一种掺杂磷的n型锗纳米线的低温低压生长方法及拉曼光谱表征方法

文档序号:10625655阅读:206来源:国知局
一种掺杂磷的n型锗纳米线的低温低压生长方法及拉曼光谱表征方法
【专利摘要】本发明提供了一种掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,以GeH4/H2作为锗纳米线生长的前驱体,以PH3/Ar作为掺杂源气体,在金纳米颗粒的催化下,利用低压化学气相沉积(LPCVD)于低温下在硅基板上制得大面积的有序高密度掺杂磷的N型锗纳米线,所述金纳米颗粒通过电子束蒸发获得;所述掺杂磷的N型锗纳米线通过拉曼光谱进行表征。本发明利用半导体领域的相关技术和微纳米结构的合成方法,能在低温低压条件下于硅基板上获得高密度大面积的锗纳米线阵列,工艺简单,并可利用拉曼光谱对掺杂磷后的锗纳米线进行有效的表征。
【专利说明】
一种掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法
技术领域
[0001]本发明涉及纳米材料、微加工工艺与微纳器件的交叉领域,具体涉及一种掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法。
【背景技术】
[0002]与传统材料相比,一维半导体纳米线有许多独特的性质,如低维尺度、量子限域效应、表面活性以及能带分立等,使得它们在电学和光电等领域中作为功能化微纳系统的结构单元而非常有吸引力。锗纳米线,由于其具有电子及空穴有效质量小等特点,使得其载流子迀移率较高,从而成为半导体器件中理想的沟道材料。此外,作为第四主族元素,锗(Ge)与硅(Si)的很多性质类似,这使得锗和硅一样,适合于很多微纳电子学领域的应用。因此,已有很多关于锗纳米线的研究和探索,如高速场效应晶体管和p-n结器件等。然而,目前还没有一种能在低温低压下获得高密度大面积的掺杂型锗纳米线阵列的简单有效的合成方法。
[0003]掺杂能改变材料的费米能级且提供额外的原子,使得材料掺杂后的电学性质得以改善,然而,如何对掺杂后的纳米线进行简单有效的表征也有待进一步探索。

【发明内容】

[0004]本发明的目的是提供一种掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,利用半导体领域的相关技术和微纳米结构的合成方法,能在低温低压下于硅基板上获得高密度大面积的锗纳米线阵列,工艺简单,并利用拉曼光谱对掺杂磷后的锗纳米线进行有效的表征。
[0005]为了实现上述目的,本发明采用的技术方案如下:
[0006]—种掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,以GeH4/H2作为锗纳米线生长的前驱体,以PH3/Ar作为掺杂源气体,在金纳米颗粒的催化下,利用低压化学气相沉积(LPCVD)于低温下在硅基板上制得大面积的有序高密度掺杂磷的N型锗纳米线,所述金纳米颗粒通过电子束蒸发在硅基板上获得;所述掺杂磷的N型锗纳米线可通过拉曼光谱进行表征。
[0007]根据以上方案,所述硅基板的具体参数包括:阻抗0.2 Ω.cm \无氧化层,单面或双面抛光,(100)晶面或(111)晶面,N型或P型;带二氧化硅氧化层,单面或双面抛光,N型或P型。
[0008]根据以上方案,所述掺杂磷的N型锗纳米线的制备过程具体包括如下步骤:
[0009]I)采用典型的RCA流程清洗硅基板;
[0010]2)将步骤I)中已清洗的硅基板置于电子束蒸发装置中进行金催化剂的蒸镀,在硅基板上均匀地镀上金纳米颗粒,得到镀金硅基板;
[0011]3)将步骤2)中所述镀金硅基板置于低压化学气相沉积装置(LPCVD)中,装置中总气压为5托,在10% (V/V) GeH4/H2、Ar与混合气体中,将所述镀金硅基板加热至300°C或者350°C,并保温30分钟(即所述低压化学气相沉积),得到掺杂磷的N型锗纳米线。
[0012]根据以上方案,还包括用5%?10%氢氟酸(HF)溶液清洗硅基板,得到氢化表面。
[0013]根据以上方案,所述典型的RCA流程清洗包括去离子水清洗、乙醇清洗、硫酸双氧水混合液清洗。
[0014]根据以上方案,所述电子束蒸发的具体参数包括:蒸镀电流为45mA,蒸镀速率约为 0.lA/s,蒸镀的 Au 厚度包括:0.lnm、lnm、5nm 和 1nm0
[0015]根据以上方案,所述Au厚度为lnm,该厚度为锗纳米线生长时的最优金催化剂厚度。
[0016]根据以上方案,所述10 % (V/V) GeH4/H2作为前驱体气体,PH 3/Ar作为掺杂源气体,Ar 作为保护气,GeH4/H2流速为 lsccm,PH 3/Ar 流速为 0.5sccm、Isccm 或 2sccm。
[0017]根据以上方案,所述步骤3)中不加入PH3气体,则制得未掺杂磷的锗纳米线。
[0018]本发明的有益效果是:
[0019]I)利用低压化学气相沉积,结合电子束蒸镀等技术,提供了一种低温低压(300°C,5托)下制备掺杂磷的N型锗纳米线的途径及其有效的表征方法;
[0020]2)本发明所得到的掺杂磷的N型锗纳米线具有高密度大面积等优点,且能通过掺杂对锗纳米线中的载流子种类及浓度进行一定调控;
[0021]3)本发明所得掺杂磷的N型锗纳米线有可能成为半导体器件理想的沟道材料,在高速场效应晶体管和P-n结器件等方面有着良好的应用前景;
[0022]4)通过拉曼光谱分析,能直观有效地判断锗纳米线是否被有效掺杂。
【附图说明】
[0023]图1是本发明实施例1的Si (111)基板上生长的锗纳米线的扫描电镜(SEM)图;
[0024]图2是本发明实施例1的Si (111)基板上生长的掺杂磷的N型锗纳米线的扫描电镜(SEM)图;
[0025]图3是本发明实例I的掺杂前后,锗纳米线的拉曼光谱图及其局部放大图。
【具体实施方式】
[0026]下面结合附图与实施例对本发明的技术方案进行说明。
[0027]实施例1,见图1至图3所示:
[0028]本发明提供一种掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,具体包括如下步骤:
[0029](I)用去离子水清洗硅基板,所述硅基板的参数为:阻抗0.2 Ω -cm \无氧化层,双面抛光,(111)晶面,N型;
[0030](2)用乙醇清洗硅基板,再使用去离子水清洗硅基板;
[0031](3)用硫酸双氧水混合液清洗硅基板,再使用去离子水清洗硅基板;
[0032](4)用5%?10%氢氟酸溶液处理硅基板,得到氢化表面;
[0033](5)将清洗处理后的硅基板置于电子束蒸发装置中进行金催化剂的蒸镀,在硅基板上均匀地镀上金纳米颗粒,以得到镀金的硅基板,蒸镀电流为45mA,蒸镀速率为0.lA/s,蒸镀的Au厚度分别为0.lnm、lnm、5nm和10nm(通过后续实验得到纳米线生长的最优金催化剂厚度为lnm);
[0034](6)将步骤(5)的镀金基板置于低压化学气相沉积装置(LPCVD)中,在10% (V/V) GeH4/H2与Ar的混合气体中,其总气压为5托,以10% (V/V) Ge/H2作为前驱体气体,Ar作为保护气,GeH4Al2流速为lsccm,Ar流速为lsccm,将镀金基板加热至300°C,并保温30分钟,得到未掺杂的锗纳米线;
[0035](7)将步骤(5)的镀金基板置于低压化学气相沉积装置中,在10% (V/V)GeH4/H2、Ar与?氏混合气体中,其总气压为5托,以10% (V/V) Ge/H 2作为前驱体气体,Ar作为保护气,66!14/!12流速为lsccm,PH 3/Ar流速为0.5sccm,将镀金基板加热至300°C或350°C,并保温30分钟,得到掺杂磷的N型锗纳米线;
[0036](8)将步骤(6)与(7)得到的样品从低压化学气相沉积装置中取出,利用拉曼光谱进行表征。
[0037]样品拉曼光谱表征的结果见图3,其中图3A为拉曼光谱图,图3B为其局部放大图,由图中可以看出,掺杂磷的N型锗纳米线的拉曼光谱出现了费米宽化,而图3B中显示出了磷(P)本征峰,说明磷已被掺杂到锗纳米线中。磷的掺杂能改变锗纳米线的费米能级且提供额外的原子,使得纳米线掺杂后的电学性质得以改善
[0038]将由蒸镀的Au厚度为Inm的镀金硅基板上所得未掺杂的锗纳米线或掺杂磷的N型锗纳米线通过扫描电子显微镜(SEM)对其形貌特征进行表征,结果分别见图1与图2。
[0039]实施例2:
[0040]本发明提供一种掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,具体包括如下步骤:
[0041](I)用去离子水清洗硅基板,所述硅基板的参数为:阻抗0.2 Ω -cm \无氧化层,双面抛光,(111)晶面,N型;
[0042](2)用乙醇清洗硅基板,再使用去离子水清洗硅基板;
[0043](3)用硫酸双氧水混合液清洗硅基板,再使用去离子水清洗硅基板;
[0044](4)将清洗处理后的硅基板置于电子束蒸发装置中进行金催化剂的蒸镀,在硅基板上均匀地镀上金纳米颗粒,以得到镀金的硅基板,蒸镀电流为45mA,蒸镀速率为0.lA/s,蒸镀的Au厚度为Inm ;
[0045](5)将步骤(4)的镀金硅基板置于低压化学气相沉积装置中,在10% (VA)GeH4/H2, Ar与PHJg合气体中,其总气压为5托,以10% (V/V) Ge/H 2作为前驱体气体,Ar作为保护气,GeH4/H2流速为lsccm,PH Jkr流速为lsccm,将镀金基板加热至300°C,并保温30分钟,得到掺杂磷的N型锗纳米线;
[0046](6)将步骤(5)得到的样品从低压化学气相沉积装置中取出,利用拉曼光谱进行表征。
[0047]实施例3:
[0048]本发明提供一种掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,具体包括如下步骤:
[0049](I)用去离子水清洗硅基板,所述硅基板的参数为:阻抗0.2Ω -cm \无氧化层,单面抛光,(100)晶面,P型;
[0050](2)用乙醇清洗硅基板,再使用去离子水清洗硅基板;
[0051](3)用硫酸双氧水混合液清洗硅基板,再使用去离子水清洗硅基板;
[0052](4)用5%?10%氢氟酸溶液处理硅基板,得到氢化表面;
[0053](5)将清洗处理后的硅基板置于电子束蒸发装置中进行金催化剂的蒸镀,在硅基板上均匀地镀上金纳米颗粒,以得到镀金的硅基板,蒸镀电流为45mA,蒸镀速率为0.lA/s,蒸镀的Au厚度为Inm ;
[0054](6)将步骤(5)的镀金硅基板置于低压化学气相沉积装置中,在10% (VA)GeH4/H2, Ar与PHJg合气体中,其总气压为5托,以10% (V/V) Ge/H 2作为前驱体气体,Ar作为保护气,GeH4/H2流速为lsccm,PH Jkr流速为2sccm,将镀金基板加热至350°C,并保温30分钟,得到掺杂磷的N型锗纳米线;
[0055](7)将步骤(6)得到的样品从低压化学气相沉积装置中取出,利用拉曼光谱进行表征。
[0056]实施例4:
[0057]本发明提供一种掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,具体包括如下步骤:
[0058](I)用去离子水清洗硅基板,所述硅基板的参数为:阻抗0.2 Ω.cm \无氧化层,单面抛光,(100)晶面,N型;
[0059](2)用乙醇清洗硅基板,再使用去离子水清洗硅基板;
[0060](3)用硫酸双氧水混合液清洗硅基板,再使用去离子水清洗硅基板;
[0061](4)将清洗处理后的硅基板置于电子束蒸发装置中进行金催化剂的蒸镀,在硅基板上均匀地镀上金纳米颗粒,以得到镀金的硅基板,蒸镀电流为45mA,蒸镀速率为0.lA/s,蒸镀的Au厚度为Inm ;
[0062](5)将步骤(4)的镀金硅基板置于低压化学气相沉积装置中,在10% (VA)GeH4/H2, Ar与PHJg合气体中,其总气压为5托,以10% (V/V) Ge/H 2作为前驱体气体,Ar作为保护气,GeH4/H2流速为lsccm,PH Jkr流速为2sccm,将镀金基板加热至350°C,并保温30分钟,得到掺杂磷的N型锗纳米线;
[0063](6)将步骤(5)得到的样品从低压化学气相沉积装置中取出,利用拉曼光谱进行表征。
[0064]实施例5:
[0065]本发明提供一种掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,具体包括如下步骤:
[0066](I)用去离子水清洗硅基板,所述硅基板的参数为:阻抗0.2Ω.cm1,带二氧化硅氧化层,双面抛光,N型;
[0067](2)用乙醇清洗硅基板,再使用去离子水清洗硅基板;
[0068](3)用硫酸双氧水混合液清洗硅基板,再使用去离子水清洗硅基板;
[0069](4)用5%?10%氢氟酸溶液处理硅基板,得到氢化表面;
[0070](5)将清洗处理后的硅基板置于电子束蒸发装置中进行金催化剂的蒸镀,在硅基板上均匀地镀上金纳米颗粒,以得到镀金的硅基板,蒸镀电流为45mA,蒸镀速率为0.lA/s,蒸镀的Au厚度为Inm ;
[0071](6)将步骤(5)的镀金硅基板置于低压化学气相沉积装置中,在10% (VA)GeH4/H2, Ar与PHJg合气体中,其总气压为5托,以10% (V/V) Ge/H 2作为前驱体气体,Ar作为保护气,66!14/!12流速为lsccm,PH3/Ar流速为0.5sccm,将镀金基板加热至300°C,并保温30分钟,得到掺杂磷的N型锗纳米线;
[0072](7)将步骤(6)得到的样品从低压化学气相沉积装置中取出,利用拉曼光谱进行表征。
[0073]以上实施例仅用以说明而非限制本发明的技术方案,尽管上述实施例对本发明进行了详细说明,本领域的相关技术人员应当理解:可以对本发明进行修改或者同等替换,但不脱离本发明精神和范围的任何修改和局部替换均应涵盖在本发明的权利要求范围内。
【主权项】
1.一种掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,其特征在于,以GeH4/H2作为锗纳米线生长的前驱体,以PH3/Ar作为掺杂源气体,在金纳米颗粒的催化下,利用低压化学气相沉积(LPCVD)于低温下在硅基板上制得大面积的有序高密度掺杂磷的N型锗纳米线,所述金纳米颗粒通过电子束蒸发法获得;所述掺杂磷的N型锗纳米线通过拉曼光谱进行表征。2.根据权利要求1所述的掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,其特征在于,所述硅基板的具体参数包括:阻抗0.2 Ω.cm \无氧化层,单面或双面抛光,(100)晶面或(111)晶面,N型或P型;带二氧化硅氧化层,单面或双面抛光,N型或P型。3.根据权利要求1所述的掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,其特征在于,所述掺杂磷的N型锗纳米线的制备过程具体包括如下步骤: 1)采用典型的RCA流程清洗硅基板; 2)将步骤I)中已清洗的硅基板置于电子束蒸发装置中进行金催化剂的蒸镀,在硅基板上均匀地镀上金纳米颗粒,以得到镀金硅基板; 3)将步骤2)中所述镀金硅基板置于低压化学气相沉积装置(LPCVD)中,装置腔体中总气压为5托,在10% (V/V) GeH4/H2、Ar与混合气体中,将所述镀金硅基板加热至300°C或者350°C,并保温30分钟,得到掺杂磷的N型锗纳米线。4.根据权利要求3所述的掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,其特征在于,还包括用5%?10%氢氟酸溶液清洗硅基板,得到氢化的基板表面。5.根据权利要求3所述的掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,其特征在于,所述典型的RCA流程清洗包括去离子水清洗、乙醇清洗、硫酸双氧水混合液清洗。6.根据权利要求3所述的掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,其特征在于,所述电子束蒸发的具体参数包括:蒸镀电流为45mA,蒸镀速率约为0.lA/s,蒸镀的 Au 厚度包括:0.lnm、lnm、5nm 和 1nm07.根据权利要求3所述的掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,其特征在于,所述Au厚度为lnm。8.根据权利要求3所述的掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,其特征在于,所述10 % (V/V) GeH4Al2作为前驱体气体,PH Jkr作为掺杂源气体,Ar作为保护气,GeH4/H2流速为 lsccm,PH3/Ar 流速为 0.5sccm、lsccm 或 2sccm。9.根据权利要求3所述的掺杂磷的N型锗纳米线的低温低压生长方法及拉曼光谱表征方法,其特征在于,所述步骤3)中不加入PH3气体,则可制得未掺杂磷的锗纳米线。
【文档编号】H01L21/205GK105990107SQ201510098596
【公开日】2016年10月5日
【申请日】2015年3月6日
【发明人】何亮, 麦立强, 熊彪, 杨枭, 郝志猛, 罗雯
【申请人】武汉理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1