专利名称:染料敏化太阳能电池中碳对电极的制备方法
技术领域:
本发明涉及染料敏化太阳能电池中碳对电极的制备方法,属于光电子材料和器件领域。
背景技术:
染料敏化太阳能电池(Dye Sensitized Solar Cell,即DSSC)2011年效率已突破 12%。自1991年问世,由于其低的制作成本、单易的制作工艺、易重复等优点,一直是研究领域的热点之一。虽然效率和稳定性有待提高,这种电池仍被认为是极具商业应用前景的光伏器件之一。DSSC是三明治结构,由光阳极,对电极和填充在其间的电解质构成。光阳极一般由导电玻璃和染料敏化的纳米多孔氧化物薄膜组成,且纳米多孔氧化物薄膜一般为多孔二氧化钛;对电极由导电层上沉积催化剂构成,催化剂一般为钼,电解质一般为Γ/Ι3_电对。高成本的钼一直是制约DSSC成本的瓶颈之一,低成本催化剂材料,如碳材料,导电聚合物的研究已经开展。其中,碳材料,如碳,碳纳米管,碳纳米纤维,石墨烯的研究已取得较大进展,基于碳材料的DSSC最高效率已达到9%,充分说明碳材料作为催化剂前景广泛。作为一维纳米材料,空心的碳纳米管和实心的碳纳米纤维(其组合以下简称为一维碳复合材料)由于结构相近,制备方法也很接近,制备时经常共同产生。制备一维碳复合材料的方法较多。基于催化物(区别于DSSC的“催化剂”)来制备时,一般需要用一套设备制备催化物(Fe,Co,Ni等过渡金属或其氧化物),然后用另一套设备在催化物上原位生长一维碳复合材料,也有研究者尝试在同一套设备内进行,使催化物生成和一维碳复合材料生成这两步紧密连续且原位进行,通常称为一步法。可一步实现的实验方法,报道的有化学气相沉积,微波法,火焰法等。作为一种低成本制备方法,火焰法能在开放的环境中制备出较高质量的一维碳复合材料,而一步实现的火焰法,使其制备更加简单。具有代表性的制备方法是使用金属片基底,浸溃过渡金属盐的乙醇溶液,干燥后,然后将基底在酒精灯火焰中加热,形成一维碳复合材料(CN101624184A ;Li Fei, Zou Xiao-ping, et al, Preparation of carbon nanotubes by ethanol catalytic combustion technique using nickel salt as catalyst precursor, Transactions Of Nonferrous Metals Society Of China 2006(16): S381-S384 ;Qi,X·,J. Zhang, et al. ,A novel process for high-efficient synthesis of one-dimensional carbon nanomaterials from flames. Journal Of Materials Science & Technology 2008,24(4): 603-607·)。然而这种方法制备的一维碳复合材料用作DSSC对电极催化剂时,催化活性不高。
发明内容
本发明所要解决的问题是提供一种催化活性更高的染料敏化太阳能电池中对电极的的制备方法。具体制备方法如下
1)基底的准备
对基底进行清洗,以除去表面的油脂和杂质;对于可以与染料敏化太阳能电池中电解质反应的基底,在清洗后还要沉积不低于50nm厚的镍或钛作为保护层;
2)溶液的配制和涂敷
溶解过渡金属的一种或多种盐,并在溶液中添加十二烷基硫酸钠,溶液中十二烷基硫酸钠与过渡金属正离子的摩尔比为(O. 004 O. 008) : I ;将配好的溶液涂敷在基底上,然后自然风干,重复涂敷,风干后涂敷层的厚度为200nm 2 μ m ;(涂敷层若太薄效果不明显,太厚在步骤3)中不易烧透)
3)酒精灯加热
将基底置于酒精灯火焰中,加热10秒 10分钟。所采用的对电极基底为耐高温平面状或网状固体,至少能承受750°C。沉积保护层的方法为电镀或磁控溅射。涂敷过渡金属溶液的方法可以为旋涂法、提拉法、刮涂法。3)优化层。为进一步提高对电极的催化活性,可以引入优化层。即在I)准备好的基底上先后沉积锡层、镍层,其中锡膜厚度为20nm 230nm,镍膜厚度为IOnm 840nm。锡膜若太薄, 达不到效果,太厚加热后容易从基底上脱落;镍膜若太薄,作为催化物的效果不明显,太厚则失去催化活性。如果基底为导电基底(如碳布),可以使用电镀或磁控溅射沉积的方法。如果基底为非导电基底,如玻璃,可以使用磁控溅射沉积的方法。如果使用电镀沉积,需要在每次电镀后,在50 80°C热水中漂洗掉电镀液,然后在空气中自然风干,才能进行下一步处理。该发明的制备方法的原理进一步阐述如下。对基底的保护层处理,如沉积钛、镍保护层,是为了防止基底被电解质腐蚀。当无优化层时,在酒精灯火焰加热的过程中,过渡金属盐和十二烷基硫酸钠会被分解成纳米状金属颗粒或氧化物,作为催化物生长一维碳复合材料,且形成三维微纳多孔结构。当有优化层时,在酒精灯火焰加热的过程中,首先,锡、镍层形成球形催化物颗粒, 生长一维碳复合材料,这些一维碳复合材料会被过渡金属盐和十二烷基硫酸钠包裹;过渡金属盐和十二烷基硫酸钠接着被分解成纳米状金属颗粒或氧化物,也作为催化物进一步生长一维碳复合材料,且形成三维微纳多孔结构。添加的十二烷基硫酸钠,有如下功能1)使制备出的一维碳复合材料有序多孔。在酒精灯加热的过程中,十二烷基硫酸钠由于熔点低(204-207°C),会移动到表层且分解产生和释放硫的氧化物气体,形成多孔结构。这种表层相对多孔,里层相对致密的结构既有利于电解质通过表层孔洞进入里层,发挥里层的催化作用,而且相对致密的里层使电池具有较低的串联电阻。但是,十二烷基硫酸钠的比例需要合适,若太小,效果不明显;太大,过量的气体会使得一维碳复合材料的里层也更多孔,使得内部接触变弱,电池串联电阻变大,电池性能降低。2)十二烷基硫酸钠热分解产生的碳可作为生长一维碳复合材料的碳源,从而减少制备时间。3)作为一种表面活性剂,十二烷基硫酸钠可以使配制的水溶液中的过渡金属盐分布均匀。制备的一维碳复合材料中的比例,可以通过加热时间来控制,时间在30秒内,碳纳米管比例较大;时间在5分钟以上,碳纳米纤维比例较大;时间超过10分钟时,材料结构
基本不变。使用本发明方法制备的碳对电极制作染料敏化太阳能电池时,包括如下步骤
1)光阳极的制备将导电玻璃基底采用标准半导体工艺清洗,干燥,然后,在导电层上形成金属氧化物致密层和敏化的金属氧化物多孔薄膜;
2)对电极的制备;
3)将敏化好的光阳极和对电极叠加在一起,中间用电解质填充。本发明的有益效果是
O同时添加过渡金属盐溶液与十二烷基硫酸钠后,一维碳复合材料形成有序多孔结构,即不仅有多孔性,而且与基底之间接触电阻小,这样不仅对电极的催化活性得到提升, 而且减小电池的内部电阻,提高DSSC的效率;
2)添加的十_■烧基硫酸纳可以提供碳源,减少一维碳复合材料的制备时间;
3)一维碳复合材料的制备方法简单且成本低廉,有利于广泛推广和使用;
4)本发明中的一维碳复合材料催化剂可以和其他催化剂搭配使用。
图I是对电极采用平面基底,且含保护层时,DSSC的结构示意图,其中I-透明导电玻璃,2-金属氧化物致密层,3-吸附了染料被敏化的金属氧化物多孔层,4-电解液,5-催化层,6-保护层,7-对电极基底。图2是本发明实施例I中生长的一维碳复合材料的扫描电镜图。图3是本发明实施例3中生长的一维碳复合材料的扫描电镜图。图4是实施例I中制得的太阳能电池的电流密度-电压曲线图当只有对电极不同时,曲线I是Pt为对电极材料,曲线2配制溶液为O. 25 mol/L NiSO4水溶液,曲线3配制溶液为O. 25 mol/L NiSO4和2X10—3 mol/L的C12H25NaO4S混合水溶液,加热时间均为5分钟。图5是实施例2制得的太阳能电池的电流密度-电压曲线图当只有对电极不同时,曲线I无涂敷溶液;曲线2涂敷溶液为O. 5 mol/L NiSO4水溶液,曲线3配制溶液为O. 5 mol/L NiSO4 和 2X 10_3 mol/L 的 C12H25NaO4S 的混合水溶液。图6是实施例3制得的太阳能电池的电流密度-电压曲线图当只有对电极不同时,曲线I只有镀膜层,而无涂敷溶液,且酒精灯加热时间为40秒,曲线2配制溶液为0. I mol/L CoCl2水溶液,且酒精灯加热时间为40秒,曲线3配制溶液为0. I mol/L CoCl2,和 0. 5X 10_3 mol/L的C12H25NaO4S的混合水溶液,且酒精灯加热时间为20秒。图7是实施例4制得的太阳能电池的电流密度-电压曲线图当只有对电极不同时,曲线I只有镀膜层,而无涂敷溶液,且酒精灯加热时间为40秒,曲线2配制溶液为 0.2 mol/L Fe2 (SO4)3水溶液,且酒精灯加热时间为40秒,曲线3配制溶液为0.2 mol/L Fe2(SO4)3,和IX 10_3 mol/L的C12H25NaO4S的混合水溶液,且酒精灯加热时间为20秒。
图8是实施例5制得的太阳能电池的电流密度-电压曲线图当只有对电极不同时,曲线I涂敷溶液为O. 5 mol/L NiSO4水溶液,曲线2配制溶液为O. 5 mol/L NiSO4,和 2X10—3 mol/L 的 C12H25NaO4S 的混合水溶液。图9是实施例6制得的太阳能电池的电流密度-电压曲线图当只有对电极不同时,曲线I只有镀膜层,而无涂敷溶液,曲线2涂敷溶液为O. 25 mol/L NiCl2水溶液,曲线3 配制溶液为O. 25 mol/L NiCl2,和2 X 1(T3 mol/L的C12H25NaO4S的混合水溶液。图10是实施例7制得的太阳能电池的电流密度-电压曲线图当光从光阳极侧入射时,只有对电极不同时,曲线Ia只有镀膜层,而无涂敷溶液,曲线2a涂敷溶液为0. 15 mol/L NiSO4 和 0. I mol/L NiCl2 水溶液,曲线 3a 配制溶液为 0. 15 mol/L NiSO4,0. I mol/L NiCl2和2X 10_3 mol/L的C12H25NaO4S的混合水溶液;当光从对电极侧入射时,只有对电极不同时,曲线Ib只有镀膜层,而无涂敷溶液,曲线2b涂敷溶液为0. 15 mol/L NiSO4和0. I mol/L NiCl2 水溶液,曲线 3b 配制溶液为 0. 15 mol/L NiSO4,0. I mol/L NiCl2 和2父10-3 mol/L的C12H25NaO4S的混合水溶液。
具体实施例方式实施例I :
I)清洗。以高纯Ti片和FTO玻璃为基底。对Ti片,先用砂纸打磨表面除去明显杂质且打磨光滑,再用棉签蘸取含洗洁精的去离子水溶液,擦洗基片,接着用含洗洁精的去离子水溶液冲洗干净,再依次用去离子水,乙醇,去离子水,丙酮超声清洗10分钟,接着在稀盐酸中浸泡30分钟除去金属杂质,再用丙酮超声清洗10分钟,烘干待用。对FTO玻璃,先用棉签蘸取含洗洁精的去离子水溶液,擦洗基片,接着用含洗洁精的去离子水溶液冲洗干净, 再依次用去离子水,乙醇,去离子水,丙酮超声清洗10分钟,烘干待用。2)制备光阳极。在干净的FTO玻璃上旋涂120 nm的TiO2致密层,接着在500°C下烧结15分钟,然后在致密TiO2层上涂敷一层DSSC常用的TiO2乳液,接着在450°C下烧结 30分钟形成TiO2多孔层,重复上面涂敷和烧结过程可以控制TiO2多孔层的厚度约14 μ m, 将烧结好的光阳极浸入60°C 0. 3 m mol/L的N719染料的乙醇溶液中敏化12个小时以上, 取出室温下风干待用。3)制备对电极。在80°C下,配制0. 25 mol/L NiSO4,和 2X 1(T3 mol/L 的C12H25NaO4S 的混合水溶液。用旋涂的方法在Ti片上制得一层约550nm(晾干后的厚度)的薄膜,在空气中常温晾干后,在酒精灯的内焰中,加热5分钟,生长得到多孔一维碳复合材料。4)组装。将干净的载玻片、对电极、敏化过的光阳极和遮光板用夹具固定在一起, 干净的载玻片用来隔开对电极与夹具,以便于测试和封装。对电极和光阳极之间滴加染料敏化电池常用的液体电解质(碘和碘化锂的液体电解质)。5)测试。在AMl. 5, —倍的太阳光强,遮光板透光面积为0. 25 cm2的条件下对电池的性能进行测试。经过测试发现,当光从光阳极侧入射时,开路电压0. 760V,短路电流密度12. 476mA/cm2,填充因子0. 687,转换效率6. 514%。以上步骤,当只改变步骤3)中的加热时间至10分钟时,电池性能为开路电压 0. 770V,短路电流密度12. 480mA/cm2,填充因子0. 679,转换效率6. 523%。当只改变水溶液成份为O. 25 mol/L NiSO4,而不含C12H25NaO4S时,电池性能为开路电压O. 730V,短路电流密度12. 992mA/cm2,填充因子O. 633,转换效率6. 008%。而在同一块光阳极下采用FTO上沉积约50 nm厚Pt层作为对电极组装的电池中,其开路电压O. 700V,短路电流密度14. 656mA/ cm2,填充因子O. 639,转换效率6. 552%。由此可以得出,本发明中添加剂C12H25NaO4S的使用, 能增强电池性能,且本发明中的对电极和传统的Pt对电极相比,电池的转换效率很接近, 但降低了原料成本和制作成本,且无镀膜处理,工艺简单。实施例2
I)清洗。以碳布和FTO玻璃为基底。对碳布用丙酮侵泡约8小时进行去胶处理,对FTO 玻璃,用棉签蘸取含洗洁精的去离子水溶液,进行擦洗,接着用含洗洁精的去离子水溶液冲洗干净,再依次用去离子水,乙醇,去离子水,丙酮超声清洗20分钟,烘干待用。2)制备光阳极。在干净的FTO玻璃上旋涂100 nm的TiO2致密层,接着在550°C下烧结10分钟,然后在致密TiO2层上涂敷一层DSSC常用的TiO2乳液,接着在500°C下烧结 20分钟形成TiO2多孔层,重复上面涂敷和烧结过程可以控制TiO2多孔层的厚度约12 μ m, 将烧结好的光阳极浸入60°C O. 3 m mol/L的N719染料的乙醇溶液中敏化15个小时以上, 取出室温下风干待用。3)制备对电极。在 20°C下,配制 O. 5 mol/L NiSO4 和 2X 10_3 mol/L 的 C12H25NaO4S 的混合水溶液。用提拉的方法在碳布上制得一层约1.2 μ m(晾干后的厚度)的薄膜,在空气中常温晾干后,在酒精灯的内焰中,加热2分钟,生长得到多孔一维碳复合材料。4)组装。将干净的载玻片、对电极、敏化过的光阳极和遮光板用夹具固定在一起, 干净的载玻片用来隔开对电极与夹具,以便于测试和封装。对电极和光阳极之间滴加聚偏氢氟乙烯-六氟丙烯共聚物[P(VDF-HFP)]准固态电解质。5)测试。在AMl. 5, —倍的太阳光强,遮光板透光面积为O. 25 cm2的条件下对电池的性能进行测试。经过测试发现,当光从光阳极侧入射时,开路电压O. 660V,短路电流密度6. 680mA/cm2,填充因子I. 000,转换效率4. 408%。以上步骤,当只改变步骤3)中的水溶液成份为O. 5 mol/L NiSO4,而不含 C12H25NaO4S时,电池性能为开路电压0.650 V,短路电流密度10. 192 mA/cm2,填充因子 0. 593,转换效率3. 929%。而不涂溶液时,其开路电压0. 590V,短路电流密度8. 900 mA/cm2, 填充因子0. 321,转换效率I. 685%。由此可以得出,本发明中添加剂C12H25NaO4S的使用,能增强电池性能。实施例3
I)清洗。以不锈钢片和FTO玻璃为基底。对不锈钢片,先用砂纸打磨表面除去明显杂质且打磨光滑,再用棉签蘸取含洗洁精的去离子水溶液,擦洗基片,接着用含洗洁精的去离子水溶液冲洗干净,再依次用去离子水,乙醇,去离子水,丙酮超声清洗10分钟,烘干待用。 对FTO玻璃,先用棉签蘸取含洗洁精的去离子水溶液,擦洗基片,接着用含洗洁精的去离子水溶液冲洗干净,再依次用去离子水,乙醇,去离子水,丙酮超声清洗10分钟,烘干待用。2)制备光阳极。在干净的FTO玻璃上旋涂100 nm的TiO2致密层,接着在550°C下烧结10分钟,然后在致密TiO2层上涂敷一层DSSC常用的TiO2乳液,接着在500°C下烧结 30分钟形成TiO2多孔层,重复上面涂敷和烧结过程可以控制TiO2多孔层的厚度约8 μ m,将烧结好的光阳极浸入40°C 0.3 m mol/L的N719染料的乙醇溶液中敏化24个小时以上,取出室温下风干待用。3)制备对电极。首先,在干净的不锈钢片上用磁控溅射的方法沉积约50 nm厚的 Ti 薄膜;接着,在 80°C下,配制 O. I mol/L CoCl2,和 O. 5X 1(T3 mol/L 的 C12H25NaO4S 的混合水溶液。然后,在基底上电镀一层约230nm厚的锡薄膜,在50 80°C热水中漂洗掉电镀液,再电镀一层约280nm厚的镍薄膜,同样在50 80 V热水中漂洗掉电镀液,在空气中常温晾干后,再将配置的溶液用旋涂的方法涂敷在基底上,厚度约220nm(晾干后的厚度),干燥后,用酒精灯加热20秒,生长得到多孔一维碳复合材料。4)组装。将干净的载玻片、对电极、敏化过的光阳极和遮光板用夹具固定在一起, 干净的载玻片用来隔开对电极与夹具,以便于测试和封装。对电极和光阳极之间滴加染料敏化电池常用的液体电解质(碘和碘化锂的液体电解质)。5)测试。在AMl. 5, —倍的太阳光强,遮光板透光面积为O. 25cm2的条件下对电池的性能进行测试。经过测试发现,当光从光阳极侧入射时,开路电压O. 750V,短路电流密度 10. 896mA/cm2,填充因子 O. 639,转换效率 5. 223%。以上步骤,当只改变步骤3)中的水溶液成份为O. I mol/L CoCl2,而不含 C12H25NaO4S时,酒精灯加热40秒,电池性能为开路电压O. 750V,短路电流密度9. 212mA/cm2, 填充因子O. 671,转换效率4. 638%。而不涂溶液,只有电镀,酒精灯加热40秒,其开路电压 O. 710V,短路电流密度10. 348mA/cm2,填充因子O. 651,转换效率4. 786%。由此可以得出, 本发明中添加剂C12H25NaO4S与CoCl2的协同使用,能增强电池性能,且节约了酒精灯加热时间。实施例4:
1)清洗。以金属Cu片和FTO玻璃为基底。对Cu片,先用砂纸打磨表面除去明显杂质且打磨光滑,再用棉签蘸取含洗洁精的去离子水溶液,擦洗基片,接着用含洗洁精的去离子水溶液冲洗干净,再依次用去离子水,乙醇,去离子水,丙酮超声清洗10分钟,烘干待用。对 FTO玻璃,先用棉签蘸取含洗洁精的去离子水溶液,擦洗基片,接着用含洗洁精的去离子水溶液冲洗干净,再依次用去离子水,乙醇,去离子水,丙酮超声清洗10分钟,烘干待用。2)制备光阳极。在干净的FTO玻璃上旋涂100 nm的TiO2致密层,接着在550°C下烧结10分钟,然后在致密TiO2层上涂敷一层DSSC常用的TiO2乳液,接着在500°C下烧结 30分钟形成TiO2多孔层,重复上面涂敷和烧结过程可以控制TiO2多孔层的厚度约14 μ m, 将烧结好的光阳极浸入60°C O. 3 m mol/L的N719染料的乙醇溶液中敏化12个小时以上, 取出室温下风干待用。3)制备对电极。首先,在 80°C 下,配置 O. 2 mol/L Fe2 (SO4) 3,和 I X 1(T3 mol/L 的C12H25NaO4S的混合水溶液。然后,在干净的Cu片上用电镀的方法沉积约1.7 μ m厚的 Ni薄膜,在50 80°C热水中漂洗掉电镀液,接着在基底上电镀一层约230nm的锡薄膜,在 50 80°C热水中漂洗掉电镀液,再电镀一层约840nm厚的镍薄膜,同样在50 80°C热水中漂洗掉电镀液,在空气中常温晾干后,再将配置的溶液用旋涂的方法涂敷在基底上,厚度约 440nm(晾干后的厚度),干燥后,用酒精灯加热20秒,生长得到多孔一维碳复合材料。4)组装。将干净的载玻片、对电极、敏化过的光阳极和遮光板用夹具固定在一起, 干净的载玻片用来隔开对电极与夹具,以便于测试和封装。对电极和光阳极之间滴加染料敏化电池常用的液体电解质(碘和碘化锂的液体电解质)。
5)测试。在AMl. 5, —倍的太阳光强,遮光板透光面积为O. 25cm2的条件下对电池的性能进行测试。经过测试发现,当光从光阳极侧入射时,开路电压O. 770V,短路电流密度
10.000mA/cm2,填充因子 O. 671,转换效率 5. 169%。以上步骤,当只改变步骤3)中的水溶液成份为0.2 mol/L Fe2 (SO4) 3,而不含 C12H25NaO4S时,酒精灯加热40秒,电池性能为开路电压O. 770V,短路电流密度9. 000mA/cm2, 填充因子O. 650,转换效率4. 507%。而不涂溶液,只有电镀时,其开路电压O. 770V,短路电流密度8. 828mA/cm2,填充因子O. 647,转换效率4. 399%。由此可以得出,本发明中添加剂 C12H25NaO4S的使用,能增强电池性能,且节约了酒精灯加热时间。实施例5
I)清洗。以普通载玻片和FTO玻璃为基底。对普通载玻片和FTO玻璃,先用棉签蘸取含洗洁精的去离子水溶液,进行擦洗,接着用含洗洁精的去离子水溶液冲洗干净,再依次用去离子水,乙醇,去离子水,丙酮超声清洗10分钟,烘干待用。2)制备光阳极。在干净的FTO玻璃上旋涂120 nm的TiO2致密层,接着在550°C下烧结10分钟,然后在致密TiO2层上涂敷一层DSSC常用的TiO2乳液,接着在500°C下烧结 30分钟形成TiO2多孔层,重复上面涂敷和烧结过程可以控制TiO2多孔层的厚度约14 μ m, 将烧结好的光阳极浸入60°C 0. 3 m mol/L的N719染料的乙醇溶液中敏化12个小时以上, 取出室温下风干待用。3)制备对电极。在 60°C下,配制 0. 5 mol/L NiSO4 和 2X 10_3 mol/L 的 C12H25NaO4S 的混合水溶液。用刮涂法在载玻片上制得一层薄膜,厚度约I. 5 μ m(晾干后的厚度),在空气中常温晾干后,在酒精灯的内焰中,加热2分钟,生长得到多孔一维碳复合材料。4)组装。将对电极、敏化过的光阳极和遮光板用夹具固定在一起,以便于测试和封装。对电极和光阳极之间滴加染料敏化电池常用的液体电解质(碘和碘化锂的液体电解质)。5)测试。在AMl. 5, —倍的太阳光强,遮光板透光面积为0. 25cm2的条件下对电池的性能进行测试。经过测试发现,当光从光阳极侧入射时,开路电压0. 650V,短路电流密度 0. 240mA/cm2,填充因子 0. 256,转换效率 0. 040%。以上步骤,当只改变步骤3)中的水溶液成份为0.5 mol/L NiSO4,而不含 C12H25NaO4S时,电池性能为开路电压0. 670 V,短路电流密度0. 006 mA/cm2,填充因子0. 247, 转换效率0. 001%。而不涂溶液时,电池没有效率。由此可以得出,本发明中添加剂C12H25NaO4S 的使用,能增强电池性能,制作的一维碳复合材料不仅可以用作催化剂,而且可以作为导电层。实施例6
I)清洗。以工业用金属Ti片和FTO玻璃为基底。对Ti片,先用砂纸打磨表面除去明显杂质且打磨光滑,再用棉签蘸取含洗洁精的去离子水溶液,擦洗基片,接着用含洗洁精的去离子水溶液冲洗干净,再依次用去离子水,乙醇,去离子水,丙酮超声清洗10分钟,接着在稀盐酸中浸泡20分钟除去金属杂质,再用丙酮超声清洗20分钟,烘干待用。对FTO玻璃,先用棉签蘸取含洗洁精的去离子水溶液,擦洗基片,接着用含洗洁精的去离子水溶液冲洗干净,再依次用去离子水,乙醇,去离子水,丙酮超声清洗10分钟,烘干待用。2)制备光阳极。在干净的FTO玻璃上旋涂120 nm的TiO2致密层,接着在500°C下烧结10分钟,然后在致密TiO2层上涂敷一层DSSC常用的TiO2乳液,接着在450°C下烧结 30分钟形成TiO2多孔层,重复上面涂敷和烧结过程可以控制TiO2多孔层的厚度约14 μ m, 将烧结好的光阳极浸入60°C O. 3 m mol/L的N719染料的乙醇溶液中敏化12个小时以上, 取出室温下风干待用。3)制备对电极。首先,在 70°C下,配置 O. 25 mol/L NiCl2,和 2X 1(T3 mol/L 的 C12H25NaO4S的混合水溶液。然后,在干净的Ti片上用磁控溅射的方法沉积一层约20nm厚的锡薄膜,再沉积一层约IOnm厚的镍薄膜,在空气中常温晾干后,再将配置的溶液用旋涂的方法涂敷在基底上,厚度约550nm(晾干后的厚度),干燥后,用酒精灯加热20秒,生长得到多孔一维碳复合材料。4)组装。将干净的载玻片、对电极、敏化过的光阳极和遮光板用夹具固定在一起, 干净的载玻片用来隔开对电极与夹具,以便于测试和封装。对电极和光阳极之间滴加染料敏化电池常用的液体电解质(碘和碘化锂的液体电解质)。5)测试。在AMl. 5, —倍的太阳光强,遮光板透光面积为O. 25cm2的条件下对电池的性能进行测试。经过测试发现,当光从光阳极侧入射时,开路电压O. 810V,短路电流密度
11.244mA/cm2,填充因子 O. 694,转换效率 6. 317%。以上步骤,当只改变步骤3)中的水溶液成份为0.25 mol/L NiCl2,而不含 C12H25NaO4S时,电池性能为开路电压O. 790V,短路电流密度10. 972mA/cm2,填充因子O. 658, 转换效率5. 705%。而不涂溶液,只有磁控溅射的锡,镍膜时,其开路电压O. 780V,短路电流密度10. 816mA/cm2,填充因子O. 692,转换效率5. 836%。由此可以得出,本发明中添加剂 C12H25NaO4S与NiCl2的共同作用,增强了电池性能。实施例7
I)清洗。以金属Cu网和FTO玻璃为基底。对Cu网,先用砂纸打磨表面除去明显杂质且打磨光滑,再用棉签蘸取含洗洁精的去离子水溶液,擦洗基片,接着用含洗洁精的去离子水溶液冲洗干净,再依次用去离子水,乙醇,去离子水,丙酮超声清洗10分钟,烘干待用。对 FTO玻璃,先用棉签蘸取含洗洁精的去离子水溶液,擦洗基片,接着用含洗洁精的去离子水溶液冲洗干净,再依次用去离子水,乙醇,去离子水,丙酮超声清洗10分钟,烘干待用。2)制备光阳极。在干净的FTO玻璃上旋涂100 nm的TiO2致密层,接着在550°C下烧结10分钟,然后在致密TiO2层上涂敷一层DSSC常用的TiO2乳液,接着在500°C下烧结 30分钟形成TiO2多孔层,重复上面涂敷和烧结过程可以控制TiO2多孔层的厚度约14 μ m, 将烧结好的光阳极浸入60°C O. 3 m mol/L的N719染料的乙醇溶液中敏化12个小时以上, 取出室温下风干待用。3)制备对电极。首先,在Cu网上电镀生成约I. 5 μπι厚的Ni薄膜,在50 80°C 热水中漂洗掉电镀液;接着,电镀约230nm厚的锡薄膜,在50 80°C热水中漂洗掉电镀液, 电镀约140nm厚的镍薄膜,在50 80°C热水中漂洗掉电镀液,在空气中常温晾干;接着,在 60°C下,配制 0.15 mol/L NiSO4,0. I mol/L NiCl2 和2父10-3 mol/L 的 C12H25NaO4S 的混合水溶液,然后将配置的溶液用提拉的方法涂敷在基底上,厚度约I. 2 μ m(晾干后的厚度), 干燥后,用酒精灯加热60秒,生长得到多孔一维碳复合材料。4)组装。将干净的载玻片、对电极、敏化过的光阳极和遮光板用夹具固定在一起, 干净的载玻片用来隔开对电极与夹具,以便于测试和封装。对电极和光阳极之间滴加染料敏化电池常用的液体电解质(碘和碘化锂的液体电解质)。5)测试。在AMl. 5, —倍的太阳光强,遮光板透光面积为O. 25 cm2的条件下对电池的性能进行测试。经过测试发现,当光从光阳极侧入射时,开路电压O. 780V,短路电流密度11. 640 mA/cm2,填充因子O. 704,转换效率6. 396% ;当光从对电极侧入射时,开路电压 O. 740V,短路电流密度I. 870 mA/cm2,填充因子O. 677,转换效率O. 937%。以上步骤,当只改变步骤3)中的水溶液成份为O. 15 mol/L NiSO4,0. I mol/ L NiCl2,而不含C12H25NaO4S时,当光从光阳极侧入射时,开路电压O. 780 V,短路电流密度8. 612 mA/cm2,填充因子O. 692,转换效率4. 649% ;当光从对电极侧入射时,开路电压
0.75(^,短路电流密度2.512 mA/cm2,填充因子O. 701,转换效率I. 321%。而不涂溶液,当光从光阳极侧入射时,开路电压O. 810V,短路电流密度6. 312mA/cm2,填充因子O. 711,转换效率3. 636% ;当光从对电极侧入射时,开路电压O. 780V,短路电流密度I. 887mA/cm2,填充因子O. 736,转换效率I. 083%。由此可以得出,当光从光阳极入射时,本发明中添加剂 C12H25NaO4S的使用,增强了电池性能。如果同时考虑光从光阳极和对电极的入射的共同效果,添加剂C12H25NaO4S的使用,也增强了电池性能。
权利要求
1.一种染料敏化太阳能电池中对电极的的制备方法,其特征在于,包括如下步骤1)基底的准备对基底进行清洗,以除去表面的油脂和杂质;对于可以与染料敏化太阳能电池中电解质反应的基底,在清洗后还要沉积不低于50nm厚的镍或钛作为保护层;2)溶液的配制和涂敷溶解过渡金属的一种或多种盐,并在溶液中添加十二烷基硫酸钠,溶液中十二烷基硫酸钠与过渡金属正离子的摩尔比为(0. 004 0. 008) : I ;将配好的溶液涂敷在基底上,然后自然风干,重复涂敷,风干后涂敷层的厚度为200nm 2 y m ;3)酒精灯加热将基底置于酒精灯火焰中,加热10秒 10分钟。
2.根据权利要求I所述的制备方法,其特征在于,所采用的基底为平面状或网状固体。
3.根据权利要求I或2所述的制备方法,其特征在于,沉积保护层的方法为电镀或磁控溅射。
4.根据权利要求I或2所述的制备方法,其特征在于,涂敷过渡金属溶液的方法为旋涂法、提拉法或刮涂法。
5.根据权利要求I或2所述的制备方法,其特征在于,还包括在I)准备好的基底上先后沉积锡层、镍层,其中锡膜厚度为20nm 230nm,镍膜厚度为IOnm 840nm。
6.根据权利要求5所述的制备方法,其特征在于,在I)准备好的基底上沉积锡层、镍层的方法为电镀或磁控溅射。
全文摘要
本发明公开了一种染料敏化太阳能电池中对电极的制备方法,包括基底的准备;过渡金属盐溶液中添加十二烷基硫酸钠,将配好的溶液涂敷在基底上,然后自然风干,重复涂敷,风干后涂敷层的厚度为200nm~2μm;然后将基底置于酒精灯火焰中,加热10秒~10分钟。本发明的优点是通过在过渡金属盐溶液中添加适量十二烷基硫酸钠,使一维碳复合材料形成了导电优良的三维微纳多孔结构,既有高的催化活性,又有小的串联电阻,从而提高电池效率。制备出的电池与常规使用铂作为催化剂的电池具有可比拟的能量转化效率,具有广阔的应用前景。
文档编号H01G9/042GK102592842SQ20121009488
公开日2012年7月18日 申请日期2012年3月31日 优先权日2012年3月31日
发明者方国家, 曾玮, 王静, 陶洪 申请人:武汉大学