可挠性电致发光元件的制作方法

文档序号:8194038阅读:418来源:国知局
专利名称:可挠性电致发光元件的制作方法
技术领域
本发明大致是关于有机电致发光组件,特别涉及一种可挠性有机发光组件(OLED)。
背景技术
近来有机发光组件(OLED)作为显示器组件受到瞩目,其由于OLED可经由自发光产生可见度而可取代液晶显示器(LCD),因此,其不需要LCD所需的背光(back-lighting),因此,可被制成轻、薄,具可挠性的显示器。典型的OLED为是将有机发光材料置于可注入电子的阴极层与可注入电穴的阳极层之间而构成。当在阴极与阳极之间施加适当极性的电压时,从阳极注入的电穴与从阴极注入的电子结合而将能量释放为光,因而产生电致发光。已将聚合电致发光材料使用于OLED,这种组件被称为PLED。
OLED之一现有结构为底部发射结构,其包括在透明基板上的金属或金属合金阴极及透明阳极,因此光可从结构的底部发射。OLED也可具有顶部发射结构,其在不透明基板或透明基板上形成。顶部发射OLED具有相对透明的上方电极,以使光可以从上方电极一侧发射。顶部发射OLED具有两种典型结构。当OLED结构具有在有机层上方的透明阳极时,将结构称为反向(inverted)OLED。顶部发射OLED也可制成具有在有机层上方的透明阴极。将具有形成于透明基板上的透明阳极及透明阴极的OLED称为透明OLED。顶部发射OLED结构使组件整合及工程规划的弹性增加。再者,高分辨率显示器需要顶部发射OLED。
OLED传统上构造在硬质玻璃基板上。玻璃对氧及水蒸汽具有低渗透性。过去数年来,超簿玻璃板及透明塑料基板被视为是可挠性OLED及PLED可能的基板选择。然而,超薄玻璃板相当易碎,且形成于超薄玻璃板上的OLED作为可挠性OLED显示器的潜力有限。为制造较轻、较薄、更坚固且高度可挠性的OLED,将塑料基板,例如,聚对苯二甲酸乙二酯(PET)及聚萘二甲酸乙二酯(PEN)使用于可挠性OLED。然而,由于塑料对水及氧呈现低抗性,因而这类组件的寿命相当短。因此,已尝试保护在塑料基板上形成的OLED,防止其暴露至氧及水蒸汽,以最小化组件的老化。
已提出各种方法于在塑料基板上形成阻隔层保护。参见,例如,WO02/065558、WO02/091064、美国专利第5757126号、美国公告第2002/0022156号。美国专利第5757126号揭示一种包括有机及无机材料的多层阻隔涂层。美国公告第2002/0022156号提出一种形成于塑料基板上的多层阻隔复合物,此复合物包括一薄的透明金属氧化物或金属氮化物及一或多个选自薄透明金属薄膜、有机聚合物、薄透明介电质及薄透明导电性氧化物之中的附加层。WO02/065558揭示了一种在透明聚合基板上方的透明聚合有机硅保护层。WO02/091064揭示了一种包括有机层及无机层的多层阻隔层。然而,这类方法都需要许多沉积步骤,且其可能对OLED的光学及机械性能产生一些不利的影响。因此,这类方法无法以有效利用成本的方式解决渗透问题。
仍有需要一种可以有效利用成本的方式且容易制造的可挠性OLED。

发明内容
本发明为关于一种可挠性有机发光二极管(OLED),及更明确地说,是关于一种形成于不透明可挠性基板上的聚合物发光二极管(PLED)。不透明可挠性基板由下列之一组成(1)层合到或经涂布金属层的塑料层;(2)夹于两塑料层之间的金属层,或(3)金属箔。当OLED形成于可挠性基板的金属表面上时,可将金属表面涂布绝缘层。绝缘层可为旋涂聚合物或介电层。可挠性基板中的金属提供作为阻隔层而使氧及蒸汽渗透到OLED减至最小。此外,OLED具有透明或半透明上方电极,以使光可发射通过上方电极。本发明的新颖设计产生具有优良阻隔性质及高可挠性的OLED,其可批量生产容易制造。
结合附图,将可由以下的发明详述而明白本发明的优点及新颖特征。


图1显示根据本发明的形成于塑料/金属基板上的一代表性OLED的横剖面图;图2显示根据本发明的形成于具有绝缘层的金属/塑料基板上的OLED的横剖面图;图3显示根据本发明的形成于塑料/金属/塑料基板上的OLED的横剖面图;图4显示根据本发明的形成于金属箔上的OLED的横剖面图;图5显示根据本发明的具有透明多层阴极的OLED的一实例。
具体实施例方式
参照图1,本发明的代表性OLED包括可挠性不透明基板1,在基板上部的下方电极2,在下方电极上面的有机堆叠3,及在有机堆叠上面的半透明上方电极4。在一具体实施例中,可挠性不透明基板1包括层合至或经涂布金属层1b的塑料层1a,如图1所示。或者,也可将OLED形成于基板1的金属一侧上,如图2所示。在这种情况下,可能需要将绝缘层5在金属层1b与下方电极2之间形成。在图3所示的另一具体实施例中,可挠性基板1由夹于两塑料层1c及1e之间的金属层1d组成。使用于基板1的金属材料包括铝及其它高度反射性金属。铝由于其对抗水及氧的优异阻隔而优选。使用于可挠性基板1的塑料材料包括聚对苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯(PEN)、聚醚砜(PES)及其它技术中已知用于提供可挠性OLED的适当特性的塑料。绝缘层5可为旋涂聚合物层或介电层,例如,无机氧化物或旋涂玻璃(SOG)。此绝缘层5也可作为一平面化层。
在图4所示的另一实施例中,可挠性基板1为经涂布绝缘层5的金属箔。金属箔可由铝、铜或不锈钢所制成。绝缘层5如前面关于图2所述。这种情况中的金属箔作为阻隔层及将发射光往回反射至相对透明的上方电极4而增加光输出的似镜表面。
上方电极4可以是阴极或阳极。当上方电极4为阳极时,下方电极2作为阴极,及将这种OLED称为反向OLED。下方电极2可以是透明或不透明,可以是反射性或吸光性的。上方电极4应为半透明或透明(以下称为相对透明)。上方电极4及下方电极2的适当材料包括导电性聚合材料、导电性有机材料、透明导电性氧化物(TCO)、金属或金属合金。TCO的例子包括铟-锡氧化物(ITO)、锌-铟氧化物(ZIO)、掺杂铝的ZnO、Ga-In-Sn-O(GITO)、SnO2、Zn-In-Sn-O(ZITO)及Ga-In-O(GIO)。适当的金属包括金(Au)、银(Ag)、铝(Al)铱(Ir)镍(Ni)及铬(Cr)。下方电极2或上方电极4可以是前述的其中一种材料所制成的单层结构或由这类材料的组合所制成的多层结构。当使用金属作为电极材料时,金属电极的界面(即在金属电极与有机堆叠3之间的边界表面)可经改性以增进OLED中的电荷载体注入。经发现TCO(例如,ITO)可有效地将金属表面改性。然而,用于将电极的金属表面改性的材料并不限于TCO,也可将其它的无机材料以及有机材料使用于相同的用途。当金属电极改性时,将界面改性层设置在有机堆叠3与金属电极之间。
相对透明的上方电极4可包括单一的相对透明导电层,或包含至少一相对透明导电层的多层结构。多层上方电极可包括经指数配合层(index-matching layer)覆盖的相对透明导电层,以增进光的输出。指数配合层为由具有可有效增进光输出的折射率的有机或无机材料所制成。指数配合层的材料的例子为三-(8-羟喹啉)铝(Alq3)、N,N’-二(萘-1-基)-N,N’-二苯基联苯胺(NPB)、MgF2、SiO2、MgO、ITO、ZnO、TiO2。在这种情况下,TCO层,例如ITO,同时提供作为相对透明的上方电极及用于增进光输出的指数配合层。指数配合层也提供作为阻隔层或包封层。指数配合层可视使用材料的反射率而具有1至500纳米的厚度。多层上方电极可进一步包括至少一形成于相对透明导电层与有机堆叠3之间的薄的电荷载体注入层。当多层上方电极为阴极时,电荷载体注入层为电子注入层。电子注入层之间适当的材料包括低功函数金属如稀土金属。当多层上方电极为阳极时,电荷载体注入层为电穴注入层。电穴注入层可由高功函数金属,例如,Au或Ag或TCO制成。各种无机材料、有机材料、或无机及有机材料的组合也可作为电穴注入层的材料,只要这类材料可有效供电穴注入用即可。电荷载体注入层可具有至多50纳米的厚度。单一相对透明导电层的厚度可为1至150纳米。多层电极结构的总厚度可为30纳米或更厚。
业内人士应该明白,可将各种材料及多层结构使用于上方电极4及下方电极2,只要其可提供有效率电荷载体注入所需要的横向导电性及界面性质即可。
有机堆叠3可为单层或包括复数个适用于光发射的有机次层的多层堆叠。有机堆叠3的有机材料包括技术中现有用于发光组件的电致发光及磷光有机材料。更具体地说,有机堆叠3可由现有用于PLED的电致发光及/或磷光聚合材料所制成。有机堆叠可为单层发射材料或包括电穴输送层、电子输送层及在电穴输送层和电子输送层之间的发射层的三层有机堆叠。将具有这种三层有机堆叠的组件称为双重异质结构。由于电穴是自阳极注入的,因而电穴输送层应紧邻于阳极。当使用电子输送层时,其应紧邻于阴极。有机堆叠3的总厚度可为50到1000纳米。
实施例图5显示根据本发明的顶部发射PLED的一实例。可挠性基板1由层合至25微米厚铝箔1b的125微米厚PET片材1a组成。将120纳米厚的透明ITO阳极2形成于可挠性基板1的塑料侧上。在ITO阳极2上是一个双层有机堆叠3,包括由聚亚苯基亚乙烯基(Ph-PPV)制成的80纳米厚发射层3a,及由聚亚乙基二氧噻吩(PEDOT)制成的30纳米厚电穴输送层3b。相对透明的阴极4为一多层结构,其自顶部起依次包括52纳米厚的三-(8-羟喹啉)铝(Alq3)层4a,15纳米厚的半透明Ag层4b,1.0纳米厚的钙(Ca)层4c,及0.6纳米厚的氟化锂(LiF)层4d。在这种情况下,Alq3提供作为指数配合层,Ag提供作为提供横向导电性的导电层,及LiF/Ca的组合提供作为电子注入器。多层阴极可经由热蒸发形成,因而避免溅镀沉积制造过程的损坏效应。铝箔1b作为PET基板的优异阻隔层,因而改良组件的寿命。可将本发明的这个实施例视为制造顶部发射PLED的方便且有效利用成本的方法。
本发明提供一种可经弯曲至实质程度而不会断裂的在不透明及可挠性基板上的可挠性OLED。因此,本发明的可挠性OLED具有顺应、弯曲、或卷曲成任何形状的能力。这种可挠性将使其可利用连续卷动加工制造显示器组件,因而提供用于大量生产的有效利用成本的方法。也可将本发明所揭示的可挠性基板使用于有机光检波器、有机薄膜电晶体、有机光电伏打电池、有机记忆体、有机积体电路、及其他需要具良好阻隔性质及机械可挠性的可挠性基板的有机或无机光电元件。
本发明的OLED具有各种用途,包括移动电话、PDA及其他便携装置、电脑监视器、数码音乐装置、摄影机、照明装置、装饰性装置及广告装置。
虽然本发明只就优选具体实施例作出描述,但业内人士应当清楚在不脱离本发明权利要求书的精神和范围而对本发明的修改。
权利要求
1.一种可挠性有机发光元件,包括可挠性基板;在所述可挠性基板上的下方电极层;至少半透明的上方电极层;在所述下方电极层与所述上方电极层之间的有机区域,其中当在所述下方电极层与所述上方电极层之间施加电压时,可产生电致发光,其中所述可挠性基板包括下列其中之一(i)层合至或经涂布金属层的塑料层;(ii)夹于两塑料层之间的金属层;(iii)金属箔。
2.如权利要求1所述的可挠性有机发光元件,其中该可挠性基板包括层合至或经涂布铝层的塑料层,该塑料层为设置于下方电极层与铝层之间。
3.如权利要求1所述的可挠性有机发光元件,其中所述的可挠性基板包括钢箔。
4.如权利要求1所述的可挠性有机发光元件,其进一步包括一在可挠性基板与下方电极层之间的绝缘层。
5.如权利要求4所述的可挠性有机发光元件,其中所述绝缘层为旋涂聚合层或介电层。
6.如权利要求3所述的可挠性有机发光元件,其进一步包括一在所述钢箔与下方电极层之间的绝缘层。
7.如权利要求1所述的可挠性有机发光元件,其中所述上方电极层是透明的。
8.如权利要求1所述的可挠性有机发光元件,其中所述上方电极层为半透明或透明阳极。
9.如权利要求1所述的可挠性有机发光元件,其中所述上方电极层为半透明或透明阴极。
10.如权利要求1所述的可挠性有机发光元件,其中所述上方电极层为包括至少一半透明或透明导电性薄膜的多层结构。
11.如权利要求10所述的可挠性有机发光元件,其中所述多层结构包括指数配合层(index-matching layer)及电荷载体注入层。
12.如权利要求11所述的可挠性有机发光元件,其中所述指数配合层包括具有可有效增进光输出的折射率的有机或无机材料。
13.如权利要求11所述的可挠性有机发光元件,其中所述指数配合层包括可有效增进光输出的有机和无机材料的组合。
14.如权利要求11所述的可挠性有机发光元件,其中所述多层结构为阳极,及所述电荷载体注入层为电穴注入层。
15.如权利要求14所述的可挠性有机发光元件,其中所述电穴注入层包括高功函数金属或透明导电性氧化物(TCO)。
16.如权利要求15所述的可挠性有机发光元件,其中所述高功函数金属为金或银。
17.如权利要求15所述的可挠性有机发光元件,其中所述透明导电性氧化物(TCO)为金属氧化物。
18.如权利要求15所述的可挠性有机发光元件,其中所述透明导电性氧化物(TCO)为选自由铟-锡氧化物、锌-铟氧化物、掺杂铝的氧化锌、Ga-In-Sn-O、SnO2、Zn-In-Sn-O及Ga-In-O组成的组。
19.如权利要求14所述的可挠性有机发光元件,其中所述电穴注入层包括可有效供电穴注入用的有机材料或可有效供电穴注入用的无机及有机材料的组合。
20.如权利要求14所述的可挠性有机发光元件,其中所述电穴注入层包括可有效供电穴注入用的无机材料或可有效供电穴注入的无机及有机材料的组合。
21.如权利要求11所述的可挠性有机发光元件,其中所述多层结构为阴极,及所述电荷载体注入层为电子注入层。
22.如权利要求21所述的可挠性有机发光元件,其中所述电子注入层包括低功函数金属。
23.如权利要求22所述的可挠性有机发光元件,其中所述低功函数金属为稀土金属。
24.如权利要求21所述的可挠性有机发光元件,其中所述指数配合层包括三-(8-羟喹啉)铝或N,N’-二(萘-1-基)-N,N’-二苯基联苯胺。
25.如权利要求21所述的可挠性有机发光元件,其中所述阴极包括银层,及所述电子注入层包括在氟化锂次层上方的钙次层,银层在钙层上形成。
26.如权利要求1所述的可挠性有机发光元件,其中将所述下方电极层及所述上方电极层的至少一者改性,以增加电荷载体注入。
27.如权利要求1所述的可挠性有机发光元件,其中所述有机区域包括(i)电穴输送层,及(ii)发射层或电子输送层。
28.如权利要求1所述的可挠性有机发光元件,其中所述有机区域包括(i)电穴输送层,(ii)发射层,及(iii)电子输送层。
全文摘要
本发明涉及一种形成在不透明可挠性基板上的有机发光二极管(OLED)。不透明可挠性基板由下列之一组成(1)层合到或经涂布金属层的塑料层;(2)夹于两塑料层之间的金属层,或(3)金属箔。当OLED形成于可挠性基板的金属表面上时,可将金属表面涂布绝缘层。绝缘层可为旋涂聚合物或介电层。可挠性基板中的金属作为阻隔层而使氧及蒸汽渗透到OLED减至最小。此外,OLED具有透明或半透明上方电极,以使光可发射通过上方电极。
文档编号H05B33/28GK1895003SQ200380110906
公开日2007年1月10日 申请日期2003年12月30日 优先权日2003年12月30日
发明者朱福荣, 王建树, 郝晓涛 申请人:新加坡科技研究局
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1