砷化镓单晶衬底及制造砷化镓单晶的方法

文档序号:8122357阅读:380来源:国知局

专利名称::砷化镓单晶衬底及制造砷化镓单晶的方法
技术领域
:本发明涉及用于集成电路和微波元件的GaAs(砷化镓)单晶衬底及使用该衬底的外延晶片。
背景技术
:半绝缘GaAs晶体通常是通过例如液封直拉法(LEC法)和垂直区熔法(VB法)等制造方法制造的。通过调节生长时的温度梯度和冷却速率,可以将GaAs单晶衬底的位错密度控制在1000-100000cm-2范围内。通过调节溶液的杂质浓度、Ga与As的比例及凝固后的温度滞后,已可以控制GaAs单晶衬底的碳浓度和EL2浓度。一般来说,这两个浓度即碳浓度和EL2浓度被认为是控制电阻率的因素。碳浓度在0.9-10.0xl0"cm3和EL2的浓度在12.0-16.0xl015cm,,已制造出电阻率约为0.1-2.0xl08Qcm的衬底。参考文献1(T.Kawase等人,第九届半导体和绝缘材料会议的会刊,Toulouse,France(1996)275-278)7>开了通过VB法制造的具有低位错密度的GaAs单晶衬底的例子。该GaAs单晶衬底的碳浓度为7-8xl015cnT3,热处理后的EL2浓度为1.3x1016cm-3,电阻率为3.5-6.5xl07Qcm,平面平均位错密度为1000-2000citT2,光弹性分析测得的平均残余应变为0.2-0.3xl0一5。人们预计常规GaAs单晶村底可以作为需要高速工作和低功耗的电子器件的衬底材料。用于电子器件的衬底中,具有生长于其上的外延薄膜层用作器件工作层的衬底被称为"外延晶片"。在制造外延晶片时,在生长外延薄膜层时,必须将衬底加热到称作生长温度的温度,并使衬底表面与液相或气相的Ga、As和少量称作掺杂剂的杂质接触。对具有层叠于衬底上的多个外延层的外延晶片进行表面腐蚀、淀积用于电极的金属、并加工成芯片,从而可以形成电子器件。这样形成的电子器件的基本特征是对电压输入信号的放大。特别是,用于卫星通信等的电子器件需要高输出和高电压下的可操作性。因此,特别需要具有优异的耐压特性的GaAs单晶衬底。然而,常规单晶衬底一般具有低碳浓度,因此不能耐受温度升高以形成实际的外延层时的热应力,所以称为滑移位错的台阶形成在衬底表面上。当在台阶上制造器件时,不可能得到所需要的器件特性,因此生产成品率极大下降。另外,该衬底电阻率低和在能带中具有大量EL2之类的深能级,所以只能提供具有低耐压性的器件。
发明内容本发明的目的是解决上述问题,并提供一种GaAs单晶衬底和使用该村底的外延晶片,可以抑制生长外延层时滑移位错的产生,并能够提高器件的耐压特性。为了达到上述目的进行了不同的实验,本发明人发现,为了防止滑移位错的产生并改善器件的耐压特性,重要的是控制硼浓度,基于此发现产生了本发明。如以下所述,本发明的特征在于限定GaAs单晶衬底中的合适硼浓度。根据本发明的一个方案,提供GaAs单晶衬底,该衬底平面平均位错最大为2x10cirT2,碳浓度为2.5-20.0x1015cnT3,硼浓度为2.0-20.0x1016cm3,除碳和硼外的杂质浓度最多为lxl017cnT3,EL2浓度为5.0-10.0xl015cm-3,电阻率为1.0-5.0xl08Qcm,光弹性分析测得的平均残余应变最大为l.Oxl(T5。通过调节晶体生长时原材料熔融物中的碳浓度和硼浓度,可以将碳浓度、硼浓度及除碳和硼外的杂质浓度分别调节到2.5-20.0x1015cm3,2.0-20.0xl016cm3,及最多lxl017cnT3。通过调节Ga与As的比例及晶体凝固后的温度滞后,可以将平面平均位错密度和EL2浓度及电阻率分别调节到2xl04cm—2,5.0画10.0x1015cm3,1.0-5.0xl08ncm。另外,通过控制凝固后的温度滞后,还可以将光弹性分析测得的平均残余应变(|Sr-St|)抑制到最多l.OxlOcnT5。在用本发明的GaAs单晶衬底作外延晶片的衬底时,可以抑制温度升高时产生滑移位错,是因为碳和硼杂质浓度的作用,和温度滞后控制实现的低残余应变及位错密度的缘故。结果,可以极大地提高器件的生产成品率。另外,在EL2浓度保持低,而硼浓度提高时,可以实现高电阻。结杲,在制造器件时,可以改善耐压特性。最好是,本发明的GaAs单晶衬底的特征还在于利用热激励电流法探测到的深能级(0.31土0.05eV激活能)至少为lxl015cm3。通过调节Ga和As的比例,并控制晶体凝固后的温度滞后,可以将利用热激励电流法探测到的深能级(0.31土0.05eV激活能)调节到至少为lxl015cm3。以此方式,通过控制原材料熔融物中的杂质的浓度,及控制凝固后的温度滞后,可以制造满足本发明特性的GaAs单晶衬底。另外,在本发明的GaAs单晶衬底用作外延晶片的衬底时,由于利用热激励电流法探测到的深能级(激活能0.31士0.05eV)高,所以可以得到较高的电阻。结果,可以进一步改善制造器件时的耐压特性。根据本发明的另一方案,提供外延晶片,该晶片具有外延生长于上述本发明的GaAs单晶衬底上厚至少为O.l微米的薄膜。通过以下结合附图对本发明的详细说明,可以更清楚本发明的上述和其它目的、特点、方案及优点。图l是表示热处理后热激励电流波镨的曲线图。图2是展示所制造的作为本发明一个例子的FET的结构的剖面图。具体实施方式例子通过VB法生长直径100mm、直体长度为100mm的GaAs单晶样品。除原材料GaAs外,以ppm量级变化的量加入碳和硼,与原材料GaAs—起熔融,在温度梯度为2-10°C/cm的热环境中生长晶体。晶体生长后,以10-100。C/小时的速率冷却样品。此后,在热处理炉中100-IOO(TC的温度下热处理晶体才羊品。以此方式得到的晶体样品的特征如表1-3所示。根据预定波长的光吸收估算碳浓度和EL2浓度。利用辉光放电质镨仪(GDMS)评估除碳外的杂质浓度,利用霍尔电阻率测量法(范德堡法)评估电阻率,运用利用红外光的光弹性分析评估残余应变,并利用热激励电流法评估深能级。在热激励电流法中,用波长为830nm的单色光照射在黑暗中冷却到80K的样品,直到得到的光电流达到稳定态,此后,再在黑暗中加热样品,并获取电信号。根据温度与光电增益系数间的关系归一化载流子浓度和温度与寿命的关系,发现激活能为0.31eV的能级浓度。图1是表示热处理后热激励电流波谱的曲线图,其中横轴表示温度(K),纵轴表示热激励电流(A)。参见图1,该例子中,0.31eV能级的浓度为3.8x10"cnT3。关于滑移位错的数量,利用MBE炉,以100。C/小时的速率加热样品到600°C,从而外延生长厚为1微米的GaAs层。生长后,以相同的速率冷却样品,检测取出的衬底表面上的台阶,计算每个衬底上滑移位错的数量。关于击穿电压(Vbd),利用由MBE法生长了晶体后的器件处理制造每个都具有图2所示结构的FET,测量栅和漏间反偏态时电流开始流动的电压。<table>tableseeoriginaldocumentpage9</column></row><table>表2<table>tableseeoriginaldocumentpage10</column></row><table>表3<table>tableseeoriginaldocumentpage11</column></row><table>参见表1-3,样品l-12是一种GaAs单晶衬底,具有最大为2xl04cm-2的平面平均位错密度,2.5-20.0x1015cm-3的碳浓度,2.0-20.0xl016citT3的硼浓度,最多为lxl017cm'3的除碳和硼外的杂质浓度,5.0-10.0xl015cnT3的EL2浓度,1.0-5.0xl08Qcm的电阻率,及最大为1.0xl0-s的光弹性分析测得的平均残余应变。具体说,样品1-9是还满足利用热激励电流法探测到的深能级(0.31士0.05eV的激活能)至少为lxl0"cm-3的GaAs单晶村底。与样品10-12相比,这些样品一般具有较高的Vbd值,可以看出,进一步改善了制造器件时的耐压特性。样品13-21是比较例的GaAs单晶衬底。更具体说,样品13具有本发明限定范围内的碳浓度、硼浓度和电阻率值。样品14具有本发明限定范围内的EL2浓度和0.31eV能级深浓度。样品15具有本发明限定范围内的硼浓度。样品16具有本发明限定范围内的位错密度、碳浓度、硼浓度、EL2浓度、电阻率、平均残余应变和0.31eV能级浓度。样品17具有本发明限定范围内的硼浓度和电阻率。样品18-21具有本发明限定范围内的硼浓度。可以看出,比较例的GaAs单晶衬底一般具有较大数量的滑移位错和较小的Vbd值。尽管具体介绍和展示了本发明,但应清楚地理解,这只是例示性的,并非对发明的限制,本发明的精神和范围只由所附权利要求书限定。权利要求1.一种GaAs单晶衬底,具有最大为2×104cm-2的平面平均位错密度,2.5-20.0×1015cm-3的碳浓度,2.0-20.0×1016cm-3的硼浓度,最多为1×1017cm-3的除碳和硼外的杂质浓度,5.0-10.0×1015cm-3的EL2浓度,1.0-5.0×108Ωcm的电阻率,及最大为1.0×10-5的光弹性分析测得的平均残余应变,其中,所述GaAs单晶衬底是通过以2-10℃/cm的温度梯度生长、然后以10-100℃/小时的速率冷却而获得的。2.根据权利要求1的GaAs单晶村底,其中,所述GaAs单晶衬底是通过进一步经受100-1000。C的温度范围内的热处理而获得的。3.根据权利要求l或2的GaAs单晶衬底,其特征在于利用热激励电流法探测到的深能级(0.31士0.05eV的激活能)至少为lxl015-3cmo4.一种制造GaAs单晶的方法,包括如下步骤通过^吏碳和硼与GaAs原材料一起熔融而形成熔融物;以2-10。C/cm的温度梯度由所述熔融物生长GaAs单晶;以及以10-100。C/小时的速率冷却被生长的所述GaAs单晶。5.根据权利要求4的制造GaAs单晶的方法,还包括在所述冷却步骤之后在100-1000。C的温度范围内对被冷却的所述GaAs单晶进行热处理的步骤。6.—种GaAs单晶衬底,具有最大为2xl0、m^的平面平均位错密度,15.0-20.0xl015cm3的碳浓度和2.0-20.0xl016cm3的硼浓度,或者,2.5-20.0xl015cm3的碳浓度和14.0-20.0xl016cm3的硼浓度,最多为lxlO"ciT^的除碳和硼外的杂质浓度,5.0画10.0x1015cm-3的EL2浓度,l,0-5.0xl08Qcm的电阻率,及最大为l.Oxl(T5的光弹性分析测得的平均残余应变。全文摘要可以得到一种GaAs单晶衬底及使用该单晶衬底的外延晶片,可以抑制外延层生长时产生滑移位错,能够改善器件的耐压特性。GaAs单晶衬底具有最大为2×10<sup>4</sup>cm<sup>-2</sup>的平面平均位错密度,2.5-20.0×10<sup>15</sup>cm<sup>-3</sup>的碳浓度,2.0-20.0×10<sup>16</sup>cm<sup>-3</sup>的硼浓度,最多为1×10<sup>17</sup>cm<sup>-3</sup>的除碳和硼外的杂质浓度,5.0-10.0×10<sup>15</sup>cm<sup>-3</sup>的EL2浓度,1.0-5.0×10<sup>8</sup>Ωcm的电阻率,及最大为1.0×10<sup>-5</sup>的光弹性分析测得的平均残余应变。文档编号C30B11/00GK101451265SQ200810169408公开日2009年6月10日申请日期1999年8月18日优先权日1998年9月28日发明者中井龙资,羽木良明申请人:住友电气工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1