可以降解聚乳酸的菌株和其变种及其用途的制作方法

文档序号:494685阅读:472来源:国知局
专利名称:可以降解聚乳酸的菌株和其变种及其用途的制作方法
技术领域
本发明涉及能够降解聚乳酸的菌株和这些菌株的变种,并涉及其用途。
背景技术
聚合物材料,通常也称为“塑料”,由于其多价的物理化学性质和其低生产成本而在许多领域中应用。然而,其在最近数十年内的密集应用连同其抗降解性,目前已在与以下相关的废物处理中造成主要问题截止2010,预计全世界消耗的塑料将达一亿八千万到两亿五千八百万公吨。
尽管在废物管理中付出相当大的努力,如开发再循环回路,塑料的处理仍然造成许多问题,且焚化或垃圾掩埋法通常仍然是其最后消除的唯一的备选方案。最近几年内,新一代材料在市场上出现“可生物降解的”塑料(生态聚合物(ecopolymer)或生物塑料)。这是一系列相当特别的材料,其制品适于其通过环境微生物处理和降解。不幸的是,市场上现有的生态聚合物仅在通常不是自然环境中存在的极端的有利条件下才是可降解的。生态聚合物中,聚乳酸(PLA)是最有前途的一种它是天然来源,且由于建立大规模生产而在过去几年中具有商业竞争性。此外,其物理化学性质可以允许其用于各种应用。PLA被认为既可生物降解又生物相容的,这尤其可以使用其来制备与活组织接触的材料(即,用于生物医学用途,如治疗目的的分子的植入、缝合、包封等)。PLA合成是多步骤过程,其以乳酸生产开始,以单体聚合结束。由于基础单体(乳酸)通过可再生资源(碳水化合物)的发酵获得,全世界认为PLA是未来“可持续发展”的材料。此外,尽管只有30%的工业可利用乳酸用于其生产,其在2006年的消耗为约60000公吨每年。因此这种聚合物具有相当大的开发潜力。然而,尽管具有所有这些性质,组成PLA的乳酸单体之间的酯键的稳定性使得这种材料的可降解性降低。事实上,PLA仅在工业堆肥条件下在60°C或以上的温度时才是完全可降解的。在该过程期间,PLA聚合物的降解是非生物降解(通过单体之间的酯键的简单水解,其在加热条件下加速)和第二步骤中通过堆肥微生物的生物降解(其水解残余低聚物直到最后的矿化步骤(整体构成“生物”降解))的组合。因为采用这种温度在能量方面是昂贵的,处理这种废物的常规备选方案仍然是焚化或垃圾掩埋法,其从环境观点而言特别有害。已经预期采用纯化微生物或酶来改进PLA生物降解。以下研究报导了通过以下微生物降解低聚物(分子量约IOOODa):串珠镰刀菌(Fusarium moniIiforme)和娄地干酪青霉菌(Penicillium roqueforti) (Torres, A 等,Screening of microorganismsfor biodegradation of poly(lactic-acid)and lactic acid-containing polymers,voI 62, 2393-2397);放线菌,如拟无枝酸菌(Amycolatopsis sp.) (Pranamuda, H.等,1997Polylactide Degradation by an Amycolatopsis sp, vol. 63,1637-1640);外外安德糖毛发菌(Saccharothrix waywayandensis) (Jarerat, A.,和 Tokiwa,Y. , 2003, BiotechnologyLetters 25,401-404);荒漠拟抱囊菌(Kibdelosporangium aridum) (Jarerat, A.等,2003, Biotechnology Letters 25,2035-2038)或细菌如短芽抱杆菌(Bacillus brevis)(Tomita, K.,1999, Journal of Bioscience and Bioengineering 87,752-755)或角军淀粉类芽抱杆菌(Paenibacillus amylolyticus) (Teeraphatpornchai, T.等,2003,Biotechnology Letters 25,23-28)。其他研究描述了通过属于葡萄球菌属或属于链霉菌属的微生物降解PLA (US5 925 556和US 6 066 492)。此外,已经证实通过酯酶类的酶(如德勒梅根霉属Rhizopus deIemer的脂肪酶)降解低分子量PLA(约2000Da) (Fukuzaki,H. , 1989, European Polymer Journal 25,1019-1026)。隐球酵母 S2 酵母(Cryptococcussp. S2 yeast)的角质酶样酶也能水解 PLA(Masaki, K.,等人,2005, Cutinase-Like Enzymefrom the Yeast Cryptococcus sp. Strain S~2 Hydrolyzes Polylactic Acid andOtherBiodegradable Plastics 71,7548-7550)。
最后,研究表明某些商业脂肪酶,特别是来自产碱杆菌的脂肪酶PL,允许在20天内完全降解PLA,但需要在特定温度和pH条件下(55°C,pH 8. 5) (Hoshino, A.和Isono,Y. (2002))。脂族聚酯膜通过商售脂肪酶的降解可特别参考聚(L-丙交酯)膜通过来源于产碱杆菌的脂肪酶PL迅速且完全降解(Biodegradation 13,141-147)。以相同方式,已经测试了商业蛋白酶的这种能力。已经发现其中一些,特别是来源于杆菌属的碱性蛋白酶,具体为Savinase 16. OL是有效的。然而,这些酶中没有一个能够降解工业PLA薄膜(由于实验薄膜具有无定形表面,它们比结构更加结晶态的工业薄膜对降解更加敏感)(Oda,Y.等,2000, Degradation of Polylactide by Commercial Proteases. Journal of Polymersand the Environment 8,29-32)。最后,最常用于研究PLA生物降解的商业酶是白色念球菌(Tritirachium album)(Oda,Y.等,2000,Degradation of Polylactide by CommercialProteases. Journal of Polymers and the Environment 8,29-32)。然而,若干限制与这些方法有关,且它们中没有一个是工业发展的主题。首先,在很多情况下,仅使用纯化的酶才能观察到明显的PLA降解,这意味着通常与共同目的的用途不一致的非常高的生产成本和相对适中的增加值,例如园艺壶。第二点是所使用微生物大多数是实验室菌株,或从非常规环境中分离的菌株。因此,所描述的大多数酶活性处于自然环境中的亚最佳条件。最后,所测试的大多数微生物和酶仅能够水解低分子量低聚物,这对于其用于使用大聚合物的工业过程是相当大的限制。因此实际需要新的PLA降解手段。发明简述以其信誉,发明人已经分离了属于苍白杆菌(Ochrobactrum)属、具有令人惊讶的聚乳酸降解特性的菌株。因此,本发明的主题是苍白杆菌属菌株,其特征在于所述菌株能够降解聚乳酸。本发明的主题也是根据布达佩斯条约于2009年7月23日以法国国家科学研究中心的名义以保藏号CNCM 1-4212保藏在法国国家微生物菌种保藏中心的苍白杆菌属菌株或所述菌株的变种,所述变种能够降解聚乳酸。本发明也涉及微生物混合物,其特征在于其包含本发明菌株或所述菌株的变种。本发明的主题也是包含本发明菌株或所述菌株的变种或本发明微生物混合物的产品,其特征在于所述产物为冻干粉末形式、含有所述冻干粉末和任选营养素的片剂形式或水溶液形式。
本发明也涉及能降解聚乳酸的酶,其特征在于其由本发明菌株或所述菌株的变种产生。本发明也涉及本发明菌株或所述菌株的变种或本发明所述酶在降解聚乳酸中的用途。本发明也涉及聚乳酸降解方法,其特征在于其包括在于使需要降解的聚乳酸与本发明菌株或所述菌株的变种接触,或与本发明能降解聚乳酸的酶接触的步骤。定义根据本发明,术语“变种”是指-本发明菌株的天然变种,S卩,在选择培养基中培养后由本发明菌株自发获得的变种。因此,天然变种在没有操纵子的任何遗传操纵,且仅在合适的培养基中通过菌株的自然突变和该突变菌株的选择而获得,或-本发明菌株的变种,其基因组中含有至少一个突变,所述突变由遗传工程诱导,例如通过位点-定向诱变或随机诱变诱导。例如,所述随机诱变可采用诱变剂例如辐射(UV射线、电离辐射、热)或化合物(亚硝酸、甲烷磺酸乙酯、N-甲基-N’ -硝基-N-亚硝基胍、N-乙基-N-亚硝基脲、吖啶橙、原黄素等)。术语“突变”是指本发明菌株的基因组中至少一个核苷酸的增加、缺失或替换。根据本发明,术语“ CE培养基”或“堆肥提取物”是指用于本发明细菌及其变种的培养基,其根据以下方法制备IL的CE培养基的制备方法将IOOg堆肥浸在适量的IL超纯水(来自Mi 11 ipore的Mi 11 iQ系统),搅拌16h (过夜)。然后使混合物以4000g离心Ih,然后采用纤维过滤器(Whatman, 4级,孔20-25 μ m)
进行澄清过滤。为了获得固体(或“琼脂”)CE培养基,可以以1.5% (w/v)的量添加琼脂。然后使所述培养基在120°C (I巴)下高压灭菌20分钟。根据本发明,术语“基本矿物培养基”是指用于本发明细菌及其变种的培养基,含有-10mg/L FeSO4. 7H20,-200mg/L MgSO4. 7H20,-lg/L (NH4)2SO4,-20mg/L CaCl2. 2H20,-100mg/L NaCl,-0. 5mg/L Na2MoO4. 2H20,-0. 5mg/L Na2WO4,-0. 5mg/L MnSO4,-100mg/L酵母提取物,-10. 7mM Tris-HCl,-pH 8-超纯水(来自Millipore的MilliQ系统),适量
然后使所述培养基在120°C (I巴)下高压灭菌20分钟。根据本发明,术语“ISP2培养基”是指用于本发明细菌及其变种的培养基,含有-酵母提取物4g/L,-麦芽提取物10g/L,-葡萄糖4g/L,-超纯水(来自Millipore的MilliQ系统),适量然后使所述培养基在120°C (I巴)下高压灭菌20分钟。
发明详述本发明的主题是苍白杆菌属菌株,其特征在于所述菌株能够降解聚乳酸。本发明的主题尤其是根据布达佩斯条约于2009年7月23日以法国国家科学研究中心(3 rue Michel Ange, 75794 Paris Cedex 16)的名义以保藏号CNCM 1-4212保藏在法国国家微生物菌种保藏中心(CNCM, Institut Pasteur, 25 rue du docteur Roux, F-75724Paris Cedex 15)的苍白杆菌属菌株或所述菌株的变种,所述变种能够降解聚乳酸。事实上,发明人成功筛选并鉴定来自园林堆肥、能降解聚乳酸(PLA)的菌株。已经可以将该菌株归为苍白杆菌属,因此其被称为苍白杆菌37S(以保藏号CNCMI-4212保藏)。苍白杆菌属已经由于多种不同污染的环境的生物修复特性而被分离菌株能够降解溶剂,例如甲基叔丁基醚;芳族化合物,尤其是某些酚衍生物,如壬基酚或2,4,6-三溴酚;有机氯化化合物,如杀虫剂硫丹等。此外,一些分离物显示螯合重金属和降低各种形式的铬酸盐和重铬酸盐、降解氯乙烯(塑料PVC基础的单体)或产生可以增加烃生物降解的乳化胞外多糖的能力。然而,据发明人所知,没有描述苍白杆菌菌株能降解PLA的研究。本发明苍白杆菌属菌株的一个重要优点是它们能够降解简单培养基中固体状态和液体状态下的高分子量PLA聚合物(通常为110000至120000Da)。而且,发明人证实了当苍白杆菌37S菌株(CNCMI-4212)在CE培养基(堆肥提取物)上培养时,其具有降解PLA的性质,所述CE培养基通过简单地将堆肥浸在水中来制备。因此,所有这些观察结果表明本发明苍白杆菌属菌株,尤其是苍白杆菌37S菌株(CNCMI-4212)及其变种是针对特别在工业堆肥条件下改进PLA降解的许多应用的优异候选者。本发明这些菌株及其变种降解聚乳酸的能力可以通过本领域技术人员已知的任何方法来评估。具体而言,本发明菌株及其变种降解聚乳酸的能力通常可以通过包含以下步骤的测试A来评估I)用划线法(streaking method),采用含有IO8到109CFU/mL的需要评估降解聚乳酸能力的所述菌株或所述变种的补充有lg/L乳化聚乳酸的基本矿物琼脂培养基中的液体培养物接种含有相同培养基的Petri培养皿,2)使在步骤⑴中接种的Petri培养皿在37°C下在湿润的孵育箱(86_88%湿度)中培养22天,和3)检测Petri培养皿上生长的菌落周围透明区域的可能存在,所述透明区域显示所测试的所述菌株或所述变种降解聚乳酸的能力。“划线法”是本领域熟知的。它通常在于采用预先浸在细菌的液体培养物中的钼环接种Petri培养皿,并在琼脂培养基表面以来回移动方式进行划线。
为了获得用于本发明测试A的步骤I的补充聚乳酸的基本矿物培养基,将lg/L的分子量为110000至120000Da的聚乳酸在本发明基本矿物培养基中乳化。所述乳剂以下列方式制备首先将粉末形式的PLA(分子量为110000至120000Da的聚合物,Valagro,Poitiers, France)溶解在二氯甲烷中(50g/L的二氯甲烷),然后以最终浓度为lg/L添加至目标培养基中。然后通过采用Ultraturax 以最大速度在30到40秒将PLA分散在培养基中来匀化混合物。然后培养基立即进行高压灭菌(20分钟,120°C,I巴),以免形成聚集。最后,为获得琼脂培养基,将I. 5% (w/v)琼脂加入所述补充有聚乳酸的基本矿物培养基中。然后将所述补充有lg/L乳化聚乳酸的基本矿物培养基倒入Petri培养皿。
本发明也涉及微生物混合物,其特征在于其包含本发明菌株或所述菌株的变种。尤其是,所述微生物混合物可以包含具有降解聚乳酸特性的其他微生物。通常,这些微生物是细菌或真菌。更具体地,这些微生物可以选自属于厚壁菌门(Firmus cutis)的细菌,其具有降解低分子量PLA聚合物(小于或等于20000Da)的特性,如Mayumi等所描述(Mayumi,D.等(2008), Applied Microbiology and Biotechnology 79,743-750)。细菌的其他实例是杆菌类细菌,尤其是腊样芽胞杆菌菌株(Bacillus cereusspp.)或克劳氏芽孢杆菌(Bacillus clausii spp.)。本发明菌株及其变种以及本发明微生物混合物通常以变化的形式制备。因此,本发明也涉及包含本发明菌株或所述菌株的变种或本发明微生物混合物的产品(或组合物),其特征在于所述产品(或组合物)为冻干粉末形式、含有所述冻干粉末和任选营养素(例如维生素、矿物盐等)的片剂形式或水溶液形式。通常,所述水溶液通过使至少一种本发明菌株或其变种或任选地本发明微生物混合物在合适的培养基,例如本发明基本矿物培养基或本发明CE培养基(堆肥提取物)中培养来获得。本发明也涉及能降解聚乳酸的酶,其特征在于其由本发明菌株或所述菌株的变种产生。通常,该酶或PLA解聚酶可以通过克隆编码所述酶的基因而鉴定。通过克隆鉴定所述酶尤其可以根据由Mayumi,D.等,2008, Applied Microbiology and Biotechnology 79,743-750中所述修改的方法来进行。通常,通过克隆编码所述酶的基因而鉴定所述酶包括以下步骤I)提取由在完全ISP2培养基中培养的苍白杆菌37S菌株(以保藏号CNCMI-4212保藏)的培养物纯化的DNA,然后采用Sau3AI酶部分消化;2)然后将获得的2至4kb片断预先用BamHI酶消化后克隆进pUC18质粒(Toyobo,Osaka, Japan);3)将重组质粒通过转化而插入大肠杆菌DH5 α受体菌株;4)将40000个克隆的转化的大肠杆菌DH5a细菌(统计学上覆盖苍白杆菌37S菌株的整个基因组)以每个培养皿约500个克隆的比例涂在含有用含有lg/L乳化PLA (分子量为 110000至1200000&)的培养基和 I. 5%琼脂(从Akutsu-Shigeno Y.等,2003,vol. 69,2498-2504调整的培养基)覆盖的LB(Luria-Bertani)琼脂培养基的Petri培养皿上;5)从在Petri培养皿上形成透明区域的细菌中提取质粒;6)最终编码所述酶(PLA解聚酶)的基因通过对插入物测序并与已知的酶序列(BLAST)比较来鉴定。
为帮助随后的酶纯化步骤,通常在克隆pET_24a(+)型的细菌表达质粒(Novagen,Madison, USA)中的目标基因后引入对应于His.Tag 单元的标签。然后可在一步中通过使粗的酶提取物(转化菌株超声后获得)通过镍柱(Pharmacia, Biotech, Upsala, Sweden)而纯化酶。然后如 Teeraphatpomchai 等(2003, Biotechnology Letters, 25, 23-28)所述通过测量PLA乳剂的浊度降低来测定从柱中洗脱的馏分的PLA解聚酶活性。然后合并显示PLA解聚酶活性的组分,然后通过超速离心(YMlOmembranes ;Millipore, Bedford, USA)浓缩。
本发明也涉及本发明菌株或所述菌株的变种或本发明所述酶在降解聚乳酸中的用途。本发明也涉及降解聚乳酸的方法,其特征在于其包括在于使需要降解的聚乳酸与本发明菌株或所述菌株的变种接触,或与本发明能降解聚乳酸的酶接触的步骤。在一个具体实施方式
中,所述使需要降解的聚乳酸与本发明菌株或所述菌株的变种接触的步骤在于用本发明菌株或所述菌株的变种接种所述需要降解的聚乳酸。因此本发明方法特别适于在含有聚乳酸的介质或在含有完全或部分由聚乳酸组成的材料的介质中降解聚乳酸,例如通常为家庭或工业废物的混合物、有机废物混合物,尤其是堆肥、液体肥料、活性污泥等。因此本发明用于降解聚乳酸的方法具有许多应用,特别用于处理含有聚乳酸的废物。而且,与常规焚化方法不同,本发明用于降解聚乳酸的方法具有不产生温室气体的优点。此外,本发明方法的主要优点是通过本发明细菌及其变种或通过本发明酶将PLA转化为可收回的有机物质,尤其是转化为有机酸。通常,本发明菌株或其变种降解的聚乳酸或PLA选自-L构型乳酸的均聚物,-D构型乳酸的均聚物,-L构型乳酸和D构型乳酸的共聚物,或-至少任何一种上述聚合物与另一种聚合物的共聚物,所述乳酸占所述共聚物组成的至少90重量%。更典型地,本发明菌株或其变种降解的聚乳酸或PLA也包含如上定义的完全或部分由聚乳酸组成的材料。根据本发明,部分由聚乳酸组成的材料通常是如上定义的部分由聚乳酸组成和部分由至少一种其他成分(例如特别是至少一种其他的生物塑料(生态聚合物)或非生物降解塑料)组成的材料。在一种具体实施方式
中,所述本发明菌株或其变种降解的聚乳酸是分子量小于140000Da,尤其为2000至HOOOODa的聚乳酸。更特别地,所述通过本发明菌株或其变种降解的聚乳酸的分子量为100000至130000Da,甚至更特别地为110000至120000Da。本发明的其他方面和优点将在以下实施例中描述,其应认为是作为例证而不限制本发明的范围。
具体实施例方式I. CNCM 1-4212 菌株的分离如下从园林堆肥中分离能降解PLA的菌株
-将一片PLA(85mmX 120mmX Imm ;分子量为 110 000 到 120 OOODa, Valagro,Poitiers,France)在简单的园林堆肥(Iteuil, Vienne d6partement [Vienne 县],France)培养45天。然后通过采用金属抹刀刮下在PLA片的表面上生长的生物材料(生物薄膜);-将IOOmg生物薄膜重悬于ImL磷酸盐缓冲液(O.1M,pH 7)中。然后将250 μ L的所述悬浮液接种于包含如以下3. 2. 2段所述制备的lg/L的PLA(分子量为110000至120000Da的聚合物)乳剂的液体CE培养基。所得的预培养物在振摇下(200rpm)在37°C下培养3天;-然后所述CE液体培养基+PLA中菌株的富集(倍增)步骤通过在相同的条件下(振摇下在37°C下培养3天)在5mL相同培养基中的两次连续的再接种(KT1稀释度)来进行;
-最后,移除最终培养物的等分试样以获得灭菌MilliQ水中稀释度为10_5的悬浮液。然后将100 μ L的所述稀释液涂在包含如以下3. I. 2段所描述制备的lg/L的PLA (分子量为110000至120000Da的聚合物)乳剂的CE琼脂培养基中。然后将培养皿在37°C下在培育箱中培养22天。在该培养基中,分离被反映降解PLA的透明区域围绕的菌落。将该菌株回收,重悬并采用划线法涂在相同培养基中。2. CNCM 1-4212 菌株的鉴定首先在各种液体完全培养基中测试分离菌株(参见§ I.)的生长。结果表明,所述菌株在ISP2培养基(酵母提取物4g/L、麦芽提取物10g/L、葡萄糖4g/L、纯水适量)中强烈生长。根据 SchSfer和 Muyzer 所描述(ScMfer,,H. , and Muyzer, G. (2001)Methodsin Microbiology, Vol. 30, ed. J. H. Paul, London Academic Press, 425-468)从所述培养基中的液体培养物中提取总DNA。然后采用特异性引物(SEQ ID NO I和SEQ ID NO 2)扩增编码16S RNA的一部分基因并测序。用于鉴定的引物序列如下(MuyzerG.等(1993), Appl. Environ. Microbiol. 59,695-700)34IF-GC (SEQ TD NO I)5,CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCCCGCCCGCCTACGGGAGGCAGCAG3,和907R (SEQ ID NO 2)5’ CCGTCAATTCCTTTRAGTTT3’将所获得的序列与资料库(Blast, ch.embnet.org)比较可以在产生系统演化树后将菌株归为苍白杆菌属。因此发明人用以下名称表示CNCM 1-4212菌株苍白杆菌37S。3.聚乳酸降解3. I.在琼脂培养基中在补充有PLA的多种琼脂培养基上测试CNCM 1-4212菌株降解分子量为110000至120000Da的聚乳酸的能力。3. I. I.补充分子量为110000至120000Da的聚乳酸的基本矿物琼脂培养基为了获得补充聚乳酸的所述基本矿物培养基,在本发明基本矿物培养基中乳化lg/L分子量为110000至120000Da的聚乳酸。所述乳剂以下列方式制备
首先将粉末形式的PLA(分子量为110000至120000Da的聚合物,Valagro,Poitiers,France)溶于二氯甲烧(50g/L的二氯甲烧)中,然后以最终浓度为lg/L添加至目标培养基中。然后通过采用Ultraturax 以最大速度在30到40秒将pla分散在培养基中来匀化混合物。然后培养基立即进行高压灭菌(20分钟,120°C,I巴),以免形成聚集。最后,为获得琼脂培养基,将1.5% (w/v)琼脂加入所述补充有聚乳酸的基本矿物培养基中。然后将所述补充有lg/L乳化聚乳酸的基本矿物琼脂培养基倒入Petri培养皿。
3. I. 2.补充分子量为110000至120000Da的聚乳酸的CE琼脂培养基为了获得补充有聚乳酸的所述CE培养基,如3. I. I.所描述在本发明CE培养基中乳化lg/L分子量为110000至120000Da的聚乳酸。为了获得琼脂培养基,将I. 5% (w/v)琼脂加入所述补充有聚乳酸的所述CE培养基中,然后将其倒入Petri培养皿。3. I. 3.接种在如3. I. I.和3. I. 2.段所描述制备的Petri培养皿中通过划线法采用含有IO8到109CFU/mL的CNCM 1-4212菌株的液体培养物(CE培养基或基本矿物培养基)接种。然后将培养皿在37 °C下在培育箱中培养22天。3. 1.4.观察结果通过围绕本发明菌株的菌落的清晰透明区域随时间(接种后5到22天)的出现来评价PLA降解。培养22天后,不管所使用的培养基,本发明菌株的菌落被反映PLA降解的清晰透明区域包围。然而,与在补充有聚乳酸的CE琼脂培养基上所观察到的相比较,在补充有聚乳酸的基本矿物琼脂培养基上培养可以促进PLA降解。3. 2.在液体培养基中还在液体培养基中评价CNCM 1-4212菌株降解分子量为110000至120000Da的聚乳酸的能力。3. 2. I.补充有分子量为110000至120000Da的聚乳酸的基本矿物液体培养基为了获得补充有聚乳酸的CE液体培养基,如3. I. I.段所描述,在本发明CE培养基中乳化lg/L分子量为110000至120000Da的聚乳酸。3. 2. 3.接种在如3. 2. I和3. 2. 2段所描述制备的200mL CE培养基或基本矿物培养基中用大约5 X IO9CFU的CNCM 1-4212菌株接种或不接种(对照),然后以150rpm振摇下在37°C下在培养30天。3. 2. 4.观察结果一旦培养终止(D+30),用二氯甲烷从培养基中萃取PLA。更具体地,将200mL 二氯甲烷添加至200mL培养物中。通过强烈搅拌获得均匀相后,混合物倾析10分钟,然后移除上相并将所述相转移到IL玻璃烧杯中。溶剂完全蒸发后(通风柜(Sorbonne)中放置3天),通过烧杯中棕色沉淀的出现观察剩余PLA(不降解)。结果表明,当CNCM 1-4212菌株存在时,剩余PLA的沉淀明显降低。不管什么培养基,均获得相同结果。这些结果表明CNCM 1-4212菌株能够降解液体状态的高分子量PLA聚合物,尤其是在由堆肥提取物组成的简单培养基中,即CE培养基中。
本发明的整个说明书提到现有技术的文献参考资料。这些参考资料的内容以引用 方式合并入本发明说明书中。
权利要求
1.苍白杆菌属菌株,其特征在于所述菌株能够降解聚乳酸。
2.根据布达佩斯条约于2009年7月23日以法国国家科学研究中心的名义以保藏号CNCM 1-4212保藏在法国国家微生物菌种保藏中心的苍白杆菌属菌株或所述菌株的变种,所述变种能够降解聚乳酸。
3.微生物混合物,其特征在于其包含权利要求I或2所述的菌株或所述菌株的变种。
4.包含权利要求I或2所述的菌株或所述菌株的变种或权利要求3所述的微生物混合物的产品,其特征在于所述产品为冻干粉末形式、含有所述冻干粉末和任选营养素的片剂形式或水溶液形式。
5.能降解聚乳酸的酶,其特征在于其由权利要求I或2所述的菌株或所述菌株的变种产生。
6.权利要求I或2所述的菌株或所述菌株的变种或权利要求5所述的酶在降解聚乳酸中的用途。
7.权利要求6所述的用途,其特征在于所述聚乳酸的分子量小于140000Da。
8.降解聚乳酸的方法,其特征在于其包括在于使需要降解的聚乳酸与权利要求I或2所述的菌株或所述菌株的变种接触,或与权利要求5所述的能降解聚乳酸的酶接触的步骤。
9.权利要求8所述的方法,其特征在于所述聚乳酸的分子量小于140000Da。
全文摘要
本发明涉及苍白杆菌属菌株,其可降解聚乳酸。本发明也涉及能降解聚乳酸的酶,其特征在于其由本发明所述菌株产生。本发明还涉及能降解聚乳酸的所述菌株和所述酶的用途。
文档编号C12R1/01GK102639690SQ201080053453
公开日2012年8月15日 申请日期2010年10月1日 优先权日2009年10月2日
发明者T·费雷拉, W·奥谢 申请人:国家科学研究中心, 普瓦捷大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1