压电振动片和压电器件的制作方法

文档序号:7538815阅读:214来源:国知局
专利名称:压电振动片和压电器件的制作方法
技术领域
本发明涉及压电振动片和在封装或壳体内收纳了压电振动片的压电器件的改良。
背景技术
在HDD(硬盘驱动器)、移动计算机或IC卡等小型信息设备、或便携电话、汽车电话或寻呼系统等移动体通信设备,或压电陀螺传感器等中,广泛使用压电振子或压电振荡器等压电器件。
图9是表示以往用于压电器件中的压电振动片的一例的概略平面图。
图中,压电振动片1是通过刻蚀石英等压电材料而形成图示的外形的,具备安装在封装(未图示)等中的矩形基部2、和从基部2向图中上方延伸的一对振动臂3、4,在这些振动臂的主面(表面背面)上形成长槽3a、4a,同时形成有必需的驱动用电极(参照专利文献1)。
在这种压电振动片1中,当经驱动用电极施加驱动电压时,各振动臂3、4的末端部相接近/离开,进行弯曲振动,从而取出规定频率的信号。
但是,这种压电振动片1在基部2的符号5、6所示的部位形成引出电极,在该部分中涂布粘接剂7、8,固定支撑在例如封装等基体上。
另外,在基部2中形成切入部9、9,以使得在利用该粘接剂进行固定支撑之后,由构成压电振动片的材料和封装等的材料的线性膨胀系数的差异等而引起的剩余残留应力不会妨碍振动臂的弯曲振动。
在这种压电振动片1中,推进小型化的结果是,振动臂3、4的臂宽W1、W1分别为100μm左右,它们之间的距离MW1为100μm左右,基部2的宽度BW1为500μm左右。另外,推进这些部位的小尺寸化,与之相应,通过将基部的长度BL1也小尺寸化,推进压电振动片1的小型化。
专利文献1日本特开2002-261575号但是,在如此推进小型化后的压电振动片1中,其温度特性存在如下问题。
图10是表示压电振动片1的温度特性的曲线图,示出温度-CI(晶体阻抗)值特性。
如图所示,在现有结构的压电振动片1中,温度-CI值特性存在极不稳定的问题。
对于该温度-CI值特性的恶化,认为是在压电振动片1中,由于温度变化,基部2中利用粘接剂7、8接合的部位的应力状态发生变化而引起的,认为在受到下落冲击的情况下,基部2中利用粘接剂7、8接合的部位的应力状态发生变化也会产生同样的影响。
尤其是为了在振动臂的弯曲振动中进一步降低向基部2的漏入、更有效抑制CI值,构成为把切入部9、9向中心方向更深地切入,此时存在基部2的刚性大大下降,振动状态变得不稳定的问题。

发明内容
本发明就是为了解决上述问题而提出的,其目的在于提供压电振动片与压电器件,能防止振动泄漏,不受固定部的不好影响,使耐冲击性提高,在推进固定小型化之上温度特性良好。
在发明的第一方面中,上述目的是通过如下结构的压电振动片来实现的,该压电振动片具备由压电材料形成的规定长度的基部;从所述基部的一端侧起延伸的多条振动臂;支撑用臂,其从所述基部的距离所述一端侧所述规定距离的另一端侧起沿宽度方向延伸,并且在所述振动臂的外侧、沿与该振动臂相同的方向延伸;和切入部,在相比把所述支撑用臂对所述基部进行一体连接的连接部更靠近所述振动臂的位置上,在宽度方向将所述压电材料的宽度缩小而形成了该切入部,并且,在相比把所述支撑用臂对所述基部进行一体连接的连接部更靠近所述振动臂的位置上设置有贯通孔。
根据发明的第一方面的结构,从基部的一端起延伸着进行弯曲振动的振动臂,从规定长度的所述基部的另一端起延伸着支撑用臂。
因此,在支撑用臂通过粘接等接合于封装等的基体侧的情况下,由于周围温度的变化或落下冲击等原因而在该接合部位产生的应力变化,因为隔着从支撑用臂的接合部位到所述基部的另一端的距离、并且隔着基部的规定长度的距离,所以基本上不会影响到振动臂,因此尤其温度特性变得良好。
并且,与之相反,由于来自弯曲振动的振动臂的振动泄漏在到达隔着基部的支撑用臂之前,隔着基部的规定长度,所以基本上不产生影响。即,虽然考虑到若基部长度非常短,则弯曲振动的泄漏成分扩散到支撑用臂整体,难以控制的情况,但在本发明中,没有这种担心。
另外,除了能得到这种作用,支撑用臂构成为从基部的另一端起在宽度方向上延伸,在振动臂的外侧,沿与该振动臂相同的方向延伸,所以可使整体的尺寸紧凑。
另外,由于具备在宽度方向上缩小所述压电材料的宽度而形成的切入部,可抑制振动臂的弯曲振动的振动泄漏经所述基部到达支撑用臂的接合部位,防止CI值的上升。并且,由于在相比把所述支撑用臂对所述基部进行一体连接的连接部更靠近所述振动臂的位置上设置了贯通孔,与深入地形成切入部相比,不会使基部的刚性大大下降,可进一步抑制振动泄漏。
发明的第二方面的特征在于,在发明的第一方面的结构中,所述切入部离所述各振动臂的根部的距离大于等于所述臂宽W2的尺寸的1.2倍、形成于所述基部上。
根据发明的第二方面的结构,对于在音叉型振动片的振动臂进行弯曲振动时其振动泄漏被传递的范围,鉴于该传递范围与振动臂的臂宽尺寸W2具有相关性,本发明者等发现以往的压电振动片的切入部未被设置在适当的位置上。因此,将设置所述切入部的位置设为从所述振动臂的根部起的距离超过所述振动臂的臂宽尺寸W2的位置。由此,切入部可构成能够进一步确实地抑制来自振动臂的振动泄漏被传递到基部侧。由此,可提供适当地防止了振动从振动臂侧漏入到基部侧,驱动电平特性良好的压电振动片。
尤其是已确认通过在离所述根部的部位的距离大于等于所述臂宽尺寸W2×1.2的位置处形成所述切入部的位置,可使驱动电平特性适合于正常的压电振动片的电平。
发明的第三方面的特征在于,在发明的第一或第二方面中的任一方面的结构中,在所述各振动臂的侧面形成有向正X轴(机械轴)方向突出的异形部,使该异形部为最小。
根据发明的第三方面的结构,由于在通过湿法刻蚀进行压电振动片的外形形成的情况下,形成由于刻蚀各向异性而生成的所述异形部使得其为最小,所以可使振动臂的弯曲振动稳定。
发明的第四方面的特征在于,在发明的第一至第三方面中的任一方面的结构中,把所述支撑用臂的长度设定成使得所述支撑用臂的末端更靠近所述基部而不是所述振动臂的末端。
根据发明的第四方面的结构,支撑用臂除了构成为沿与振动臂相同的方向延伸外,还使支撑用臂的末端比振动臂的末端更靠近基部,由此可使整体小型化。
发明的第五方面的特征在于,在发明的第一至第四方面的任一方面的结构中,具备沿所述各振动臂的长度方向而形成的长槽;和形成于所述长槽中的驱动用电极,具有所述各振动臂的宽度尺寸从所述基部侧向末端侧渐渐缩小的缩幅部,并且在所述末端侧存在所述宽度尺寸向着末端侧以相等尺寸延伸、或变大的宽度变化的变更点P,使所述变更点P相比所述长槽的末端部更位于振动臂末端侧。
根据发明的第五方面的结构,在形成于振动臂上的所述长槽中形成驱动用电极(激励电极)的情况下,其臂宽从所述基部侧向末端侧渐渐缩小,同时,在所述末端侧设置所述宽度尺寸变大的宽度变化的变更点P,可在抑制CI值的同时,防止2次的高次谐波的振荡。此时,若以振动臂的长度或臂宽等不相同为前提,则根据压电振动片,并且使所述变更点P相比所述长槽的末端部更靠近振动臂末端侧,从而可提供抑制了CI值,同时不使振动特性恶化的压电振动片。
发明的第六方面的特征在于,在发明的第五方面的结构中,具有所述各振动臂的宽度尺寸在所述振动臂的相对于所述基部的根部的部位上、向着末端侧急剧缩小的第1缩幅部;和从该第1缩幅部的终端起,作为所述缩幅部,进一步向着末端侧渐渐缩小宽度的第2缩幅部。
根据发明的第六方面的结构,设置所述振动臂的臂宽从第1缩幅部的终端起进一步向着末端侧渐渐缩小的第2缩幅部,并且通过在所述末端侧设置所述宽度尺寸变大的宽度变化的变更点P,可在抑制CI值的同时,防止2次的高次谐波的振荡。
并且,由于在所述振动臂的相对于所述基部的根部的部位具有向着末端侧急剧地缩小宽度的第1缩幅部,所以可改善在振动臂弯曲振动时,最大应力作用并且变形大的根部部分的刚性。由此,由于振动臂的弯曲振动稳定,抑制了向不必要方向的振动成分,所以可进一步降低CI值。即,在使压电振动片小型化之上,可实现稳定的弯曲振动,将CI值抑制得较低。
发明的第七方面的特征在于,在发明的第五或第六方面的结构中,作为所述振动臂的宽度缩小率的最大宽度/最小宽度=M的值是根据与所述长槽的长度相对于所述振动臂的臂长的比例=N的关系来确定的。
根据发明的第七方面的结构,通过具有根据与所述长槽的长度相对于所述振动臂的臂长的比例=N的关系来确定作为所述振动臂的宽度缩小率的最大宽度/最小宽度=M的值的结构,可提供在使整体小型化之上,抑制了CI值、且不使振动特性恶化的压电振动片。
发明的第八方面的特征在于,在发明的第七方面的结构中,在设所述N为61%左右时,所述M为大于等于1.06。
根据发明的第八方面的结构,在将所述N设为例如61%的情况下,将所述M设为大于等于1.06,从而可得到充分抑制了基波的CI值、同时在2次的高次谐波下很难振荡的压电振动片。
另外,上述目的通过发明的第九方面来实现,发明的第九方面是一种在封装或壳体内收纳有压电振动片的压电器件,其特征在于,所述压电振动片具备由压电材料形成的规定长度的基部;从所述基部的一端侧起延伸的多条振动臂;支撑用臂,其从所述基部的距离所述一端侧所述规定距离的另一端侧起沿宽度方向延伸,并且在所述振动臂的外侧、沿与该振动臂相同的方向延伸;和切入部,在相比把所述支撑用臂对所述基部进行一体连接的连接部更靠近所述振动臂的位置上,在宽度方向将所述压电材料的宽度缩小而形成了该切入部,并且,在相比把所述支撑用臂对所述基部进行一体连接的连接部更靠近所述振动臂的位置上设置有贯通孔。
根据发明的第九方面的结构,根据与发明的第一方面相同的原理,可提供一种压电器件,能提高耐冲击性,温度特性良好,使整体紧凑地构成,并且可降低CI值。


图1是表示本发明的压电器件的实施方式的概略平面图。
图2是图1的A-A线切断端面图。
图3是图1的压电器件中使用的压电振动片的概略放大平面图。
图4是图1的振动臂部分的B-B线切断端面图。
图5是表示使用图1的压电振动片的振荡电路例子的电路图。
图6是表示图1的压电器件中使用的压电振动片的温度-CI值特性的曲线。
图7是表示图1的压电器件的制造方法的一例的流程图。
图8是表示石英Z板的坐标轴的图。
图9是现有的压电振动片的概略平面图。
图10是表示图9的压电振动片的温度-CI值特性的曲线图。
符号说明30...压电器件;32...压电振动片;33、34...长槽;35、36...振动臂;61、62...支撑用臂;71、72…切入部;80...贯通孔。
具体实施例方式
图1和图2表示本发明的压电器件的实施方式,图1是其概略平面图,图2是图1的A-A线切断端面图。另外,图3是说明图1的压电振动片32的细节用的放大平面图,图4是关于图1的振动臂部分的B-B线切断端面图。
在这些图中,示出了压电器件30构成压电振子的示例,该压电器件30在作为基体的封装57内收纳有压电振动片32。
封装57如图1和图2所示,例如形成为矩形的箱状。具体而言,封装57是将第1基板54、第2基板55和第3基板56层叠而形成的,例如,使作为绝缘材料的氧化铝材质的陶瓷生片成形,形成图示的形状后,烧结而形成。
在封装57的底部,具有在制造工序中用于脱气的贯通孔27。贯通孔27由形成于第1基板54的第1孔25;和形成于第2基板55、具有比上述第1孔25小的外径并与第1孔25连通的第2孔26形成。
另外,通过在贯通孔27中填充密封材料28,进行孔密封,以使封装57内变为气密状态。
封装57如图2所示,通过去除第2基板56内侧的材料,形成内部空间S的空间。该内部空间S是收纳压电振动片32用的收纳空间。另外,在形成于第2基板55的各电极部31-1、31-2、31-1、31-2上,使用导电性粘接剂43、43、43、43,放置压电振动片32的支撑用臂61、62的后述的引出电极形成部位并进行接合。
支撑用臂61与支撑用臂62为相同形状,参照图3来说明支撑用臂61,其长度尺寸为压电振动片32的全长a的60%~80%,这是为了得到稳定的支撑结构所必需的。
这里,省略了图示,也可在支撑用臂61的接合部位与基部51之间的部位的一部分上,设置使刚性降低的部位或结构,例如切入部或缩幅部等。由此,可期待CI值的降低等。
另外,通过分别对支撑用臂61、62的外侧角部进行倒角以形成凸向内方或凸向外方的R状,防止缺口引起的损伤。
与支撑用臂的接合部位例如也可以针对一个支撑用臂61,仅选择一个相当于压电振动片32长度尺寸的重心位置G的部位。但是,如本实施方式那样,优选的是选择隔着上述重心位置并离该重心位置等距离的2点来设置电极部31-1、31-2,并进行接合,这样进一步强化了接合结构。
就一个支撑用臂而言,在利用1点进行接合的情况下,优选的是为了得到充分的接合强度,确保粘接剂涂布区域的长度大于等于压电振动片32的全长a的25%。
如本实施方式那样,在设置2点接合部位的情况下,优选的是为了得到充分的接合强度,将接合部位彼此的间隔设为大于等于压电振动片32的全长a的25%。
另外,在用导电性粘接剂43固定支撑该压电振动片32之后,由于构成压电振动片32的材料与构成封装57的材料的线膨胀系数的不同等,在基部51中存在残留应力。
另外,各电极部31-1、31-2、31-1、31-2中至少一组电极部31-1、31-2通过封装背面的安装端子41、41和导电通孔等来连接。封装57在收纳了压电振动片32之后,通过在真空中使用密封材料58来接合透明的玻璃制盖体40,在真空中气密密封。由此,在密封盖体40之后,从外部照射激光,调整压电振动片32的电极等,可调整频率。
另外,盖体40也可以不是透明材料,例如也可以是通过接缝密封等来接合科瓦铁镍钴合金等的金属板体的结构。
压电振动片32例如由石英形成,除石英外,还可利用钽酸锂、铌酸锂等压电材料。
在本实施方式中,如后所述,压电振动片32例如可以从石英的单晶体中切出。
该压电振动片32如图1所示,具备基部51、和从该基部51的一端(图中为右端)起向着右方分成两条平行延伸的一对振动臂35、36。
在各振动臂35、36的主面的表背面中,优选分别形成分别沿长度方向延伸的长槽33、34,并如图1和图2所示,在该长槽内设置作为驱动用电极的激励电极37、38。
另外,在本实施方式中,各振动臂35、36的末端部如后所述,通过逐渐扩大宽度成大致锥状,使重量增加,起到锤的作用。由此,容易进行振动臂的弯曲振动。
另外,在图1中,压电振动片32具备支撑用臂61、62,该支撑用臂61、62在距离该基部51的形成振动臂的一端规定距离BL2(基部长度)的另一端(图中为左端)沿基部51的宽度方向延伸,并且在振动臂35、36两外侧位置,沿各振动臂35、36的延伸方向(图1中为右方向)与这些振动臂35、36平行地延伸。
这种压电振动片32的音叉状外形与设置在各振动臂中的长槽例如可分别利用氟酸溶液等对石英晶片等材料进行湿法刻蚀或干法刻蚀来精密地形成。
如图1和图3所示,激励电极37、38形成于长槽33、34内和各振动臂的侧面,对于各振动臂,长槽内的电极与设置在侧面的电极是成对的。另外,各激励电极37、38分别作为引出电极37a、38a,围在支撑用臂61、62上。由此,在将压电器件30安装在了安装基板等上的情况下,来自外部的驱动电压从安装端子41经电极部31、31(31-1和/或31-2、31-1和/或31-2)传递到压电振动片32的各支撑用臂61、62的引出电极37a、38a,传递到各激励电极37、38。
之后,通过向长槽33、34内的激励电极施加驱动电压,可在驱动时提高各振动臂中形成有长槽的区域的内部电场效率。
即,如图4所示,各激励电极37、38通过交叉配线,连接于交流电源上,从电源向各振动臂35、36施加作为驱动电压的交变电压。
由此,激励振动臂35、36使之彼此反相振动,在基本模式即基波下,进行弯曲振动使各振动臂35、36的末端侧彼此接近/离开。
这里,例如压电振动片32的基波为,Q值12000、电容比(C0/C1)260、CI值57kΩ、频率32.768kHz(‘千赫兹’,以下相同)。
另外,2次的高次谐波例如为,Q值28000、电容比(C0/C1)5100、CI值77kΩ、频率207kHz。
另外,优选的是在基部51中,在基部51的充分离开了振动臂侧的端部的位置上,在两侧边缘设置局部缩小基部51的宽度方向的尺寸而形成的凹部或切入部71、72。切入部71、72的深度(图3中尺寸q)例如优选的是把宽度缩小至与各自接近的振动臂35、36的外侧的侧缘一致的程度,例如可为30μm左右。
由此,当振动臂35、36弯曲振动时,振动泄漏泄漏到基部51侧,抑制其传递到支撑用臂61、62,可将CI值抑制得较低。
若增大切入部71、72的深度尺寸,则即使对于降低振动泄漏是有效的,但基部51自身的刚性也过分降低,损害振动臂35、36的弯曲振动的稳定性。
因此,在本实施方式中,在基部51宽度方向的中心附近,在相比把支撑用臂61、62对基部51进行一体连接的连接部53更靠近振动臂35、36的位置处,形成有贯通孔80。
贯通孔80如图1和图2所示,是贯通基部51的表面背面的矩形孔,孔形状不限于此,也可以是圆形或椭圆形、正方形等。
由此,与深入地形成切入部71、72相比,不会使基部51的刚性大大下降,可进一步抑制振动泄漏,降低CI值。
这里,优选贯通孔80的基部51宽度方向的长度r为50μm左右,但通过将贯通孔80的尺寸r和上述切入部71的深度q相对于尺寸e的比例、即(r+q)/e设为30%~80%,可具有降低振动泄漏、与降低经支撑用臂61的接合部位的影响的效果。
另外,在本实施方式中,为了使封装尺寸小型化,将基部51的侧面与支撑用臂61、62的间隔(尺寸p)设为30μm~100μm。
另外,在本实施方式中,如图1所示,上述支撑用臂61、62延伸的部位、即基部51的另一端部53(连接部)具有充分离开振动臂35、36的根部52的距离BL2。
优选该距离BL2是超过振动臂35、36的臂宽尺寸W2的大小的尺寸。
即,当音叉型振动片的振动臂35、36弯曲振动时,其振动泄漏向基部51传递的范围与振动臂35、36的臂宽尺寸W2相关。本发明人关注于这点,发现了必须将成为支撑用臂61、62的基端的部位设置在适当的位置上。
因此,在本实施方式中,对于成为支撑用臂61、62的基端的部位53(连接部),通过以振动臂的根部52为起点,选择超过与振动臂的臂宽尺寸W2的大小对应的尺寸的位置,可构成为进一步确实地抑制来自振动臂35、36的振动泄漏传递到支撑用臂61、62侧。因此,为了抑制CI值,并得到后述的支撑用臂的作用效果,优选使53的位置离开振动臂35、36的根部(即基部51的一端部)52的部位上述BL2的距离。
基于同样的理由,形成切入部71、72的部位也优选从振动臂35、36的根部52的部位起超过振动臂35、36的臂宽尺寸W2的大小的部位。因此,在相比包括把支撑用臂61、62对基部51进行一体连接的部位在内,更靠近振动臂的位置处形成切入部71、72。另外,优选的是通过将切入部71、72的位置形成于离开所述根部(根)的部位的距离大于等于所述臂宽尺寸W2×1.2的位置处,已确认了可使驱动电平特性适合于正常的压电振动片的电平。
另外,由于支撑用臂61、62与振动无关,所以对其臂宽没有特别的条件,但为了使支撑结构可靠,优选的是为比振动臂大的宽度。
在本实施方式中,通过将振动臂的臂宽W2设为40~60μm左右,将振动臂彼此的间隔MW2设为50~100μm左右,将支撑用臂61、62的宽度设为100μm左右,可将基部51的宽度BW2设为500μm,这与图9的压电振动片1的宽度大致一样,长度短,可充分收纳于与以往相同大小的封装中。本实施方式可在实现这种小型化的同时,得到以下的作用效果。
在图1的压电振动片32中,支撑用臂61、62经导电性粘接剂43接合在封装57侧,所以由于周围温度的变化或落下冲击等原因而在该接合部位产生的应力变化,隔着从支撑用臂61、62的接合部位至基部51的另一端部53的弯曲的距离、以及超过距离BL2的相当于基部51的长度的距离,基本上不会影响到振动臂35、36,因此,尤其是温度特性变得良好。
进而,与之相反,来自弯曲振动的振动臂35、36的振动泄漏在到达隔着基部51的支撑用臂61、62之前,隔着超过距离BL2的基部51的规定长度,所以基本上不产生影响。
这里,虽然考虑到若基部51的长度非常短,则弯曲振动的泄漏成分扩散到支撑用臂61、62的整体,难以控制的情况,但在本实施方式中,充分避免了这种情况。
另外,除了能获得这种作用,如图所示,支撑用臂61、62构成为从基部51的另一端部53(连接部)起沿宽度方向延长,在振动臂35、36的外侧,沿与该振动臂相同的方向延伸,所以还可使整体的尺寸变得紧凑。
另外,在本实施方式中,如图1所示,支撑用臂61、62的末端形成为相比振动臂35、36的末端更靠近基部51。这点也可使压电振动片32的尺寸变紧凑。
并且,与图9的结构相比较,如容易理解的那样,图9中由于是在彼此接近的引出电极5与引出电极6上涂布导电性粘接剂7、8来进行接合的结构,所以为了不使它们接触,避免短路,必须在非常窄的范围内涂布粘接剂(封装侧),或在接合后固化前使粘接剂流动、使得不短路,同时执行接合工序,而这不是容易进行的工序。
相反,在图1的压电振动片32中,由于只要在与彼此在封装57宽度方向上充分离开的支撑用臂61、62各自的中间附近对应的电极部31-1、31-2上涂布导电性粘接剂43、43即可,所以基本上没有上述困难,另外,也不必担心短路。
图6示出作为本实施方式的压电振动片32的温度特性的温度-CI值特性。
如图所示,与图10相比较可容易理解,图6的温度-CI值特性非常好。
下面,参照图3和图4来说明本实施方式的压电振动片32的优选的详细结构。
由于图3所示的压电振动片32的各振动臂35、36形状相同,所以说明振动臂36,在各振动臂从基部51延伸的基端部T,振动臂宽度最宽。另外,在从作为振动臂36的根部的T位置稍向振动臂36的末端侧离开的U部位之间,形成急剧缩小宽度的第1缩幅部TL。另外,形成第2缩幅部,从作为第1缩幅部TL的终端的U位置起、至进一步向着振动臂36的末端侧的P位置,即在振动臂的CL距离上,渐渐地连续地缩小宽度。
因此,通过在振动臂36的接近基部的根部附近设置第1缩幅部TL,具备了高的刚性。另外,通过从第1缩幅部的终端U向着末端形成第2缩幅部CL,刚性连续降低。P的部位是臂宽的变更点P,是振动臂36的形式上变细的位置,所以也可表示为变细位置P。振动臂36中,比该臂宽的变更点P更靠近末端侧的部分是臂宽为相同尺寸地延伸,或优选如图所示缓慢连续扩大。
这里,图3的长槽33、34越长,则对于形成振动臂35、36的材料其电场效率越好。这里,已知在长槽33、34距基部51的长度j相对于振动臂的全长b至少为j/b=0.7左右之前,越长则音叉型振动片的CI值越低。因此,优选j/b=0.5~0.7。在本实施方式中,图3中,振动臂36的全长b例如为1200μm左右。
另外,在适当延长了长槽的长度,充分抑制了CI值的情况下,接下来压电振动片32的CI值比(高次谐波的CI值/基波的CI值)成为问题。即,在降低基波的CI值的同时,高次谐波的CI值也被抑制,若该高次谐波的CI值比基波的CI值小,则容易由高次谐波引起振荡。
因此,不仅延长长槽,降低CI值,并且通过将臂宽的变更点P设置成靠近振动臂的末端,可在降低CI值的同时,进一步还增大CI值比(高次谐波的CI值/基波的CI值)。
即,振动臂36中,其根本部分即根附近,通过第1缩幅部TL而强化了刚性。由此,可使振动臂的弯曲振动进一步稳定,形成贯通孔80,抑制CI值。
通过设置第2缩幅部CL,振动臂36从其根部附近起向着末端侧直至作为臂宽变更点的变细位置P,刚性缓慢降低,在相比变细位置P更靠近末端侧的部分,没有长槽34,使臂宽缓慢扩大,所以随着越靠近末端侧,刚性变高。
因此,认为可使2次的高次谐波的振动时的振动‘节’位于振动臂36的靠近末端侧,由此,即使延长长槽34,提高压电材料的电场效率,使CI值上升,也可抑制基波的CI值,同时不会导致2次的高次谐波的CI值的下降。由此,如图3所示,优选将臂宽的变更点P设置在相比长槽的末端部更靠近振动臂的末端侧的位置处,由此可确实地增大CI值比,防止高次谐波引起的振荡。
并且,根据本发明人的研究,相对于振动臂的全长b、将长槽33、34的从基部51起的长度设为j时的上述j/b、作为振动臂36的最大宽度/最小宽度的值的臂宽缩小率M、和与它们对应的CI值比(=第2高次谐波的CI值/基波的CI值)具有相关性。
在上述j/b=61.5%的情况下,通过使作为振动臂36的最大宽度/最小宽度的值的臂宽缩小率M比1.06大,可使CI值比大于1,已确认可防止高次谐波引起的振荡。
因此,可提供一种压电振动片,即便整体小型化,也可将基波的CI值抑制得较低,驱动特性不会恶化。
下面,说明压电振动片32的更优选的结构。
图4的尺寸x所示的晶片厚度、即形成压电振动片的石英晶片厚度优选为70μm~130μm。
图3的尺寸a所示的压电振动片32的全长为1300μm~1600μm左右。在压电器件的小型化上,优选作为振动臂全长的尺寸b为1100~1400μm,压电器件30的整个宽度d为400μm~600μm。因此,为了使音叉部分小型化,为了使支撑效果可靠,必须使基部51的宽度尺寸e为200~400μm,支撑臂的宽度f为30~100μm。
另外,优选图3的振动臂35与36之间的尺寸k为50~100μm。若尺寸k比50μm小,则如后所述,在对石英晶片进行湿法刻蚀使其贯通而形成压电振动片32的外形的情况下,难以使基于刻蚀各向异性的异形部、即图4的符号81所示的振动臂侧面的向正X轴方向的鳍状凸部充分小。若尺寸k大于等于100μm,则担心振动臂的弯曲振动变得不稳定。
并且,图4的振动臂35(振动臂36也一样)的长槽33的外缘与振动臂的外缘的尺寸m1、m2可以均为3~15μm。通过使尺寸m1、m2小于等于15μm,有利于提高电场效率,通过使其大于等于3μm,有利于确实进行电极的分极。
在图3的振动臂36中,若第1缩幅部孔的宽度尺寸n大于等于11μm,则可期待确实地抑制CI值的效果。
在图3的振动臂36中,优选使相比臂宽的变更点P更靠近末端侧的部分扩大宽度的宽度扩大程度,相对于作为振动臂36的臂宽为最小的部位的该臂宽的变更点P的部位的宽度,增加0~20μm左右。若超过该范围来扩大宽度,则振动臂36的末端部变得过于重,担心损害弯曲振动的稳定性。
另外,在图4中的振动臂35(振动臂36也一样)外侧的一侧面,形成向正X轴方向突出成鳍状的异形部81。这是在通过湿法刻蚀来形成压电振动片的外形时,由于石英的刻蚀的各向异性作为刻蚀残留而形成的,优选通过在氟酸与氟化铵形成的刻蚀液中刻蚀9小时~11小时,将该异形部81的突出量v降低到小于等于5μm,这有利于改善电场效率、得到低CI值。
优选图4的尺寸g所示的长槽的宽度尺寸在振动臂的形成该长槽的区域中,为振动臂的臂宽C的60~90%左右。由于在振动臂35、36中形成有第1和第2缩幅部,所以臂宽C在振动臂的长度方向上不同,长槽的宽度g为振动臂最大宽度的60~90%左右。若长槽的宽度小于该程度,则电场效率下降,导致CI值上升。
另外,优选长槽33、34的基部51侧端部的位置在图3中与振动臂35、36的根部、即T的位置相同,或在相比T位置稍靠近振动臂末端侧的、第1缩幅部TL存在的范围内,特别优选不会相比T的位置更靠近基部51的基端侧。
并且,图4的基部51的全长h相对于压电振动片32的全长a,以往是为30%左右,但在本实施方式中,通过采用切入部等,能够为15~25%左右,实现了小型化。
图5是表示利用本实施方式的压电振动片32来构成压电振荡器时的振荡电路示例的电路图。
振3荡电路91包含放大电路92与反馈电路93。
放大电路92构成为包含放大器95与反馈电阻94。反馈电路93构成为包含漏极电阻96、电容器97、98和压电振动片32。
这里,图5的反馈电阻94例如为10MΩ(兆欧姆)左右,放大器95可使用CMOS反相器。漏极电阻96例如可以为200~900kΩ(千欧姆),电容器97(漏极电容)与电容器98(栅极电容)分别为10~22pF(皮法)。
(压电器件的制造方法)下面,参照图7的流程图来说明上述压电器件的制造方法一例。
分别单独制造压电器件30的压电振动片32、封装57、盖体40。
(盖体和封装的制造方法)对于盖体40,例如切断规定大小的玻璃板、准备大小适合于密封封装57的盖体。
封装57是如上所述,在层叠了使氧化铝材质的陶瓷生片成形而形成的多个基板之后,进行烧结而形成的。在进行成形时,多个基板分别通过在其内侧形成规定的孔,从而在层叠后的情况下在内侧形成规定的内部空间S。
(压电振动片的制造方法)首先,准备压电基板,由一个压电基板生成规定数量的压电振动片,同时通过刻蚀来形成其外形(外形刻蚀)。
这里,压电基板使用压电材料中例如可将多个或大量压电振动片32分离开的大小的石英晶片。由于要通过工序的进行来形成图3的压电振动片32,所以该压电基板从压电材料例如石英的单晶体中切出,以使图3所示的X轴为电气轴,Y轴为机械轴,Z轴为光轴。另外,在从石英的单晶体中切出时,在上述X轴、Y轴和Z轴构成的垂直坐标系中,将以Z轴为中心顺时针0度~5度(图8的θ)范围内旋转切出而得到的石英Z板切断研磨成规定厚度而得到所述压电基板。
在外形刻蚀中,使用未图示的耐蚀膜等掩模,对于从压电振动片的外形露出作为外侧部分的压电基板,例如将氟酸溶液作为刻蚀液,进行压电振动片的外形刻蚀。作为耐蚀膜,例如可使用将铬作为基底、蒸镀金而得到的金属膜等。在湿法刻蚀中,该刻蚀工序因氟酸溶液的浓度或种类、温度等变化而变化。
这里,在外形刻蚀工序中的湿法刻蚀中,关于图3所示的机械轴X、电气轴Y、光学轴Z,在刻蚀进行上表现出如下的刻蚀各向异性。
即,关于压电振动片32,其X-Y平面内的刻蚀速率在正X方向上,相对于该X轴120度的方向、以及负120度的方向的面内的刻蚀进行得快,在负X方向上,相对于X轴正30度的方向和负30度方向的内面的刻蚀进行得慢。
同样,Y方向的刻蚀进行速度,在正30度方向和负30度方向上快,在负Y方向上,相对于Y轴正120度的方向和负120度的方向慢。
由于这种刻蚀进行上的各向异性,在压电振动片32中,如图4的符号81所示,在各振动臂的外侧侧面,形成突出成鳍状的异形部。
但是,在本实施方式中,使用氟酸和氟化铵作为刻蚀液,花费足够的时间、即9小时~11小时这样的足够的时间来进行刻蚀,由此可使图4中说明的异形部81变得极其小(ST11)。
在该工序中,不仅形成包含压电振动片32的切入部71、72在内的外形,还同时形成贯通孔80,在结束时,相对于石英晶片,得到分别以细的连结部来连结基部51附近的多个压电振动片32的外形完成状态的物体。
(槽形成用的半刻蚀工序)接着,利用未图示的槽形成用抗蚀剂,为了形成如图4所示的状态,残留夹持着各长槽的两侧壁部,在不形成槽的部分中残留耐蚀膜,以与外形刻蚀相同的刻蚀条件,通过分别对各振动臂35、36的表面与背面进行湿法刻蚀,从而形成对应于长槽的底部(ST12)。
这里,参照图4,用符号t表示的槽深度为整体厚度x的30~45%左右。若t小于等于整体厚度x的30%,则有时不能使电场效率充分提高。若大于等于45%,则有时刚性不足,对弯曲振动产生不好影响,使强度不足。
另外,上述外形刻蚀和槽刻蚀中的一方或两方也可利用干法刻蚀来形成。此时,例如,每次在压电基板(石英晶片)上配置金属掩模来覆盖相当于压电振动片32的外形的区域,或在外形形成后相当于长槽的区域。在该状态下,例如可收纳于未图示的容器内,在规定的真空度下提供刻蚀气体,生成刻蚀等离子,进行干法刻蚀。即,对真空容器(未图示)例如连接氟利昂气体高压储气瓶与氧气储气瓶,并且,在真空容器中设置排气管,抽空至规定的真空度。
将真空容器内真空排气至规定的真空度,输送氟利昂气体与氧气,在填充该混合气体至规定气压的状态下,当施加直流电压时,产生等离子。另外,包含有离子化的粒子的混合气体碰撞从金属掩模露出的压电材料。利用该冲击,进行物理上切削飞散,进行刻蚀。
(电极形成工序)之后,利用蒸镀或溅射等,将构成电极的金属、例如金覆盖在整体面上,接着,使用不形成电极的部位露出的抗蚀剂,利用光刻法的方法,形成图1和图4中说明的驱动用电极(ST13)。之后,在各振动臂35、36的末端部,通过溅射或蒸镀,形成带锤电极(金属覆膜)21、21(ST14)。带锤电极21、21被通电后不用于压电振动片32的驱动,而是用于后述的频率调整。
之后,在晶片上进行频率的粗调(ST15)。粗调是通过向带锤电极21、21的一部分照射激光等能量光束,使之部分蒸发,基于削减质量方式的频率调整。
之后,将对上述晶片的细连结部折取,成为单独地形成压电振动片32的单片(ST16)。
之后,如图1中说明的那样,在封装57的各电极部31-1、31-2、31-1、31-2上涂布导电性粘接剂43、43、43、43,并在其上放置支撑用臂61、62,通过加热/使粘接剂固化,将压电振动片32接合在封装57上(ST17)。
另外,作为该导电性粘接剂43,例如是在利用合成树脂等的粘合剂成分中混入银粒子等导电粒子而得到的,可同时进行机械接合与电气连接。
之后,在由金属制等的不透明材料形成盖体40的情况下,没有设置图2中说明的贯通孔27。另外,对于压电振动片32施加驱动电压,在观察频率的同时,例如向压电振动片32的振动臂35和/或振动臂36的带锤电极21的末端侧照射激光,利用削减质量方式来进行作为微调的频率调整(ST18-1)。
之后,利用在真空中进行的接缝焊接等将盖体40接合到封装57上(ST19-1),经过必要的检查,完成压电器件30。
或者,在利用透明盖体40密封封装57的情况下,在压电振动片32的ST17中的接合后,将该盖体40接合到封装57上(ST18-2)。
此时,例如执行加热低融点玻璃等,将盖体40接合到封装57上的加热工序,但此时,由低融点玻璃或导电性粘接剂等生成气体。因此,通过加热,从图2中说明的贯通孔27排出这些气体(脱气),之后,在真空中,在阶梯部29配置金锡、优选是金锗等构成的金属球体或小球,通过照射激光等,使其熔融。由此,图2的金属填充材料28气密密封贯通孔27(ST19-2)。
之后,如图2所示,从外部向压电振动片32的振动臂35和/或振动臂36的带锤电极21的末端侧照射激光,使之透过由硼硅酸玻璃等构成的透明盖体40,利用削减质量方式来进行作为微调的频率调整(ST20-2)。之后,经必要的检查,完成压电器件30。
本发明不限于上述实施方式。实施方式或变形例的各结构可适当组合上述结构,或省略,或与未图示的其它结构相组合。
另外,本发明不限于将压电振动片收纳于箱状的封装中,也可将压电振动片收纳于圆柱状的容器中,使压电振动片作为陀螺传感器发挥作用,并且,可适用于名称与压电振子、压电振荡器等无关,但利用了压电振动片的所有压电器件。并且,在压电振动片32中形成了一对振动臂,但不限于此,振动臂也可以是3条,4条或大于4条。
权利要求
1.一种压电振动片,其特征在于,具备由压电材料形成的规定长度的基部;从所述基部的一端侧起延伸的多条振动臂;支撑用臂,其从所述基部的距离所述一端侧所述规定距离的另一端侧起沿宽度方向延伸,并且在所述振动臂的外侧、沿与该振动臂相同的方向延伸;和切入部,在相比把所述支撑用臂对所述基部进行一体连接的连接部更靠近所述振动臂的位置上,在宽度方向将所述压电材料的宽度缩小而形成了该切入部,并且,在相比把所述支撑用臂对所述基部进行一体连接的连接部更靠近所述振动臂的位置上设置有贯通孔。
2.根据权利要求1所述的压电振动片,其特征在于所述切入部离所述各振动臂的根部的距离大于等于所述臂宽的尺寸的1.2倍,形成于所述基部上。
3.根据权利要求1或2所述的压电振动片,其特征在于在所述各振动臂的侧面形成有向正X轴(机械轴)方向突出的异形部,使该异形部为最小。
4.根据权利要求1至3中任一项所述的压电振动片,其特征在于所述支撑用臂的长度设定成使得所述支撑用臂的末端更靠近所述基部而不是所述振动臂的末端。
5.根据权利要求1至4中任一项所述的压电振动片,其特征在于,具备沿所述各振动臂的长度方向而形成的长槽;和形成于所述长槽中的驱动用电极,具有所述各振动臂的宽度尺寸从所述基部侧向末端侧渐渐缩小的缩幅部,并且在所述末端侧存在所述宽度尺寸向着末端侧以相等尺寸延伸、或变大的宽度变化的变更点P,使所述变更点P相比所述长槽的末端部更位于振动臂末端侧。
6.根据权利要求5所述的压电振动片,其特征在于,具有所述各振动臂的宽度尺寸在所述振动臂的相对于所述基部的根部的部位上、向着末端侧急剧缩小的第1缩幅部;和从该第1缩幅部的终端起,作为所述缩幅部,进一步向着末端侧渐渐缩小宽度的第2缩幅部。
7.根据权利要求5或6所述的压电振动片,其特征在于作为所述振动臂的宽度缩小率的最大宽度/最小宽度=M的值是根据与所述长槽的长度相对于所述振动臂的臂长的比例=N的关系来确定的。
8.根据权利要求7所述的压电振动片,其特征在于在设所述N为61%左右时,所述M为大于等于1.06。
9.一种压电器件,在封装或壳体内收纳有压电振动片,其特征在于,所述压电振动片具备由压电材料形成的规定长度的基部;从所述基部的一端侧起延伸的多条振动臂;支撑用臂,其从所述基部的距离所述一端侧所述规定距离的另一端侧起沿宽度方向延伸,并且在所述振动臂的外侧、沿与该振动臂相同的方向延伸;和切入部,在相比把所述支撑用臂对所述基部进行一体连接的连接部更靠近所述振动臂的位置上,在宽度方向将所述压电材料的宽度缩小而形成了该切入部,并且,在相比把所述支撑用臂对所述基部进行一体连接的连接部更靠近所述振动臂的位置上设置有贯通孔。
全文摘要
压电振动片和压电器件。提供压电振动片与压电器件,防止振动泄漏,不受固定部的不好影响,使耐冲击性提高,在推进固定小型化之上,温度特性良好。一种压电振动片,具备由压电材料形成的规定长度的基部(51);从所述基部的一端侧起延伸的多条振动臂(35、36);支撑用臂(61、62),从所述基部离所述一端侧所述规定距离的另一端侧沿宽度方向延伸,并且在所述振动臂的外侧,沿与该振动臂相同的方向延伸;和切入部(71、72),在相比所述支撑用臂对所述基部进行一体连接的连接部更靠近所述振动臂的位置上,沿宽度方向缩小所述压电材料的宽度而形成该切入部(71、72),并且,在相比把所述支撑用臂对所述基部进行一体连接的连接部更靠近所述振动臂的位置上,设置有贯通孔(80)。
文档编号H03H9/10GK1855712SQ20061007862
公开日2006年11月1日 申请日期2006年4月26日 优先权日2005年4月27日
发明者棚谷英雄 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1