充电/放电循环后保留了其初始电容的约91 % (图5f)。此优良的循环稳 定性连同三电极测试(图12)表明残余氧官能团在充电/放电过程中起到相对较小的作用且 不会诱导有机电解质中明显的副反应。应该注意到,虽然AN溶剂广泛用于促进离子传输并 提高倍率性能,但基于AN的电解质通常不适合于在高温技术领域中运行EC。因此,进行了另 外的实验以评估HGF电极在纯EM頂BF4中的能量密度,这示出几乎相同的比电容(约289F 和约205F cm-3)和能量密度(约123Wh kg-1和约87Wh L-4(图14)。没有AN也获得了类似的高 电容的能力进一步证明了 HGF用于有效的电解质传输和有效的表面积到达的优点。
[0076]与现有技术的电化学能量储存设备的比较。为了进一步评估设备的实际潜能,进 行了堆叠能量密度值的实验测定,该堆叠能量密度值通过包括两个电极、集流体、电解质、 分隔物(和包装物)的设备的总重量或总体积归一化(图6a、b)。如果排除包装物,HGF电极占 设备重量的约37%,且因而设备分别提供约41.6Wh kg^1的高的重量堆叠能量密度和约 63.2Wh I/1的高的体积堆叠能量密度(图6b)。为了包括包装物,石蜡膜用于密封设备,这类 似于其他研究(图6a),且获得用于完全包装的设备的约35. lWh kg-1和约49.2Wh L-1的实际 的堆叠能量密度,这几乎比商业的基于活性炭的EC的实际的堆叠能量密度(约4-5Wh kg<和 约5-7Wh L-4高一个数量级且与铅酸电池的实际的堆叠能量密度(约25-35Wh kg-1和约50-90Wh L-4差不多(图6c、d)。
[0077] EC的能量密度的增加通常以功率密度和可循环性为代价发生,功率密度和可循环 性是EC的重要特性,并且如果没有它们,EC会变成普通电池。由于具有贯穿整个HGF膜电极 的快速的电子传输和有效的离子传输,HGF-EC还能够提供高的功率密度,该功率密度比商 业的基于活性炭的EC的功率密度高约一个数量级,比铅酸电池的功率密度高超过两个数量 级并且比锂薄膜电池的功率密度高三个数量级(图6c、d)。
[0078] 与堆叠能量密度通常通过外推相当小的设备来推出的其他研究不同,本实施例的 堆叠能量密度通过对具有与商业设备差不多的尺寸和质量的实际设备进行实验来测定。对 于本实施例中多达约l〇mg cnf2的大面积质量加载量的HGF电极来说,设备可以示出在约 176W πΓ2的面积功率密度下的约22.4Wh πΓ2的高的面积能量密度,这超过了商业设备的面 积能量密度(约2-6Wh πΓ2)和实验室设备的面积能量密度(〈约16Wh πΓ2)(表1)。具有约1 -cm2 面积的典型的包装设备可以提供约2.24mWh的总能量和约17.6mW的功率,也超过了许多研 究(表1)。这对于实际应用中提供足够的功率是特别重要的。
[0079] m。在水性电解质和有机电解质中获得HGF的差不多高的比电容表明HGF不同于 诸如活性炭、活性石墨烯、模板碳和碳化物衍生碳的传统多孔碳材料,传统多孔碳材料通常 在有机电解质中呈现出比在水性电解质中低约20-40 %的比电容,且在有机电解质中具有 相对低的比电容(〈约180F gi),尽管它们高的比表面积(约1000-3000m2g4)。这主要是因为 这些多孔碳材料通常具有大量的蠕虫样的曲折的孔通道,大的有机电解质离子不能有效地 到达大部分的所述孔通道,且因而电化学活性较弱。相比之下,本文的HGF具有确保在水性 电解质和有机电解质两者中的高电容的若干个特征:(1)石墨烯构建块具有合意的二维 (2D)平坦表面和约2630m 2g4的超高的理论比表面积。有孔石墨烯片材的3D自组装产生具有 电解质离子可容易到达的2D石墨烯表面的多孔网络结构。(2)HGF大部分或完全按照所制备 的被水合且可以易于通过溶剂交换工艺用有机电解质浸润以确保基本上整个表面积被电 解质自然润湿且是电解质离子可到达的。(3)有孔石墨烯片材中的纳米孔具有与有机电解 质离子的尺寸差不多或比有机电解质离子的尺寸更大的尺寸且可以起到相邻的石墨烯层 之间的离子传输捷径的作用,以极大地加快离子传输过程以便改善倍率性能。
[0080] 对化学还原的石墨烯的其他研究表明相对于在水性电解质中获得的ESR值,在有 机电解质中获得的ESR值可能实质上不同(多达约10-20倍)。相比之下,本实施例的EIS研究 证明了 H G F电极的E S R值示出在有机电解质中相对于在水性电解质中的小得多的差异(图 15),从而证实了 HGF电极将非常适合于有机电解质。此外,对不同压制比(堆积密度)对电容 性能的影响进行了研究。该研究证实了大的压制比对HGF-EC的重量比电容和倍率能力造成 了比其对无孔GF造成的劣化小得多的劣化(图16),进一步强调了 HGF中的分层孔隙率对在 高度压制条件下保留高的比电容和优良的倍率性能是特别重要的,在高度压制条件下保留 高的比电容和优良的倍率性能对于同时获得高的重量比电容和体积比电容是合意的。
[0081] 所有研究共同证明了通过产生具有优越的电导率、极佳的机械柔性和分层孔隙率 的高度互连的3D HGF获得了改善的EC电极设计,这能够确保有效的电子和离子传输以获得 具有高的重量能量密度和体积能量密度两者的HGF-EC。重要的是,在这些HGF-EC中可获得 的总能量密度与传统的铅酸电池是差不多的,并且具有高得多的功率密度。在HGF-EC中获 得这样高的能量密度弥补了传统电容器与电池之间的鸿沟,且可以在包括电动交通工具和 移动电子设备的广泛应用中为移动电源供应器开劈令人激动的机会。
[0082] 方法
[0083] HGF和GF的制备。根据改进的Hummers法通过氧化天然石墨粉末来制备G0。基于以 下的程序制备HGF。向25mL内衬有特氟龙的反应釜中的约1 OmL的约2mg ml/1的G0水分散体中 添加约lmL的稀释的H2〇2水溶液(按重量计约0.3%的H 2〇2)。密封混合物并在约180°C下加热 约6小时,并且自然冷却至室温,并且用一对镊子取出所制备的HGF并浸没在约100 °C的约1M 抗坏血酸钠水溶液中持续约2小时以用于进一步还原。最后将HGF浸没在纯水中以除去任何 杂质以用于以下的实验。使用相同的程序但不添加任何H 2〇2来制备GF。与无孔GF相比,HGF的 收率是约74%。在对照实验中,相同体积(约lmL)的约3% (按重量计)和约30% (按重量计) 的H2〇27K溶液用于研究H2〇2浓度对G0片材的化学蚀刻的影响。
[0084]由水性电解质和有机电解质制造 HGF-EC和GF-EC。首先从所制备的圆柱形HGF切割 厚度约1mm的HGF切片。对于用水性电解质组装EC:在搅拌下,将HGF切片浸没在约6.0M Κ0Η 水性电解质中持续约12小时以使它们的内部水与电解质交换。对于用有机电解质组装EC: 首先在真空中将HGF切片浸没在约100 °C的纯离子液体EMMBF4中持续约12小时以使它们的 内部水与EMMBF4交换,并且然后转移到具有约1:1重量比的EMMBF4/AN溶液中持续另外约 12小时。接着,将用水性电解质和有机电解质溶剂化的HGF切片分别置于铂箱或铝箱上,并 使用液压机以约〇.5cm mirT1的速率压制,在压制期间,通过滤纸除去压榨出的电解质。保持 样品在约150MPa的压力下持续约lmin以在金属箱上形成约14μηι的良好附着的膜。接着,在 两个单独的金属箱上的两个相同的HGF膜(两者都具有约lmg的净重和约lmg cnf2面积质量) 被直接用作电极而无需任何其他添加剂或无需进一步的处理,诸如干燥和热退火,并且通 过浸泡有电解质的离子-多孔分隔物(Ce丨garcT3501)分离。所有的部件被组装成层状结构 并通过石蜡膜紧密密封以用于电化学测量。采用类似的方法制造 GF-EC。在充满Ar的手套箱 中进行用EMMBF4/AN电解质组装EC。在同样的压力下,通过压制厚度约lcm的较厚的HGF切 片来制备EC中的具有约10mg cnf2的面积质量加载量的较厚的膜电极。为了测定堆积密度, 通过测量受压制的HGF膜的半径(r)和厚度(h)来计算体积(V = hX3iXr2),并直接称量真空 干燥的HGF的净质量。通过将HGF膜的净质量除以HGF膜的体积获得堆积密度。
[0085] 结构表征和分析。由扫描电镜(SEM) (JE0L 6700)和透射电镜(TEM)(FEI CM120)表 征HGF的形态学。在用Cu-Κα福射的Panalytical X'Pert Pro X-射线粉末衍射仪上收集 XRD。采用亚甲基蓝(MB)染料吸附法来测量HGF和GF的比表面积。MB吸附是用于测量石墨材 料的比表面积的标准方法,且约lmg的吸附MB分子覆盖约2.54m 2表面积。通过将一件HGF或 GF添加到在去离子(DI)水中的标准浓度的MB中持续共计约24小时以达到吸附平衡来计算 表面积。通过在约665nm波长下的UV-可见光光谱学分析上清液来测定MB的浓度并与在与 HGF或GF相互作用之前的MB的初始标准浓度进行比较。
[0086]电化学表征和分析。所有的电化学实验使用来自普林斯顿应用研究(Princeton Applied Research)的VersaSTAT 4进行。在具有正弦信号的开路电势下在约10mV振幅下在 从约100kHz到约10mHz的频率范围上进行电化学阻抗谱测量。通过恒电流充电/放电测量来 进行循环寿命测试。对于泄漏电流测试,首先在约10mA下将HGF-EC充电到约3.5V,并且然后 保持电势在约3.5V持续约2小时,同时采集电流数据。
[0087]从恒电流放电曲线推出的HGF和GF电极的重量比电容(Cwt)基于下式来计算:Cwt = 2(1 △ t)/(mA V),其中I是恒定放电电流,△ t是全部放电的时间,m是一个电极的净质量并 且A V代表放电时的压降(不包括V降)。HGF和GF电极的相应的体积比电容(C?i)使用以下来 计算:C?i = Cwt X P,其中P是HGF或GF膜中的石墨烯的堆积密度。
[0088]设备中的两个电极的重量能量密度(Ewt)和体积能量密度(E?〇分别使用下式来计 算:Ewt = CwtV2/8和E?i = C?iV2/8,其中V是操作电压(由减去了 V降的放电曲线获得)。设备的 面积能量密度通过以下来计算:EtBR=Ewt X 2 XMtaR,其中MtaR是一个电极内的石墨稀的面积 质量加载量。设备的总能量密度通过以下来计算:E总=Ewt X1?,其中取是两个电极内的石墨 稀的总质量。整个EC堆叠的重量能量密度或体积能量密度(E堆1;)基于下式获得:Ew-iii=E wt X f w-ε?或Ev-iM=Ε?ι X fVfi?,其中f w-ε?通过将两个电极的净质量除以设备堆叠的总质量来 计算或通过将两个电极的厚度除以设备堆叠的总厚度来计算。整个设备堆叠包括两个 电极、两个集流体、电解质、一个分隔物和石蜡膜包装物。具有电解质的一个膜分隔物的厚 度和面积质量是约30μπι和约3mg cnf2; -个铝集流体的厚度和面积质量是约20mi和约5.4mg cnf2;全部包裹的石錯膜包装物的厚度和面积质量是约1 ΟΟμπι和约1 Omg cnf2;具有电解质的 一个厚电极的厚度和面积质量是约140μπι和约20mg cnf2。通过整个设备的总质量和总体积 在仅仅考虑电极面积的情况下来归一化重量堆叠能量密度和体积堆叠能量密度。设备的不 同的功率密度(P)由下式计算:P = E/At,其中At是放电时间。Resr是设备的等效串联电阻, 其使用下式经由将在放电开始时的压降(V降)除以施加的恒定电流⑴来计算:Resr = %/21。
[0089] 实施例2
[0090] 基于官能化的石墨烯水凝胶(FGH)的高性能超级电容器
[0091] 本实施例报道了使用氢醌同时作为还原分子和官能化分子通过石墨烯氧化物 (G0)的一步化学还原来合成FGH。机械牢固的FGH被直接用作超级电容器的电极而无需添加 任何其他粘结剂或导电添加剂,具有在约1M H2S〇4水性电解质中在约lA/g下约441F/g的令 人印象深刻的比电容,超过非官能化的石墨烯水凝胶的电容(约21 lF/g)的2倍。此外,FGH呈 现出优良的倍率能力(在约20A/g下约80%的电容保留)和循环稳定性(经过10000次循环后 约86%的电容保留)。基于这些结果,使用H 2S04-聚乙烯醇(PVA)凝胶作为电解质进一步制造 了基于FGH的柔性固态超级电容器。集成的设备提供了接近在水性电解质中的电容性能的 优良的电容性能(在约lA/g下约412F/g,在约20A/g下约74%的电容保留以及经过10000次 循环后约87%的电容保留),且还呈现出优越的机械柔性和低的自放电。具有水性电解质和 凝胶电解质的基于FGH的超级电容器的比电容是在化学改性的石墨烯电极材料中所获得的 最高的值。
[0092] FGH可以易于通过在不搅拌下在约100°C下加热G0(约2mg/mL)和氢醌(约10mg/mL) 的含水均匀混合物持续约12小时来制备(图18a)。所获得的FGH是足够机械牢固的以允许用 镊子处置(图18a)并支撑高达其自身干重的约7100倍的重量(图22)。扫描电镜(SEM)图像揭 示了冻干的FGH(气凝胶)具有互连的3D大孔网络,且孔径范围从亚微米到若干微米且孔壁 包括超薄的堆叠的石墨烯片材层(图18b、c) d射线衍射(XRD)图证实在氢醌还原后,G0有效 脱氧形成FGH的石墨烯框架(图18d)。冻干的FGH的层间距离被计算是约3.56 A,这远小于 G0前体的层间距离(约7.50 A),而略高于石墨的层间距离(约3.35 Λ),这表明在FGH中的 石墨烯片材之间存在31-31堆叠。冻干FGH的宽的XRD峰表示石墨烯片材沿着它们的堆叠方向 的差的有序性且反映了 FGH的框架包括很少层的堆叠的石墨烯片材,这与SEM和透射电镜 (TEM)研究一致(图23)。
[0093] FGH的分层的多孔结构由氮吸附和解吸附测量证实。Brunauer-Emmett-Teller (BET)和Barrett-Joyner-Halenda(BJH)分析揭示冻干的FGH具有约297m2/g的高比表面积 和约0.95cm 3/g的孔体积,且孔径在约2-70nm的范围内(图24)。应该注意到,冻干的FGH的 BET测量结果可能显著低估了FGH的比表面积,原因是在冻干过程期间,在FGH内的一些石墨 烯层的部分重新堆叠和中孔的融合。考虑到FGH被直接用作超级电容器的电极而无需冻干, 采用可选择的方法以通过采用亚甲基蓝(MB)染料吸附法测定FGH的固有表面积。FGH示出约 1380m2/g的高的比表面积,这是单层石墨烯的理论表面积(约2630m2/g)的约一半。
[0094]发现FGH的形成是浓度依赖的。当以相同的进料比来使用G0(约0.1mg/mL)和氢醌 (约0.5mg/mL)的低浓度含水混合物以便进行反应时,获得官能化的石墨烯(FG)的黑色分散 体,其可以被离心并在水中被再分散(图18e中的插图)。此分散体允许使用UV-可见光和原 子力显微镜(AFM)表征证实石墨烯被氢醌分子表面官能化。如图18e所示,GO的在约230nm处 的主吸收峰红移到FG的约266nm,这表明在氢醌还原后,恢复了FG片材内的电子共辄。FG的 在约220nm处的另一个肩峰被归因于氢醌的吸收,这表明存在吸附到还原的GO表面上的氢 醌分子。AFM图像示出单层GO片材(约0.9nm)和单层FG片材(约1.5nm)之间的清楚的高度变 化(图18f、g)。考虑到还原的GO的高度稍稍低于GO的高度,原因是脱氧且芳族分子之间的31-相互作用的距离是约〇.35nm,因而认为FG片材的两侧经由31-31相互作用被氢醌分子覆盖。 [0095] 通过X-射线光电子光谱学(XPS)进一步表征冻干的FGH的表面化学。与G0相比,FGH 已经减少了,但仍具有显著的氧官能团,大部分氧官能团可以被归因于吸附的具有两个羟 基的氢醌分子(图25)。这与UV-可见光和AFM的结果是一致的。还通过水热还原法制备了未 官能化的石墨烯水凝胶(GHhGH的比表面积使用MB吸附技术测得是约1260m 2/g,这在很大 程度上类似于FGH的比表面积。与GH相比,氢醌对FGH的质量加载量估计是约17wt. % (参见 实验方法)。
[0096]将FGH切割成厚度约3mm且干重约2mg的自支撑切片,其被进一步压到两个铂箱上 且被直接用作超级电容器的电极,以便与约1M的H2S〇4水性电解质一起组装对称超级电容 器。为了比较,在同样的条件下还测试了未官能化的GH。图19a示出基于FGH的和基于GH的对 称超级电容器的循环伏安法(CV)曲线。可以看到,GH的CV曲线呈现出典型的矩形形状,这意 味着纯的电双层电容行为。相比之下,FGH的CV曲线显示了类似箱子的形状,叠加有在约 0.1-0.3V的电势范围内的一对法拉第峰,这由吸附的氢醌分子的可逆氧化还原反应造成 (氢醌〇醌+2H++2eT)且表明电双层电容和赝电容两者的共存。在约0.5V处的氧化还原峰的 另一个弱耦合与FGH的石墨烯片材上的残余含氧基团有关。氢醌的法拉第峰具有几乎对称 的波形和小的峰距(约50mV),这表明受限于表面的氧化还原反应具有良好的可逆性和快速 的电荷转移过程。甚至当扫描速率增大至约1 〇〇mV/s时,FGH的CV曲线基本上维持并入法拉 第峰的矩形形状,类似于在约5mV/s下观察到的那种(图26a),这指示FGH电极中的电双层电 容和赝电容两者的快速电荷传播能力。
[0097] FGH的恒电流充电/放电曲线示出与由GH呈现的理想的三角形形状的偏差,尤其是 在约0-0.35V的电势范围内(图19b)。此结果还证实了赝电容的显著贡献。比电容值由FGH的 恒电流充电/放电曲线推出(图26b)且示出在图19c中。基于FGH的超级电容器示出在约lA/g 电流密度下约441 F/g的令人印象深刻的比电容,超过基于GH的超级电容器的比电容(约 21 lF/g)的两倍。假设FGH保持有基于FGH和GH的比表面积的约232F/g的电双层电容,由氢醌 贡献的赝电容被计算是约1461F/g,约83%的其理论值(约1751F/g),这表明FGH中吸附的氢 醌的高度有效的利用。此外,当增大电流密度多达约20A/g时,FGH的比电容维持在约352F/ g,这是在约lA/g下的比电容的约80%且仍超过GH的比电容(约172F/g)的两倍,这突显了 FGH的优良的倍率能力。
[0098]长的循环寿命对于含有赝电容的超级电容器的实际应用来说是另一个重要的关 注。重要的是,FGH电极示出优良的电化学稳定性,在约10A/g的高电流密度下在10000次充 电/放电循环后保留其初始电容的约86 % (图19d)。同时,CV曲线在10000次充电/放电循环 之前和之后仅存在小的变化(图19d的插图),这表明氢醌与石墨烯之间的非共价相互作用 是足够强的以维持长的循环寿命。此外,FGH的石墨烯片材上的很少的残余氧官能团(从氢 醌还原中幸存的),对于实现优良的可循环性也是高度稳定的。
[0099]注意到,FGH中获得的比电容显著高于从诸如杂原子掺杂的石墨烯、多孔石墨烯和 含氧的表面基团官能化的石墨烯的其他化学改性的石墨烯中获得的比电容(表2:图28)。此 外,FGH电极呈现出比石墨烯/聚合物和石墨烯/Mn0 2复合材料电极更高的比电容和更好的 循环稳定性(表3:图29)。存在可以有助于FGH电极的杰出性能的若干因素。第一,FGH的石墨 烯片材提供用于容纳大量氢醌分子的大的表面积,这可以极大地增加赝电容的贡献。第二, 基本上所有的氢醌分子可以经由JI-JT相互作用被直接附着到石墨烯片材上。此密切接触充 分利用了赝电容性组分并提供从石墨烯基底到氢醌的快速电子转移以进行快速的法拉第 反应。第三,FGH的互连的中孔和大孔结构可以促进离子扩散到孔中以及电子传输贯穿整个 石墨烯框架。
[0100]为了验证用于柔性电子设备中的电化学能量储存的FGH电极的优越性能,进一步 制造了基于FGH的柔性固态超级电容器。由于FGH的高度互连的3D网络的优异的机械和电学 稳固性,将FGH组装成柔性的固态设备是非常方便的。首先,厚度约3mm的独立式的FGH被切 割成干重约2mg的矩形带,其被压到金涂覆的聚酰亚胺基底上以形成具有约lmg/cm 2的面积 质量的柔性的薄膜电极(图20a)。虽然石墨烯框架在压住后变得平坦且起皱,但3D连续多孔 网络被很好地维持(图20b、c),这有益于凝胶电解质浸润和离子扩散。接着,H 2S04-PVA水溶 液(H2S〇4和PVA两者均是约10wt%)被缓慢地倾倒到两个单独的FGH膜上并被空气干燥约12 小时以蒸发过多的水。两个FGH电极随后在约IMPa的压力下被压在一起持续约30min,这允 许每一个电极上的聚合物凝胶电解质合并成一个薄的分隔层。所得到的固态超级电容器是 高度柔性的且稳固的(图20d、e).
[0101] 基于FGH的柔性固态超级电容器示出与在约1M H2S〇4的水性电解质中的CV曲线几 乎相同的CV曲线,其中法拉第峰指示存在氢醌的赝电容(图21a)。从恒电流充电/放电测量 获得比电容(图21b中的插图)。发现固态超级电容器的比电容在约lA/g下是约412F/g,比在 水性电解质中的比电容(约441F/g)低约6.6%,这与CV分析一致且反映了聚合物凝胶电解 质有效浸润到FGH的3D网络中。当电流密度从约lA/g增大到约20A/g时,固态超级电容器仍 呈现出约304F/g的高比电容,这是在约lA/g下的比电容的约74%。固态超级电容器与在水 性电解质中的超级电容器之间的倍率性能差异可以归因于具有凝胶电解质的固态设备中 较高的内部电阻和较慢的离子扩散。本文的基于FGH的固态超级电容器的比电容显著高于 由碳纳米管和它们的复核材料、石墨烯膜以及导电聚合物制造的其他固态设备的比电容 (表4:图30)。
[0102] 基于FGH的固态超级电容器还在抗弯测试中呈现出优越的机械柔性。如图21c中所 示,在不同弯曲角度下测得的设备的CV曲线示出几乎相同的电化学行为,即使在约150°的 大弯曲角度下。设备的性能持久性通过在约150°的弯曲角度下,在约ΙΟΑ/g的高电流密度下 的多达10000次循环的恒电流充电/放电测试被进一步表征(图21d)。观察到比电容约13% 的减少,这突出了 FGH的互连3D网络的优良的机械和电学稳固性及其与聚合物凝胶电解质 的有利的界面相容性。
[0103] 对于实际应用,设备的泄漏电流和自放电特性是待考虑的重要因素。基于FGH的固 态超级电容器的泄漏电流是约12μΑ(图27a)(约0.015yA/mF,被电容归一化的),远低于碳纳 米管/聚苯胺复合材料超级电容器的泄漏电流(约17.2μΑ和约0.034yA/mF)。还测试了固态 超级电容器的自放电(图27b)。设备在前半个小时经历快速的自放电过程;然而,在若干小 时后自放电过程非常缓慢。最后,设备示出在4小时后约0.5V的稳定输出电压且即使在一天 后,约41%的初始充电电势被很好地保留,这显著高于基于聚吡咯的固态超级电容器(约 0.2V)。低的自放电的优点对在柔性电子设备中的应用来说是高度合意的。
[0104]为了进一步验证基于FGH的高度柔性的固态超级电容器的实际用法,三个超级电 容器单元被串联连接以产生串联设备。每一个超级电容器单元具有相同的FGH的质量加载 量(一个电极约2mg)<XV测量和恒电流充电/放电测量示出电势窗口从一个单元的约1.0V扩 展到串联设备的约3.0V(图21e、f)。同时,与在同样电流密度下的单个单元相比,串联设备 示出几乎未变化的充电/放电时间曲线(图21f),这表明每个超级电容器单元的性能被很好 地保留在串联设备中。在约3.0V下充电后,串联设备可以点亮绿色LED(最低工作电势是约 2.0V)(图21f的插图),揭示了在能量储存中的所制造的柔性超级电容器的电势。
[0105] 总之,此实施例验证了制备将氢醌经由3T-3T相互作用并入到高表面积的3D石墨烯 框架中作为赝电容性组分的FGH的一步策略。此方法允许赝电容性氢醌分子的有效加载以 及石墨烯与氢醌之间的快速电荷转移,且还确保快速的离子扩散和电子传输贯穿整个多孔 网络。所制备的FGH呈现出杰出的电化学性能,包括在水性电解质中超高的比电容和优良的 循环稳定性。机械牢固的FGH进一步使用H 2S04-PVA凝胶作为电解质组装成柔性固态超级电 容器。所制造的设备示出优越的电容性能和优异的机械柔性。这些结果揭示了基于石墨烯 的电极的电化学性能可以通过石墨烯片材的表面官能化和分层结构的组合被极大地促进。 此实施例验证了合理设计和制造用于电化学能量储存和柔性电子设备的官能化3D石墨烯 材料的令人激动的途径。
[0106] 实验方法
[0107] 石墨稀氧化物(G0)的合成和纯化。根据改进的Hummers法通过氧化天然石墨粉末 来制备G0。简要的说,在搅拌下,在室温下,石墨(约3.0g)被添加到浓硫酸(约70mL)中,然后 添加硝酸钠(约1.5g),并且将混合物冷却至约0°C。在剧烈的搅动下,缓慢添加过锰酸钾(约 9.0g)以保持悬浮液温度低于约20°C。随后,将反应体系转移到约35-40°C的水浴中持续约 0.5h,形成厚的糊状物。然后,添加约140mL的水,并且搅动溶液持续另外约15min。添加另外 的约500mL的水,然后缓慢添加约20mL的H 2〇2(约30 % ),溶液的颜色从棕色变成黄色。混合物 被过滤并用约1:10的HC1水溶液(约250mL)洗涤以除去金属离子,然后用水反复洗涤并离心 以除去酸。所得到的固体通过超声波处理约1小时而分散在水中以制备G0含水分散体(约 0.5wt. % )。然后使所获得的棕色分散体经受约30min的在约4000rpm下的离心以除去任何 聚集体。最后,其通过渗析1周以除去剩余的盐杂质来纯化以用于以下的实验。
[0108] 官能化的石墨烯水凝胶(FGH)和未官能化的石墨烯水凝胶(GH)的制备。根据以下 的程序制备FGH:将约0.2mL的约100mg/mL的氢醌水溶液与约2mL的约2mg/mL的G0水分散体 混合,并且然后在约l〇〇°C下在不搅拌下加热约12小时。用镊子从小瓶中取出所制备的FGH。 根据水热还原法制备GH。约4mL的约2mg/mL的G0水分散体被密封在内衬特氟龙的反应釜中 并维持在约180°C下持续约12小时。然后,自然冷却反应釜至室温,且用镊子取出所制备的 GIFGH中氢醌的质量加载量使用下式计算:_% = (]\^1-]^)/]^11\100%,其中_是?6!1中 的氢醌的质量分数,且Mfch和Mch分别是冻干的FGH和冻干的GH的质量(利用相同进料量的石 墨烯氧化物前体来制备FGH和GH)。考虑到FGH(约3.56 A)具有略小于GH(约3.71 A)的基于 XRD结果(图25a)的层间距离,石墨烯片材内的脱氧在还原过程中在FGH中可能比在GH中稍 微更有效,这可以导致FGH中稍微低估的氢醌的质量加载量。
[0109] 官能化石墨烯(FG)的水分散体的制备。将约0.15mL的约100mg/mL的氢醌水溶液与 约30mL的约0. lmg/mL的GO水分散体混合,并且然后在约100°C下在不搅拌下加热约12小时。 所获得的含有一些聚集体的黑色分散体以约13000rpm被离心并被水洗涤2次以除去游离的 氢醌。最后,FG固体通过超声波处理被重新分散在约30mL水中以形成FG的均匀分散体。 [0110]由水性电解质制造基于FGH的超级电容器。从所制备的圆柱形FGH切下两个FGH切 片(每个厚度为约3mm且干重为约2mg)并浸没在约謂的出5〇4水性电解质中过夜以使它们内 部的水与电解质交换。然后,两个FGH切片被分开压到两个Pt箱上并通过浸泡有电解质(约 1M H2S04)的滤纸分离。所有的部件被组装成分层的结构并夹在两个PTFE片材之间且浸没在 约1M H2S04中用于电化学测量。使用类似的方法制备基于GH的超级电容器。
[0111] 基于FGH的柔性固态超级电容器的制造 。第一,H2S〇4_PVA凝胶电解质如下制备:约 lg的H2S〇4被添加到约10mL的去离子水中,并且然后添加约lg的PVA粉末。在搅拌下加热整个 混合物至约85°C,直至溶液变得澄清。第二,浸没在约1M H2S〇4中的约3mm厚的FGH被切割成 矩形带且干重为约2mg并被压到金涂覆的聚酰亚胺基底上(约2 Ω的表面电阻)以形成具有 约lmg/cm2面积质量的薄膜。为了组装成固态设备,所制备的H2S〇4_PVA水溶液被缓慢倾倒到 两个FGH膜上并在室温下空气干燥约12小时以蒸发过多的水。然后,在约IMPa的压力下将两 个电极压在一起持续约30min,这允许每个电极上的聚合物凝胶电解质合并成一个薄的分 隔层以形成集成的设备。
[0112] 產延。由SEM(JE0L 6700)表征FGH的形态学。亚甲基蓝(MB)染料吸附法用于测量 FGH和GH的比表面积。MB吸附是用于测量石墨材料的比表面积的标准方法,且约lmg的吸附 的MB分子覆盖约2.54m 2表面积。通过添加一件FGH或GH到在去离子(DI)水中的标准浓度的 MB中持续共计约24小时以达到吸附平衡来计算表面积。通过在约665nm波长下的UV-可见光 光谱分析上清液来测定MB的浓度并与在与FGH或GH相互作用之前的MB的初始标准浓度进行 比较。所有的电化学实验使用来自普林斯顿应用研究的VersaSTAT 4进行。在约10mV振幅下 在从约1〇5到约10-2Ηζ频率范围内进行电化学阻抗谱测量。通过以约10A/g恒电流密度的 10000次循环的恒电流充电/放电测量来进行循环寿命测试。从恒电流放电曲线推出的比电 容基于下式来计算:C = 2(I Δ t)/(mA V),其中I是放电电流,Δ t是完全放电的时间,m是一 个电极的质量并且A V代表完全放电后的电势变化。对于泄漏电流测试,首先在约2mA下将 设备充电到约1.0V,并且然后保持电势在约1.0V持续约2小时,同时采集电流数据。对于自 放电测试,首先在约2mA下将设备充电到约1.0V,并且保持在约1.0V持续约15min,并且然后 记录设备的作为时间的函数的开路电势。
[0113]如本文中使用的,除非上下文中另外清楚地表示,否则单数术语"一个(a)"、"一个 (an)"以及"该(the)"包括复数指示物。因而,例如,除非上下文中另外清楚地表示,否则引 用的物体可以包括多个物体。
[0114] 如本文中使用的,术语"组"指的是一个或更多个物体的集合。因而,例如,一组物 体可以包括单个物体或多个物体。
[0115] 如本文中使用的,术语"基本上"和"约"用于描述并解释一些变型。当结合事件或 情形使用时,术语可以指的是其中事件或情形准确发生的情况以及其中事件或情形在非常 接近的程度上发生的情况。例如,该术语可以指小于或等于±10%,诸如小于或等于±5%、 小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1 %、小于或等于± 0.5%、小于或等于±0.1%、或小于或等于±0.05%。
[0116] 如本文中使用的,术语"连接(connect)"、"连接的"以及"连接(connection)"指的 是操作的结合或连接。连接的物体可以彼此直接结合或可以诸如经由另一组物体彼此间接 结合。
[0117] 如本文中使用的,术语"尺寸"指的是物体的特征尺寸。因而,例如,球形物体的尺 寸可以指物体的直径。在非球形物体的情况中,非球形物体的尺寸可以指对应的球形物体 的直径,其中对应的球形物体呈现出或具有与非球形物体的性质基本上相同的特定组的可 推导的或可测量的性质。当指的是具有特定尺寸的一组物体时,预期的是,物体可以具有在 特定尺寸周围的尺寸分布。因而,如本文中使用的,一组物体的尺寸可以指尺寸分布的典型 尺寸,诸如平均尺寸、中值尺寸或峰值尺寸。
[0118] 虽然已经参考本公开内容的特定实施方案描述了本公开内容,但本领域技术人员 应该理解可以做出各种变化且等同物可以被替换而并不背离由所附权利要求界定的本公 开内容的真正精神和范围。此外,可以对本公开内容的目的、精神和范围做出许多改变以适 合特定的情形、材料、物质组合物、方法、或操作。所有这样的改变被意图在所附权利要求的 范围内。具体地,虽然已经参考按照特定的顺序进行的特定操作描述了某些方法,但应该理 解这些操作可以被组合、细分或重新排序以形成等同的方法而不背离本公开内容的教导。 因此,除非本文明确指示,否则操作的顺序和分组并不是对本公开内容的限制。
【主权项】
1. 一种电化学电容器,包括: 电极对;和 电解质,其布置于所述电极对之间, 其中所述电极对中的至少第一电极包括石墨烯框架膜,且所述石墨烯框架膜包括具有 形成于石墨烯片材中的纳米孔的互连的所述石墨烯片材。2. 如权利要求1所述的电化学电容器,其中所述纳米孔形成于所述石墨烯片材的基面 中。3. 如权利要求1所述的电化学电容器,其中所述纳米孔中的至少一个具有Inm到IOOnm 范围内的尺寸。4. 如权利要求1所述的电化学电容器,其中所述纳米孔中的至少一个具有Inm到IOnm范 围内的尺寸。5. 如权利要求1所述的电化学电容器,其中所述石墨烯框架膜具有UOOm2g-1或更多的 比表面积。6. 如权利要求1所述的电化学电容器,其中所述石墨烯框架膜具有0.3g Cnf3或更多的 堆积密度。7. 如权利要求1所述的电化学电容器,其中所述石墨烯框架膜具有0.5g Cnf3或更多的 堆积密度。8. 如权利要求1所述的电化学电容器,其中所述石墨烯框架膜具有0.7g Cnf3或更多的 堆积密度。9. 如权利要求1所述的电化学电容器,其中所述石墨烯框架膜具有500S πΓ1或更多的电 导率。10. 如权利要求1所述的电化学电容器,其中所述第一电极具有在IA g^1电流密度下的 180F 或更多的重量比电容。11. 如权利要求1所述的电化学电容器,其中所述第一电极具有在IA g^1电流密度下的 100F Oif3或更多的体积比电容。12. 如权利要求1所述的电化学电容器,其中所述第一电极具有在IA g^1电流密度下的 180F 或更多的重量比电容和100F CHf3或更多的体积比电容。13. 如权利要求1所述的电化学电容器,其中所述第一电极具有在IA g^1电流密度下的 280F g-1或更多的重量比电容和210F cm-3或更多的体积比电容。14. 如权利要求1所述的电化学电容器,其中所述第一电极具有在IOA g^1电流密度下的 250F 或更多的重量比电容和180F CHf3或更多的体积比电容。15. 如权利要求1所述的电化学电容器,其中所述第一电极具有120Wh kg<或更多的重 量能量密度和90Wh IZ1或更多的体积能量密度。16. 如权利要求1所述的电化学电容器,其中所述电化学电容器具有基于整个电化学电 容器的总重量或总体积的20Wh kg^1或更多的重量能量密度和30Wh I/1或更多的体积能量 密度。17. 如权利要求1所述的电化学电容器,其中所述电化学电容器具有基于整个电化学电 容器的总重量或总体积的30Wh kg-1或更多的重量能量密度和40Wh I/1或更多的体积能量 密度。18. 如权利要求1所述的电化学电容器,其中所述第一电极还包括并入到所述石墨烯框 架膜中的赝电容性材料。19. 如权利要求1所述的电化学电容器,其中所述赝电容性材料包括金属氧化物的纳米 颗粒。20. -种电极结构,包括: 集流体;和 连接至所述集流体的基于石墨烯的凝胶, 其中所述基于石墨烯的凝胶包括互连的石墨烯片材,且所述基于石墨烯的凝胶具有 0.1 g cm_3或更多的堆积密度。21. 如权利要求20所述的电极结构,其中所述堆积密度是0.5g cnf3或更多。22. 如权利要求20所述的电极结构,其中所述纳米孔被形成在所述石墨烯片材的基面 中。23. 如权利要求22所述的电极结构,其中所述纳米孔中的至少一个具有Inm到IOOnm范 围内的尺寸。24. 一种电极结构,包括: 集流体;和 连接至所述集流体的基于石墨烯的凝胶, 其中所述基于石墨烯的凝胶包括互连的石墨烯片材和吸附到所述石墨烯片材上的电 化学活性的分子物质。25. 如权利要求24所述的电极结构,其中所述电化学活性的分子物质是芳香族的。26. 如权利要求24所述的电极结构,其中所述电化学活性的分子物质具有多达I OOOg mol 1的分子量。27. 如权利要求24所述的电极结构,其中所述电化学活性的分子物质包括官能化部分 以允许吸附到所述石墨烯片材的表面上。28. -种形成石墨烯框架的方法,包括: 在还原性条件下加热包括蚀刻剂和石墨烯氧化物的混合物以使石墨烯氧化物还原成 石墨烯,在石墨烯中形成纳米孔,并将石墨烯自组装成石墨烯框架。29. 如权利要求28所述的方法,其中所述蚀刻剂是过氧化氢。30. 如权利要求28所述的方法,其中加热在从100 °C到250 °C的温度下在反应釜中进行。31. -种形成石墨烯框架的方法,包括: 在石墨稀氧化物片材中形成纳米孔;和 在还原性条件下加热所述石墨烯氧化物片材的分散体以使所述石墨烯氧化物片材还 原成石墨烯片材,并且将所述石墨烯片材自组装成石墨烯框架。
【文档编号】H01G11/32GK105900200SQ201480072360
【公开日】2016年8月24日
【申请日】2014年7月30日
【发明人】段镶锋, 徐宇曦
【申请人】加利福尼亚大学董事会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1