碳水化合物的发酵的制作方法

文档序号:494677阅读:1074来源:国知局
专利名称:碳水化合物的发酵的制作方法
技术领域
本发明涉及一种通过碳水化合物发酵来制备乙醇的高产方法,通过用醛、脂肪酸、萜烯和表面活性剂处理碳水化合物来料达成。
背景技术
2009年,可再生燃料标准(Renewable Fue ls Standard, RFS)倡导将111亿加仑的乙醇和其它生物燃料投入到美国汽车燃料市场中以满足未来需求。这将导致工业上对玉米的需求量增加而且同样要求种植能力增加。在刚刚过去的一年里,美国一年的生产能力增加了 27亿加仑,比2007增长34%。这种生产能力的增长是通过新建乙醇精馏厂的竣工、启动和运作来实现。乙醇是一种颇具前景的来自于可再生资源的生物燃料,由谷粒(玉米、高粱、小麦、黑小麦、黑麦、发芽大麦、水稻)、块茎作物(马铃薯)的淀粉制备或直接使用糖蜜、甘蔗汁或糖用甜菜汁中的糖制备。乙醇也可通过基于纤维素的材料(柳枝稷、松树)的发酵来制备,但该技术尚未广泛商业化。世界上80%的乙醇由巴西和美国制造。其中,60%通过玉米或甘蔗汁的酵母发酵来制备。通过酿酒酵母(Saccharomyces cerevimae)厌氧发酵碳源来制备乙醇是最知名生物加工工艺中的一种,每年世界上使用这种方法的乙醇产量超过350亿升(Bayrock,2007)。由谷物制备乙醇的过程从淀粉水解开始。淀粉的水解将直链淀粉即大部分为直链的a -D-(l-4)-葡聚糖和具支链的支链淀粉即在枝点具有a -D-(1-6)链的a -D-(l_4)-葡聚糖转化为可发酵的糖,随后通过酵母(MajOvic,2006)、细菌(Dien,2003)将其转化为乙醇。细菌用于从通常含有纤维素的材料中制备乙醇,这些细菌包括发酵单胞菌(Zymomonasspp.)、大肠杆菌工程菌(Engineered E. coli)、产酸克雷伯式菌(Klebsiella oxytoca)、运动发酵单胞菌(Zymomonas mobilis)、解纤维素醋弧菌(Acetivibrio celluloyticus)(Dien,2003)。在乙醇制备系统中,将整个玉米粒磨碎并与水混合。随后用蒸气蒸煮混合物以使淀粉凝胶化并减少细菌污染。在此液化过程之后,添加酶和酵母以启动发酵过程制备乙醇。在美国,干磨和湿磨是用来制备乙醇的两个基本工艺。在干磨工艺中,将整个玉米粒或其它淀粉类材料研磨成粉末并与水混合以形成浆料。随后,将酶添加到混合物中,在高温蒸煮器中进行处理,然后冷却并转移到添加了酵母的发酵罐中,开始进行糖到乙醇的转化。发酵后,将所得混合物转移到蒸馏塔中,分离乙醇。对发酵和乙醇分离后所产生的固体进行加工以产生玉米干酒糟(Distiller’ s DriedGrains with Solubles,DDGS),所述干酒糟用于动物(例如家禽、猪和牛)的饲料生产。当今80%以上的乙醇产量采用干磨工艺(RFS,2006)。在湿磨工艺中,将谷粒浸没或浸溃在水中以有助于谷粒分离成其基础营养组分,例如玉米胚芽、纤维、麸质和淀粉组分。浸溃后,通过一系列研磨器处理玉米浆料并分离各组分。过滤麸质组分并干燥以产生玉米蛋白粉(Core Gluten Meal, CGM),它是一种在动物生产中用作饲料成份的高蛋白产物。随后,淀粉和任何来自醪液的剩余水用以下三种方式中的一种处理发酵成乙醇,干燥并作为干燥的或改性的玉米淀粉出售,或者加工成玉米糖浆(RFS,2006)。乙醇制备过程中,湿磨和干磨两种工艺仅利用玉米粒的淀粉部分。剩余的蛋白质、脂肪、纤维和其它营养组分仍可用作动物饲料。在传统发酵工艺中,将酵母培养物添加到玉米的淀粉颗粒部分中并培养72小时以使酵母种群有足够的时间增大到所需浓度(Maye,2006)。酵母种群增加一倍需要45-60分钟。需要增殖数个小时才能得到使这样大量的糖溶液发酵所需的酵母数量(Maye,2006)。
绕开传统的淀粉凝胶化条件,一种称为原淀粉水解的工艺将淀粉转化为糖,随后发酵成乙醇。糖化/发酵中所使用的酶是真菌a-淀粉酶和葡糖淀粉酶(淀粉葡糖苷酶)(Thomas, 2001)。这样同时糖化和发酵可使待发酵的淀粉达到较高浓度并产生较高浓度的乙醇。若糖源是来自诸如甘蔗、糖用甜菜、水果或糖蜜草等作物,则无需糖化且可在添加酵母和水后开始发酵(Maye,2006)。关于间歇或连续发酵系统,最重要的问题之一是难以保证不受细菌污染。遗憾的是,最佳的发酵氛围对于细菌生长也最佳。污染通常源于碳水化合物材料的收集。洗涤材料可有助于降低污染程度(Maye,2006)。尽管业内作出了许多努力,采用对糖化罐和连续酵母增殖系统进行洗涤和消毒以防止污染,但生物膜可充当细菌的储存库,不断地再引入污染物(Bischoff,2009)。业内从燃料乙醇发酵中已分离出多种革兰阳性和革兰阴性细菌,包括乳杆菌属(Lactobacillus)、小球菌属(Pediococcus)、葡萄球菌属(Staphylococcus)、肠球菌属(Enterococcus)、醋杆菌属(Acetobacter)、葡糖杆菌属(Gluconobacter)和梭菌属(Clostridium)等种类(Bischoff, 2009)。所分离三分之二的细菌几乎全属于乳酸细菌,例如乳酸杆菌(Skinner,2007)。在Skinner和Leathers (2004)实施的调研中,湿磨工艺中44-60*%的污染物被确定为乳酸杆菌(Lactobacilli)。在干磨工艺中,37_87%的污染物被确定为乳酸杆菌。当玉米浆料中乳酸杆菌污染在IO6-IO7CfuAiL范围内时,可使乙醇产量降低1-3%。工业上,即使采用活性细菌控制方案来控制乳酸杆菌的增殖,由乳酸杆菌带来的碳水化合物损失可造成盈利与非盈利的差异(Bayrock,2007)。乳酸杆菌不仅耐受乙醇的低pH、高酸度和相对较高的乙醇浓度,而且它们还会在乙醇发酵的条件下繁殖(Thomas,2001)。细菌污染物竞争得到酵母所需的生长因子并产生抑制酵母的副产物,尤其是乳酸和乙酸。在乙醇发酵期间的碳水化合物浆料的污染导致a)乙醇产量降低,b)碳水化合物产生丙三醇和乳酸的渠道增多,c)可发酵的糖耗尽后酵母活性迅速丧失,和d)污染的乳酸杆菌已生长到较高数目的醪液中酵母增殖降低(Thomas,2001)。在美国,最近关于基于玉米的工厂中的细菌污染物的一份调查发现,湿磨设备中的细菌负荷为约IO6CfuAiL玉米浆料,而干磨设备中这些细菌负荷可达到IO8CfuAiL玉米浆料(Bischoff,2007 ;Chang,1997)。发酵期间,乳酸杆菌副产物即乙酸和乳酸的存在影响酵母生长和代谢,且业内建议将其作为停滞发酵或缓慢发酵的原因之一(Thomas,2001)。若醪液的乳酸含量达到
0.8%和/或乙酸浓度超过0. 05%,贝U制备乙醇的酵母受到胁迫(Bayrock, 2007)。乳酸杆菌会胁迫酵母细胞释放营养物,尤其是刺激细菌生长的氨基酸和肽(01iva-NetO,2004)。甜菜糖蜜间歇发酵时,浓度为8g/L的乳酸将酵母活性降低95%且乙醇的生产率降低80%(Bayrock,2001)。对pH控制下操作4天后,乙醇发酵时乳酸杆菌的存在可使乙醇产量降低44%。这与副干酪乳杆菌(L. paracasei)增大到> K^efu/ml和乳酸浓度增大四倍到20g/L —致。可以看出,乙醇、乳酸和乙酸的浓度分别为70、38和7. 5g/L时,酵母密度降低80%(Bayrock,2001)。De Oliva-Neto和Yokoya(1994)评价了细菌污染对间歇进料的乙醇发酵过程的影响。他们发现,在间歇进料过程中发酵乳杆菌(Lfermentum)会强烈抑制市售面包(baker/ s)酵母。当总酸(乳酸和乙酸)超过4. 8g/L时,将干扰酵母芽的形成和活性,且 超过6g/L时,醇效率降低。其它研究表明a)在酵母制备的最终乙醇中,IO6个乳酸杆菌/mL醪液导致乙醇降低约1% v/V (Narendranath, 2004), b)对发酵系统形成了挑战,108cfu/mL发酵乳杆菌使乙醇产量降低27%且使残余葡萄糖由6. 2g/L增大到45. 5g/L(Bischoff, 2009), c)使用105Cfu/mL乳酸杆菌使乙醇产量降低8%且残余葡萄糖增加3. 2倍(Bischoff,2009)。控制细菌的方法包括添加更多的酵母培养物、严格清洗和消毒、对被指定再使用的酵母进行酸洗和在发酵期间使用抗生素(Hynes,1997)。当用I X IO8个乳酸杆菌/mL感染醪液时,增大的酵母接种速率3X 107cfu/mL醪液使植物乳杆菌(L. pIantarum)产生的乳酸减少80%以上且副干酪乳杆菌产生的乳酸减少55%以上(Narendranath,2004 ;Bischoff,2009)。在实验室条件下,针对细菌污染物的控制对各种试剂进行了测试,包括防腐剂,例如过氧化氢、焦亚硫酸钾和3,4,4'-三氯二苯脲,和抗生素如青霉素、四环素、莫能菌素(monensin)和维吉霉素(virginiamycin)。现今市场上销售青霉素和维吉霉素,用来处理燃料乙醇发酵的细菌感染,而且一些预防性使用这些抗生素的设备(Skinner,2004)。若不使用抗生素,则乙醇产量通常损失1_5%。若五千万加仑燃料乙醇厂在其蒸懼啤酒(distiller' s beer)中以乳酸含量0. 3% w/w运作,贝U其每年因细菌污染损失约570,000加仑乙醇(Maye,2006)。抗生素不存在时,在48小时发酵期间细菌数由I X IO6Cfu/mL 增加至Ij 6X106cfu/mL,并产生 5. 8mg 乳酸(Hynes, 1997)。—种极为有效的细菌控制方案中使用维吉霉素。维吉霉素的一些特征是a)在低浓度(例如0. 3-5ppm)下,可有效抵抗包括乳酸杆菌在内的许多微生物,b)微生物没有产生抗性的趋势,c)没有明显抑制酵母,d)不受pH或乙醇浓度的影响,和e)在乙醇蒸馏期间失活,因此乙醇或酒糟中没有残留(Bayrock, 2007 ;Narendranath, 2000 ;Hynes, 1997)。目前,维吉霉素是唯一已知用于干磨设备的抗生素(Bischoff,2007)。燃料乙醇发酵时维吉霉素的推荐剂量一般为0. 25-2. 0ppm(Bischoff,2009),但最小抑菌浓度(MinimumInhibitory Concentration, MIC)在 0. 5 至大于 64ppm 之间变化(Hynes, 1997)。在乙醇发酵过程中,发酵乳杆菌可被浓度为I-IOmM的过氧化氢选择性控制(Narendranath, 2000)。乳酸杆菌不含过氧化氢酶,因此其不会分解过氧化氢且不能消除其毒性效应(Narendranath,2000)。业内已经使用过氧化脲(Urea Hydrogen Peroxide,UHP)作为防腐剂局部施用于伤口并抵抗牙銀炎和牙菌斑(Narendranath,2000),因此在发酵期间亦可用作抗菌剂。UHP不仅对乳酸杆菌呈现出良好的杀菌活性,而且还具有一个重要的好处提供呈脲形式的可利用氮来促进酵母生长和发酵速率(Narendranath,2000)。控制细菌污染的其它方法包括使用亚硫酸盐。亚硫酸盐仅在氧存在下证明具有杀菌活性且对杀死兼性干酪乳杆菌(Lcasei)比较有效,而兼性干酪乳杆菌具有高含量的过氧化氢相关酶,包括过氧化物酶(Chang,1997)。当亚硫酸盐的浓度介于100_400mg/L间但仅在氧存在下时,细菌载量亦有所降低。该浓度不影响酵母种群(Chang,1997)。
一种存在于酵母培养物上清液中的试剂降低乳酸杆菌的生长。该化合物尚未被表征,尽管已知其耐冻,在高温下不稳定且当在90°C下保持20分钟时遭到破坏(Oliva Neto2004)o单独地琥珀酸的含量为600mg/L时,乳杆杆菌浓度降低78%,在乙醇存在下所述降低高达 96% (Qliva-Neto 2004) 0已研究开发出一种微生物粘附抑制剂,其呈禽卵抗体形式且对产生乳酸的微生物具有特异性,这种微生物粘附抑制剂已用于发酵罐中(Nash 2009)。仅实验室研究已表明,抗体、亚硫酸盐和过氧化物产物有利于控制乳酸杆菌,但釆用这些产品的问题是,由于这些化学品的氧化和分解造成浓度降低,此将需要恒定监测整个发酵过程以保证有效浓度。对维吉霉素易感性的降低已经从使用维吉霉素的干磨乙醇设备分离的乳酸杆菌中观察到,且已报导出现了对青霉素和维吉霉素二者具有多药物抗性的分离物(Bischoff 2009)。因此业内需要替代品防止因碳水化合物发酵而使乙醇产量降低。参考文献Bayrock, Dennis,2007. Method of reducing the growth of lactobacillusin a process of ethanol production by yeast fermentation comprising addinga pristinamycin type antimicrobial agent and/or a polyether ionophoreantimicrobial agent dissolved in an organic solvent. PCT 专利号 WO 2007/145858Bayrock, D. P.,K. C. Thomas 和 I M. Ingledew, 2003. Control of Lactobacilluscontaminants in continuous fuel ethanol fermentations by constant or pulsedaddition of penicillin. G. App Microbiol. Biotechnol 62:498-502.Bayrock,D 和 W. M. Ingledew,2001. Changes in steady state on introductionof a lactobacillus contaminant to a continuous culture ethanol fermentation.J.Industrial Microbiology and Biotechnology 27 :39-45.Bischoff,K. M.,S. Liu, T. D. Leathers 和 R. E. Worthington,2009. Modelingbacterial Contamination of Fuel Ethanol Fermentation. Biotechno. Bioeng. 103 117-122.Bischoff,K. M.,K. A. Skinner-Nemec 和 T. D. Leathers,2007. Antimicrobialsusceptibility of Lactobacillus species isolated from commercial ethanolplants. J. Ind. Microbiol. Biotechnol.Chang I. N. , B. H. Kim 和 P. K. Shin,1997. Use of sulfite and hydrogenperoxide to control bacterial contamination in ethanol fermentation. Applied andEnvironmental Microbiology 63(1) l-6.Dien,B. S.,M. A. Cotta 和 T. W. Jeffries,2003. Bacteria engineered for fuelethanol production current status. Appl. Microbiol. Biotechnol. 63 :258-266.Hynes, S. H.,Kjarsgaard, K. C. Thomas 和 I M. Ingledew,1997. Use ofvirginiamycin to control the growth of lactic acid bacteria during alcoholfermentation. J Industrial Microbiology and Biotechnology 18 :284-291.Majovic,L. S. Nikolic, M. Rakin 和 M. Vukasinovic,2006. Production ofBioethanol from Corn Meal Hydrolyzates. Fuel 85:1750—1755.Maye, John P. , 2006. Use of hop acids in fuel ethanol production.美国专利申请号20060263484Narendranath, N. V.和 R. Power,2004. Effect of yeast inoculation rate onthe metabolism of contaminant lactobacilli during fermentation of corn mash.J. Ind. Microbiol,Biotechnol. 31 :581-584.Narendranath, N. V.,K. C. Thomas 和 W. M Ingledew, 2000. Urea hydrogenperoxide reduces the number of lactobacilli, nourish yeast, leaves no residuesin the ethanol fermentation. Applied and Environmental Microbiology 66(10);4187-4192.Nash, Peter 等人 2009.Immunogen adherence inhibitor directed tolactobacillus organisms and method of making and using it.美国专利申请号20090117129Oliva Neto,P.,M. A. Ferreira 和 F. Yokoya,2004. Screening for yeast withantibacterial properties from ethanol distillery. Bioresource Technology 92 1-6.RFA “Renewable Fuels Association 2006and 2009.Skinner-Nemec, K. A. , N. N Nichols 和 T. D Leathers, 2007. Biofilm formationby bacterial contaminants of fuel ethanol production. Biotechnol. Lett. 29 379-383.Skinner. K. A和 T. D. Leathers,2004. Bacterial Contaminants of Fuel EthanolProduction. J. Ind. Microbiol. Biotech. 31 :401-408.Thomas,K. C.,S. H. Hynes 和 W. M. Ingledew, 2001. Effect of lactobacilli onyeast growth,viability and batch and semi-continuous alcoholic fermentation oncorn mash. J. Applied Microbiology 90 :819-828.

发明内容
本发明的目的是提供一种化学组合物,其通过在玉米、其它淀粉或基于纤维素的材料发酵期间,抑制或减少乳杆菌属(Lactobacillus spp.)和其它细菌的生长,从而防止乙醇制备期间出现“停滞发酵”。 另一目的是提供一种将碳水化合物发酵成乙醇的方法,其包括
a)用含有下列的组合物处理待发酵的碳水化合物10重量% -90重量%的醛,所述醛选自由甲醛、多聚甲醛、戊二醛及其混合物的所组成的组;I重量% -50重量%的HLB为4至18的表面活性剂;0重量% -20重量%的抗菌職烯或精油;I重量% -50重量%的有机酸,所述有机酸选自C1至C24脂肪酸及其盐、其甘油酯及其酯;及I重量% -50重量%的水;b)在酵母及/或酶存在下于发酵液中发酵所述的碳水化合物,以及c)分离乙醇。本发明的另一目的是提供一种通过添加包括下列的组合物在初始停滞发酵系统中增大乙醇制备的方法a) 10重量% -90重量%的醛,所述醛选自由甲醛、多聚甲醛、戊二醛及其混合物的所组成的组;b) I重量% -50重量%的HLB为4至18的表面活性剂;c) I重量% -20重量%的抗菌職烯或精油;d) I重量% -50重量%的有机酸,所述有机酸选自C1至C24脂肪酸及其盐、其甘油酯及其酯;及e) I重量% -50重量%的水。本发明的又一个目的是在碳水化合物发酵期间减少使用抗生素而将包括下列的组合物添加到发酵系统中a) 10重量% -90重量%的醛,所述醛选自甲醛、多聚甲醛、戊二醛及其混合物的所组成的组;b) I重量% -50重量%的HLB为4至18的表面活性剂;c) I重量% -20重量%的抗菌職烯或精油;d) I重量% -50重量%的有机酸,所述有机酸选自C1至C24脂肪酸及其盐、其甘油酯及其酯;及e) I重量% -50重量%的水。本发明的又一个目的是减少存在于碳水化合物发酵所得副产物(例如酒糟、玉米麸质及其它)中的抗生素。 本发明的再一目的是通过给动物喂食不是由抗生素而是由本发明经处理底物所得的发酵副产物,来减少动物产品中抗生素残留物。再一个目的是抑制发酵期间出现的抗生素抗性的细菌菌株的发展。又一目的是增加由发酵的碳水化合物得到的乙醇的产量。
具体实施例方式定义“停滞发酵”发生在由于发酵罐中的高细菌浓度和酸含量而使淀粉到乙醇的发酵不完全并停滞时。
组分的“重量百分比”(重量% )是基于其中包含该组分的配方或组合物的总重量。“醛”包括甲醛、多聚甲醛和其它活性醛。“有机酸”包括甲酸、乙酸、丙酸、丁酸和其它C1至C24脂肪酸,或者C1至C24有机脂肪酸的单_、二 -或三甘油酯或其酯。“抗菌萜烯”可包括二硫化烯丙基、柠檬醛、菔烯、橙花醇、香叶醇、香芹酚、丁香酚、香芹酮、茴香脑、樟脑、薄荷脑、柠檬烯、法尼醇、胡萝卜素、麝香草酚、冰片、香叶烯、萜品烯、沉香醇或其混合物。更具体而言,萜烯可包括二硫化烯丙基、麝香草酚、柠檬醛、丁香酚、柠檬烯、香芹酚和香芹酮或其混合物。所述萜烯组分可包括其它具有抗菌特性的萜烯和精油。、可干扰乙醇发酵的细菌包括乳杆菌属和明串珠菌属(Leuconostoc),大多数问题是由这些细菌产生。其它这样的细菌包括小球菌属、葡萄球菌属、链球菌属(Streptococcus)、芽抱杆菌属(Bacillus)和梭状芽胞杆菌属(Clostridia)。在由玉米制备乙醇时,抗生素是常见的杀菌剂,例如维吉尼霉素(virginimicin)、青霉素、克林霉素(clindamycin)、泰乐菌素(tylosin)、氯霉素(chloramphenicol)、头孢菌素(cephalosporin)和四环素。然而,在由甘蔗制备乙醇时,由于终端产物不能喂食给动物,残留物不存在上述问题,因此可使用其它杀菌剂。在此等情况下,适宜的杀菌剂包括氨基甲酸酯、季铵化合物、苯酚和抗生素(例如,维吉霉素、青霉素、克林霉素、泰乐菌素、氯霉素、头孢菌素和四环素)。术语化合物的“有效量”意指能实现有效量所表达的作用或特性的量,例如无毒但足以提供抗菌益处的量。因而,有效量可由业内普通技术人员根据常规实验确定。配方不但在主要组分(例如醛、有机酸)的浓度方面而且在萜烯类型、表面活性剂和水浓度方面有所变化。本发明可通过添加或删减萜烯、有机酸的类型和使用其它类型的表面活性剂做出改变。组合物一般而言,本发明组合物含有a) 10重量% -90重量%的醛,所述醛选自由甲醛、多聚甲醛、戊二醛及其混合物的所组成的组;b) I重量% -50重量%的HLB为4至18的表面活性剂;c) I重量% -20重量%的抗菌職烯或精油;d) I重量% -50重量%的有机酸或有机酸的混合物,所述有机酸选自乙酸、丙酸、丁酸或其它C1至C24脂肪酸,及其盐形式、其甘油酯及其酯 '及e) I重量% -50重量%的水。在本发明组合物中可使用抗菌萜烯、植物萃取物或含有萜烯的精油以及更纯的萜烯。萜烯在市场上容易买到或者可由业内习知的方法制备,例如溶剂萃取或蒸气萃取/蒸馏或化学合成。表面活性剂是非离子型的,包括乙氧基化的蓖麻油表面活性剂,围绕I至200的平均值通常分布I至200个乙烯分子,优选地为10至80的平均值。可使用具有类似特征的其它表面活性剂,包括Tween表面活性剂。
本发明可有效抵抗细菌。这些感染剂的实例包括乳杆菌属、大肠杆菌、沙门菌属(Salmonella spp.)、梭菌属、弯曲杆菌属(Campylobacter spp.)、志贺氏菌属(Shigellaspp.)、短螺菌属(Brachyspira spp.)、利斯特菌属(Listeria spp.)、弓形杆菌属(Arcobacter spp.)和其它菌属的细菌。本发明混合物通过喷嘴施加。施加混合物以对整个碳水化合物底物提供整齐均一的分布。在本说明书中参照多个专利和公开案。每一文件的揭示内容皆以引用方式整体并入本文中。实例实例I该实例表示随后实例中所使用的基于甲醛产物的配方
权利要求
1.一种将碳水化合物发酵成乙醇的高产方法,其特征在于,包括 a)用含有下列的组合物处理待发酵的碳水化合物 10重量% -90重量%的醛,所述醛选自由甲醛、多聚甲醛、戊二醛及其混合物的所组成的组; I重量% -50重量%的HLB为4至18的表面活性剂; 0重量% -20重量%的抗菌職烯或精油; I重量% -50重量%的有机酸,所述有机酸选自C1至C24脂肪酸及其盐、其甘油酯及其酯;及 I重量-50重量的水; b)在酵母和/或酶的存在下于发酵液中发酵所述碳水化合物,以及 c)分离乙醇。
2.根据权利要求I所述的发酵方法,其特征在于,所述有机酸是甲酸、乙酸、丙酸或丁酸。
3.根据权利要求I所述的发酵方法,其特征在于,所述方法包括控制乳酸杆菌的抗生素,所述抗生素的量比不含组合物a)发酵时的MIC低。
4.根据权利要求I所述的发酵方法,其特征在于,所述方法不含发酵时用来控制细菌的抗生素。
5.根据权利要求I所述的发酵方法,其特征在于,所述方法不含维吉霉素。
6.根据权利要求I所述的发酵方法,其特征在于,与不含组合物a)的发酵相比,所述乙醇的产量增大。
7.根据权利要求I所述的发酵方法,其特征在于,发酵后收集剩余的材料并添加到动物饲料中。
8.根据权利要求I所述的发酵方法,其特征在于,抗生素抗性的细菌菌株的发展受到抑制。
9.一种发酵液,其特征在于,包括 待发酵的碳水化合物、酵母和/或酶,以及含有下列的组合物 10重量% -90重量%的醛,所述醛选自由甲醛、多聚甲醛、戊二醛及其混合物的所组成的组; I重量% -50重量%的HLB为4至18的表面活性剂; 0重量% -20重量%的抗菌職烯或精油; I重量% -50重量%的有机酸,所述有机酸选自C1至C24脂肪酸及其盐、其甘油酯及其酯;及 I重量-50重量的水。
10.根据权利要求9所述的发酵液,其特征在于,所述待发酵的碳水化合物是玉米、高粱、小麦、黑小麦、黑麦、大麦、水稻或块茎。
11.根据权利要求9所述的发酵液,其特征在于,所述待发酵的碳水化合物是甘蔗或糖用甜菜。
12.根据权利要求9所述的发酵液,其特征在于,所述待发酵的碳水化合物衍生自纤维素。
13.根据权利要求9所述的发酵液,其特征在于,抗生素抗性的细菌菌株的发展受到抑制。
14.一种由发酵的碳水化合物制备含有低含量抗生素残留物的动物饲料的方法,其特征在于,包括 a)用含有下列的组合物处理待发酵的碳水化合物 10重量% -90重量%的醛,所述醛选自由甲醛、多聚甲醛、戊二醛及其混合物的所组成的组; I重量% -50重量%的HLB为4至18的表面活性剂; 0重量% -20重量%的抗菌職烯或精油; I重量% -50重量%的有机酸,所述有机酸选自C1至C24脂肪酸及其盐、其甘油酯及其酯;及 I重量-50重量的水; b)在酵母和/或酶存在下于发酵液中发酵所述碳水化合物, c)分离乙醇,及 d)发酵后收集剩余的材料并添加到动物饲料中。
15.根据权利要求15所述的方法,其特征在于,所述有机酸是甲酸、乙酸、丙酸或丁酸。
16.根据权利要求15所述的方法,其特征在于,所述方法包括控制乳酸杆菌的抗生素,所述抗生素的量比不含组合物a)发酵时的MIC低。
17.根据权利要求15所述的方法,其特征在于,所述方法不含发酵时用来控制细菌的抗生素。
18.根据权利要求15所述的方法,其特征在于,所述方法不含维吉霉素。
19.根据权利要求15所述的方法,其特征在于,所述待发酵的碳水化合物是玉米、高粱、小麦、黑小麦、黑麦、大麦、水稻或块茎。
20.根据权利要求15所述的方法,其特征在于,所述待发酵的碳水化合物是甘蔗或糖用甜菜。
21.根据权利要求15所述的方法,其特征在于,所述待发酵的碳水化合物衍生自纤维素。
22.根据权利要求15所述的方法,其特征在于,抗生素抗性的细菌菌株的发展受到抑制。
23.一种增加由发酵碳水化合物得到的乙醇产量的方法,其特征在于,包括 a)用含有下列的组合物处理待发酵的碳水化合物 10重量% -90重量%的醛,所述醛选自由甲醛、多聚甲醛、戊二醛及其混合物的所组成的组; I重量% -50重量%的HLB为4至18的表面活性剂; 0重量% -20重量%的抗菌職烯或精油; I重量% -50重量%的有机酸,所述有机酸选自C1至C24脂肪酸及其盐、其甘油酯及其酯;及 I重量-50重量的水; b)在酵母和/或酶存在下于发酵液中发酵所述碳水化合物,以及c)分离乙醇,与不含步骤 a)时所 获得的产量相比,所述乙醇的产量更高。
全文摘要
本发明涉及一种将碳水化合物发酵成乙醇的高产方法,该方法包括a)用含有下列的组合物处理碳水化合物10重量%-90重量%的醛,所述醛选自由甲醛、多聚甲醛、戊二醛及其混合物的所组成的组;1重量%-50重量%的IJLB为4至18的表面活性剂;0重量%-20重量%的抗菌萜烯或精油;1重量%-50重量%的有机酸;所述有机酸选自C1-24脂肪酸及其盐及其甘油酯;以及1重量%-50重量%的水;b)在酵母存在下于发酵液中发酵所述碳水化合物;及c)分离乙醇,其产量高于不采用步骤a)时所获得的产量。
文档编号C12N1/22GK102666864SQ201080052624
公开日2012年9月12日 申请日期2010年11月23日 优先权日2009年11月25日
发明者胡里奥·皮门特尔, 詹姆士·D·威尔逊 申请人:阿尼托克斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1