用于反差成像的充气微囊组件的制作方法

文档序号:1093699阅读:326来源:国知局
专利名称:用于反差成像的充气微囊组件的制作方法
技术领域
本发明涉及一种组件,这种组件包括作为第一组分的充气微囊和作为第二组分、能够与微囊的外表面相结合,借此改善其物理-化学特性的结构实体。任选地,所述第二组分可包括靶向配体、生物活性剂、诊断剂或它们的任意组合。本发明还涉及包括所述组件的药剂、所述药剂的用途、所述组件和药剂的制备方法以及包括所述组件的诊断盒。本发明的组件可用作诊断和/或治疗活性药剂中的活性组分,尤其是用于增强超声反差成像领域中的成像,这些成像技术包括定向超声成像和/或超声介导给药及其它成像技术例如分子共振成像(MRI)或核成像。
背景技术
近年来超声造影剂的快速发展产生了许多不同药剂,这些药剂可用于人或动物体的器官和组织的超声成像。将这些药剂设计成主要用作与医学回波描记设备结合使用的静脉或动脉血管内注射剂,所述设备采用例如B-模式成像(基于反向散射组织特性的空间分布)或多普勒信号处理(基于用来测定血液或液体流动参数的超声回声的连续波或脉冲多普勒处理)。
可用作超声造影剂的一类血管注射剂包括分散在含水介质中的具有几微米直径的气泡悬浮体。
载体液中的气泡悬浮液用作有效的超声反射体,这在本领域内是公知的。在早期观察到水溶液的快速静脉注射由于形成气泡能够导致溶解气体从溶液中逸出之后,开发出微泡悬浮液作为用于增强超声成像的回波药物。由于这些血管气泡与血液在声阻抗上非常不同,因此发现它们是极好的超声反射体。载体液中的气泡悬浮体注射到活生物体的血流内,能够大大加强超声回波描记成像,由此增强体内器官的可视性。由于器官和深位组织的成像在建立医学诊断时是至关重要的,因此已付出了许多努力以开发稳定的高浓缩气泡悬浮体,所述气泡悬浮体必须同时具备制备和施用简单的优点,含有最少的失活物种,并且能够长期贮存和简单施用。
然而,对游离气泡在含水介质中的简单分散体的实际兴趣有限,因为这些气泡的稳定性通常不足以用作超声造影剂。
因此,研究者的兴趣已经体现在用于回波描记及其它超声研究的气泡的稳定方法上,所述方法例如利用乳化剂、油、增粘剂或糖,或者将气体或其前体捕获或用胶囊包裹在各种系统中。这些稳定的气泡在本领域内通常称作“微囊”,并且可以分成两个主要类别。
第一类稳定气泡或微囊在本领域内通常称作“微泡”,并且包括含水悬浮体,在悬浮体中,气泡被包括设置在气-液界面的稳定两性材料的非常薄的被膜(膜)界定在气/液界面上。微泡悬浮体一般是这样制备的即,使粉末状的两性材料(例如冻干的预制脂质体或冻干或喷雾干燥的磷脂溶液)与空气或其它气体接触,然后再与含水载体接触,同时进行搅拌,从而产生微泡悬浮体。这样就可以施用了,优选在悬浮体制成之后尽快施用。
气体微泡的含水悬浮体及其制备的实施例如公开在US5,271,928、US 5,445,813、US 5,413,774、US 5,556,610、5,597,549、US 5,827,504和WO 04/069284中,这些参考文献在此全部引入本文。
第二类微囊在本领域内通常称作“微球”或“微胶囊”,并且包括这样的悬浮体在该悬浮体内,气泡被脂质或天然或合成聚合物固态材料被膜所包围。微球及其制备的实施例如公开在US 5,711,933和US 6,333,021中,这些参考文献在此全部引入本文。
携带总净电荷的微囊也是公知的(例如参见国际专利申请WO 97/29783,该参考文献在此并入本文);这些微囊的外被膜含有能够将所需的总电荷赋予最终微囊的离子化合物。
对这些充气微囊药剂的进一步兴趣最近体现在,对用于改善诊断效果和/或治疗目的充气微囊药剂的改进上。
例如,微囊可与特定组分(称作“靶向配体”)相结合(例如通过包括在其周边被膜中),所述特定组分能够连接到病人体内的确定靶物(例如特定病原部位)上。这些药剂在本领域内通常称作“定向微囊”。定向微囊、靶向配体及其制备的实施例如公开在国际专利申请WO 98/18051中。
另一个改进药剂的实例是那些治疗剂与微囊相结合的药剂。当包括微囊的药剂到达病原部位时,例如通过施加能够分裂囊泡的受控声能、由此局部释放治疗剂而有益地释放药物。这种技术在本领域内通常称作“超声介导的药物释放”。包含治疗剂的微囊药剂的实例如公开在国际专利申请WO 94/28873中。
本领域的进一步开发集中在组件的制备上,其中微囊与携带所需治疗剂或靶向化合物的第二组分相结合。
例如,WO 99/39738公开了一种包括充气微囊和与其相结合的液体填充的脂质体的组件,其中脂质体内包括治疗活性物质。脂质体通过与微囊简单混合或者通过共轭偶之间的连接,而结合到微囊上。在所述共轭偶中,微囊和脂质体每个都配有携带所述共轭偶(例如生物素和亲和素或链霉亲和素)的两个相应互补部分之一的组分。
WO 03/015831公开了一种药剂,其包括与脂质体相结合的充气微囊(即该申请中的“微球”),被称作微球-脂质体组合物。组合物的脂质体可包括药物和/或靶向部分。形成组合物的微囊和脂质体用相同的原料制成;组合物是通过以下步骤获得的制备包含脂质混合物的水溶液,然后将所述溶液引入包括所需气体的密封瓶中,最后搅拌该溶液。如此获得的组合物因此是一种化学性质相同的微囊与脂质体的简单混合物。尤其是,所述参考文献中没有公开微囊与脂质体之间的具体化学或物理作用。
而且,国际专利申请WO 99/53963公开了一种复合制剂,其包括第一组合物和第二组合物,所述第一组合物包括分散在含水介质中并被一种材料稳定的充气微囊,所述第二组合物是包括一种使乳剂稳定的材料的水包油乳剂。使微囊和分散的油相稳定的表面材料彼此具有亲和力。在一个实施方案中,所述亲和力是通过采用具有相反电荷的表面材料以使它们彼此发生静电相互作用并结合而获得的。或者是,各个表面材料的联合可包括通过化学或生物结合而能够相互作用的化合物。乳剂的油是能够在体内产生气体或蒸汽压并称作“可分散组分”的物质。所述乳化物液滴与微囊的联合通过气体或蒸汽分子从所述物质向其内分散,能够确定分散的气相在微囊中的可控生长。
发明概述申请人现在已经发现一种用于药物活性药剂的新组件,其包括通过充分的静电相互作用而与第二组分相结合的充气微囊,所述第二组分任选包括靶向配体、生物活性剂、诊断剂或这些物质的任意组合。
本发明一方面涉及一种包括充气微囊和与所述微囊相结合的组分的组件,其中所述微囊携带第一总净电荷,所述组分携带符号与所述第一净电荷相反的第二总净电荷,所述相结合组分包括生物相容的表面活性剂,并具有100nm或更小的直径。
按照一个优选实施例,所述相结合组分包括靶向配体、生物活性剂、诊断剂或这些物质的任意组合。
优选地,所述表面活性剂是乳化剂、分散剂或它们的任意组合,尤其优选的是两性材料。
在本说明书以下的描述中,组件的第二组分被称作微囊相结合组分(“MAC”)。
按照本发明的一个实施方案,所述超声造影剂是分散在药物可接受的含水载体中的多个所述组件的悬浮体形式。
按照本发明的一个替换型实施方案,所述超声造影剂是冻干组合物形式。
本发明另一方面涉及一种如上所述的组件的制备方法,其包括将具有充气微囊或其前体的制剂与包含所述第二组分或其前体的制剂进行混合。
鉴于本申请的目的,术语“充气微囊的前体”在其含义内包括能够形成充气微囊悬浮液的任何中间物质、组合物、药剂或结构,例如包括能够与含水载体重组以形成所述微囊悬浮液的冻干药剂,或者能够进行冻干处理以获得冻干产品、冻干产品然后与含水载体重组以形成所述悬浮液的微乳剂。
同样,术语“第二组分的前体”,包括能够形成所述第二组分的任何中间物质、组合物、药剂或结构,例如包括可重组成包含所述MAC的含水悬浮液的冻干组合物。
按照本发明的一个实施方案,本发明的组件可通过以下步骤获得1)制备包括充气微囊的第一含水悬浮液;2)制备包括将要与所述充气微囊相结合的组分的第二含水悬浮液;3)将所述两种悬浮液混合,从而获得包括所述组件的含水悬浮液。
任选地,在制备第一和/或第二悬浮液之后可包括洗涤步骤。也可实施最终悬浮液的任选洗涤步骤。术语“洗涤步骤”在其含义内包括,从所需化合物(例如微囊、MAC或组件)的悬浮液中分离和/或至少部分除去过量的未联合材料、组分、颗粒等的任何方法或工艺。合适的分离方法包括例如倾析、离心、超滤或微滤。
按照一个替换型实施方案,本发明的组件可通过以下步骤获得1)制备包括充气微囊的第一含水悬浮液;2)冻干所述悬浮液,从而获得第一冻干产物;3)制备包括将要与所述充气微囊相结合的组分的第二含水悬浮液;4)冻干所述悬浮液,从而获得第二冻干产物;5)在气体的存在下,将所述第一和所述第二冻干产物与生理上可接受的含水载体进行重组,从而获得包括组件的含水悬浮液。
任选地,在制备第一和/或第二悬浮液之后可包括洗涤步骤。也可实施最终悬浮液的任选洗涤步骤。
按照一个优选实施方案,制备工艺的最后步骤5)包括以下步骤a)将第二冻干产物与生理上可接受的含水载体进行重组,从而获得包括将要与充气微囊相结合的组分的悬浮液,以及b)在气体的存在下,将第一冻干产物与所述悬浮液进行重组。
按照进一步优选的实施方案,所述组件是作为冻干组合物通过以下步骤获得的1)制备包括水不混溶的有机溶剂、磷脂和冻干保护剂(lyoprotective)的含水乳剂;2)制备包括将要与充气微囊相结合的组分的含水悬浮液;3)将所述含水悬浮液与所述含水乳剂进行混合;以及4)将混合物冻干,以除去水和有机溶剂,从而获得包括所述组件的冻干产品。
通过在气体和含水载体的存在下搅拌所述冻干产品,所获得的冻干产品能够重组成包括本发明组件的含水悬浮液。
本发明另一方面涉及一种超声诊断成像方法,其包括施用反差增强量的如上定义组件的含水悬浮液,该溶液中任选包括靶向配体。
本发明另一方面涉及一种治疗方法,其包括施用有效治疗量的如上定义的包括生物活性剂的组件的含水悬浮液。
本发明还有另一方面涉及一种药盒,其包含以下任何形式的所述组件组分a)作为两个独立的微囊和MAC悬浮液;b)作为两个组分的单独冻干制剂,任选地与用于重组的含水载体在一起;或者c)作为组件的冻干制剂,与用于重组的含水载体在一起。
按照本发明组件的优点是,通过采用一般用于形成微囊被膜的常规组分、而无需将附加组分或部分引入所述被膜(否则可能削弱微囊的稳定性),可实现微囊与MAC之间的静电相互作用。
所获得的组件一旦施用到病人体内,能够有益地改进或调节充气微囊的行为(例如从血流循环中的廓清率)。例如,包括带正电荷的微囊和带负电荷的MAC的组件,可用来施用带正电荷的微囊制剂,然而所述带正电荷的微囊制剂一旦进入体内,就表现出类似于带负电荷微囊的行为。或者是,包括带负电荷的微囊和带正电荷的MAC的组件,可用来施用带负电荷的微囊制剂,然而所述带负电荷的微囊制剂一旦进入体内,就表现出类似于带正电荷微囊的行为。此外,可使所需的靶向化合物或药物活性剂与微囊相结合,而不会减小其稳定性(尤其是围绕气体的边界层的稳定性),因为所述靶向化合物或药物活性剂实际上与组件的第二组分相结合,其稳定性基本上不受所述化合物或活性剂的存在的影响。
本发明的进一步优点是,在为了不同目的制备不同的组件时具有相当大的灵活性。实际上,带电微囊的一个基本制剂可与不同的带相反电荷的MAC制剂(如果需要,可同时不止一个)相结合,这取决于具体的诊断/治疗需要。例如,可使携带靶向配体(例如用于将组件结合到特定病原部位)的第一MAC制剂和包括生物活性剂(一旦组件连接到特定病原部位上就可释放)的第二MAC制剂与微囊制剂相结合。
此外,申请人已经观察到,本发明的组件相对于单独的微囊表现出更强的耐压力。


图1表示出由包括相同材料但不同量的微囊和MAC形成的不同组件的组合物。
图2和3表示出带电微囊和具有所带电荷与微囊相反的MAC的相应组件的体内行为。
发明详述按照本发明的组件一般包括携带总净电荷的充气微囊形式的第一组分(也被认作“载体”组分),和与所述载体组分(MAC)相结合的直径小于100nm的第二组分,所述第二组分携带符号与第一组分相反的总净电荷,并包括至少一种表面活性剂、尤其是乳化剂和/或分散剂,更优选两性化合物。
优选地,MAC包含所需的靶向配体、生物活性剂、诊断剂或它们的组合。
微囊相结合组分(MAC)优选是通过联合一种或多种表面活性剂的多个分子而形成的稳定超分子结构形式。优选地,所述超分子结构包括携带净电荷的至少一种表面活性剂,更优选的是离子表面活性剂。所述稳定超分子结构能够例如通过所述分子的疏水部分之间的疏水性作用来确定。按照一个特别优选的实施方案,MAC是胶束形式的。或者是,所述MAC可由一个聚合离子表面剂活性分子来形成,所述分子任选地被官能化为包括合适的靶向、生物活性和/或诊断部分。
本发明的组件可用来制备用于诊断和/或治疗方法的药物活性药剂。
术语“药物活性药剂”在其含义内包括,在按需以有效量施用给病人时能够发挥药效(例如诊断、生物活性和/或治疗效果)的任何药剂或者其前体,包括诊断、生物活性和/或治疗活性药剂。同样,术语“药物活性”在指化合物、试剂或药盒时,在其含义内包括诊断、生物活性和/或治疗化合物、试剂或药盒。
术语“靶向配体”在其含义内包括,具有或者能够促进本发明组件的向活体内的任何生物或病原部位的靶向活动的任何化合物、部分或残基。靶向配体可结合的靶物包括组织例如心肌组织(包括心肌的细胞和心肌细胞(cardiomyocite)、膜组织(包括内皮和上皮)、层、结缔组织(包括间质组织)或肿瘤;血块;和受体例如肽激素、神经递质、抗原、补体片段和免疫球蛋白的细胞表面受体、以及类固醇激素的胞质受体。
术语“生物活性剂”在其含义内包括,可用于任何治疗用途(例如病人的疾病治疗方法)的任何物质、组合物或颗粒,以及能够在体外和/或体内发挥或负责发挥生物效应的任何物质。生物活性剂的实例是药物、药品、蛋白质、天然或合成肽(包括寡肽和多肽)、维生素、类固醇和遗传材料(包括核苷、核苷酸以及多核苷酸)。病人的治疗方法或治疗法一般包括生物活性剂的使用。
术语“诊断剂”在其含义内包括可与诊断方法(包括病人的内部区域的成像和/或诊断病人疾病的存在与否)结合使用的任何化合物、组合物或颗粒。示范诊断剂包括例如与磁共振成像、X-射线成像(尤其是计算机化X线断层照相术)、光学成像、核成像或分子成像结合用于病人的造影剂,包括例如磁铁矿纳米颗粒。
“可生物相容的”或“生理上可接受的”是指,能够以所选量给病人施用而不会负面影响或实质性改变其生物体的健康或正常机能(例如,没有确定任何的不可接受的毒性状态、不会导致任何极端或失控的变态反应或者没有确定任何异常病理状况或疾病状态)的任何化合物、材料或药剂。
术语“表面活性剂”是指能够使通常不混溶材料的混合物稳定的任何化合物,所述混合物例如有两种不混溶液体(例如水和油)的混合物、液体与气体(例如水中的气体微泡)的混合物、或液体与不溶性颗粒(例如水中的金属纳米颗粒)的混合物。这些化合物在本领域中通常也称作“乳化剂”或“分散剂”。优选地,所述化合物是“两亲性化合物”,即具有带亲水性极性头部(例如极性或离子基团)和疏水性有机尾部(例如碳氢链)的分子的化合物。表面活性剂、尤其是乳化和/或分散剂的实例有(C2-C10)有机酸、包括(C12-C24)、优选(C14-C22)脂族链的有机脂肪酸、这些物质的药物可接受的(碱)盐、以及与聚氧乙烯的相应酯,例如棕榈酸、硬脂酸、花生四烯酸、油酸、十二烷酸钠、草酸钠或酒石酸钠,或聚氧乙烯脂肪酸硬脂酸酯;聚离子(碱性)盐,例如柠檬酸钠、聚丙烯酸钠、磷酸钠;有机胺、酰胺、四价铵(卤)盐,优选含有(C8-C22)碳氢链,包括它的聚氧乙基化衍生物,例如乙醇胺、三乙醇胺、烷基胺、链烷醇酰胺、氯化三甲基烷基胺、聚氧乙基化烷基胺、聚氧乙基化链烷醇酰胺;氨基酸;磷脂,例如磷脂酰胆碱、乙基磷脂酰胆碱、磷脂酰甘油、磷脂酸、磷脂酰乙醇胺、磷脂酰丝氨酸或鞘磷脂的脂肪酸二酯;单-或寡-糖与(C12-C24)、优选(C14-C22)有机脂肪酸的酯,例如失水山梨糖醇月桂酸酯;聚合表面活性剂,即包括疏水性和亲水性部分的嵌段共聚物,例如环氧乙烷/环氧丙烷嵌段共聚物;有饥磺酸酯,例如碱性(例如钠)(C12-C24)烷基、优选(C14-C22)烷基磺酸盐;全氟有机酸,例如全氟辛酸;以及这些物质的混合物。与具有微米级尺寸的微囊相反,由于MAC的纳米级尺寸,因此其也被称作组件的纳米组分。微囊的尺寸一般至少为0.5μm,优选为0.8μm并至多例如20μm,更优选的是约1-8μm;在例如借助于库尔特计数器测定的众多微囊中相应的平均直径(DN)优选为至少0.8μm,更优选为至少1μm(高达例如约8μm),并甚至更优选的是约1-约5μm。
通常,根据相应的制备方法,微囊和MAC是作为具有或多或少窄的尺寸分布的一个粒子群而获得的。由此,为了比较不同群体的微囊或MAC,通常采用所述分布的平均值。正如本领域技术人员所公知的,微米/纳米颗粒的尺寸及其相应的大小分布可以用许多参数来表征,最常使用的是按数目计的平均直径(DN)、按数目计的中值直径(DN50)、按体积计的平均直径(DV)和按体积计的中值直径(DV50)。虽然按数目计的直径指示出颗粒的平均数尺寸,但是按体积计的直径提供了颗粒的总体积在整个群体中是如何分布的信息。由于在小体积颗粒群体中极少数大体积颗粒的存在,可导致相应的DV值向高值漂移,因此有时用DV50值评估颗粒群体的分布更便利些。DV50是表示颗粒内部体积总数的一半存在于具有低于DV50直径的颗粒中的计算值;这使得在大小分布的评估中偶然形成的大体积颗粒的作用减小。为了清楚起见,单一大小的颗粒显示出相同的DN、DN50、DV和DV50值。另一方面,颗粒分布范围的增宽将导致具有各自比例的相应偏差的这些不同值之间具有更大的差异(例如,DV/DN之比增大)。例如,主要含有小颗粒(例如具有2μm左右直径的颗粒)和少量大颗粒(例如具有8μm以上直径的颗粒)的颗粒群,显示出比DN值更高的DV或DV50值,从而Dv/DN或Dv50/DN之比相应更高。
组件的两个组分之间的静电相互作用基本上是通过采用携带第一净电荷的第一分子化合物(包括在微囊的被膜中)和携带符号与第一净电荷相反的第二净电荷的第二分子化合物(包括在MAC结构中)而获得的。然后具有第一总净电荷的微囊和具有符号与第一净电荷符号相反的第二总净电荷的MAC通过静电相互作用彼此相结合,从而获得按照本发明的组件。
形成按照本发明组件的第一组分的充气微囊,可以是本领域内公知的携带总净电荷的任何微囊。微囊的优选实例是微泡和微球(或微胶囊)。
微泡合适的充气微囊的第一实例以下将称作“充气微泡”。
可用于制备本发明组件的充气微泡通常是分散在含水悬浮液中的气泡,所述悬浮液被位于气-液界面、包括两性(成膜)化合物的(非常薄的)被膜所稳定。所述稳定被膜(在本领域内有时称作“渐消被膜”)通常具有小于5nm、一般为约2-3nm的厚度,由此经常实际上基本为单分子层。包括在被膜中的至少一部分两性材料是由带电分子构成的,于是将所需的总净电荷赋予微泡被膜。
包括在微囊被膜中的两性化合物可以是合成或天然发现的生物相容化合物,并且可包括例如成膜脂质,尤其是磷脂。两性化合物的实例包括例如磷脂;溶血脂质;脂肪酸,例如棕榈酸、硬脂酸、花生四烯酸或油酸;携带聚合物的脂质,例如壳质、透明质酸、聚乙烯吡咯烷酮或聚乙二醇(PEG)(也称作“pegylated脂质”);携带磺化单-、二-、寡-或多糖的脂质;胆固醇、胆固醇硫酸酯或胆固醇半琥珀酸酯;维生素E半琥珀酸酯;具有醚或酯连接的脂肪酸的脂质;聚合脂质;联乙醯磷酸酯;联十六烷基磷酸酯;硬脂胺;神经酰胺;聚氧乙烯脂肪酸酯(例如聚氧乙烯脂肪酸硬酯酸酯)、聚氧乙烯脂肪醇、聚氧乙烯脂肪醇醚、聚氧乙基化失水山梨糖醇脂肪酸酯、甘油聚乙二醇蓖麻油酸酯、乙氧基化大豆甾醇、乙氧基化蓖麻油或环氧乙烷(EO)和环氧丙烷(PO)的嵌段共聚物;甾醇脂族酸酯,包括胆固醇丁酸酯、胆固醇异丁酸酯、胆固醇棕榈酸酯、胆固醇硬脂酸酯、羊毛甾醇乙酸酯、麦角甾醇棕榈酸酯或植物甾醇异丁酸酯;糖酸的甾醇酯,包括胆固醇葡糖苷酸、羊毛甾醇葡糖苷酸、7-脱氢胆固醇葡糖苷酸、麦角甾醇葡糖苷酸、胆固醇葡糖酸酯、羊毛甾醇葡糖酸酯或麦角甾醇葡糖酸酯;糖酸和醇的酯,包括月桂基葡糖苷酸、硬脂酰葡糖苷酸、肉豆蔻酰葡糖苷酸、月桂基葡糖酸酯、肉豆蔻酰葡糖酸酯或硬脂酰葡糖酸酯;糖与脂族酸的酯,包括蔗糖月桂酸酯、果糖月桂酸酯、蔗糖棕榈酸酯、蔗糖硬脂酸酯、葡糖醛酸、葡糖酸或多糖醛酸;皂角苷,包括萨洒皂草配基、菝葜配基、常春配基、齐墩果酸或毛地黄毒苷配基;甘油或甘油酯,包括甘油三棕榈酸酯、甘油二硬脂酸酯、甘油三硬脂酸酯、甘油二肉豆蔻酸酯、甘油三肉豆蔻酸酯、甘油二月桂酸酯、甘油三月桂酸酯、甘油二棕榈酸酯;长链醇,包括正-癸醇、月桂醇、肉豆蔻醇、十六醇或正-十八醇;6-(5-胆甾-3β-氧)-1-硫代-β-D-吡喃半乳糖苷;双半乳糖二甘油酯;6-(5-胆甾-3β-氧)己基-6-氨基-6-脱氧-1硫代-β-D-吡喃半乳糖苷;6-(5-胆甾-3β-氧)己基-6-氨基-6-脱氧-1-硫代-β-D-吡喃甘露糖苷;12-(((7’-二乙基氨香豆素-3-基)羰基)甲基氨)十八酸;N-[12-(((7’-二乙基氨香豆素-3-基)羰基)甲基氨)十八酰基]-2-氨基棕榈酸;N-琥珀酰-二油酰基磷脂酰乙醇胺;1,2-二油酰基-sn-甘油;1,2-二棕榈酰基-sn-3-琥珀酰甘油;1,3-二棕榈酰基-2-琥珀酰甘油;1-十六烷基-2-棕榈酰基甘油磷乙醇胺或棕榈酰基高半胱氨酸;包括至少一个(C10-C20)、优选(C14-C18)烷基链的烷基铵盐,例如硬脂酰氯化铵、十六烷基氯化铵、二甲基双十八烷基溴化铵(DDAB)、十六烷基三甲基溴化铵(CTAB);包括一个或优选包括两个(C10-C20)、优选(C14-C18)酰基链(此链通过(C3-C6)亚烷基桥连接到N原子上)的三价或四价铵盐,例如1,2-二硬脂酰基-3-三甲基铵-丙烷(DSTAP)、1,2-二棕榈酰基-3-三甲基铵-丙烷(DPTAP)、1,2-二油酰基-3-三甲基铵-丙烷(DOTAP)、1,2-二硬脂酰基-3-二甲基铵-丙烷(DSDAP);以及这些物质的混合或组合。
根据组分的组合以及微泡的制造工艺,以上列出的示范化合物可用作形成微囊被膜的主要化合物或用作简单的添加剂,因此仅以极小的量存在。
按照一个优选实施方案,至少一个形成微囊被膜的化合物是磷脂,并且任选地是与任何其它上述提到的成膜材料的混合物形式。按照本发明的描述,术语磷脂意在包含任何两性磷脂化合物,其分子能够在最终的微泡悬浮液中的气-液边界界面形成稳定材料膜(一般是单分子层的形式)。据此,这些材料在本领域内也称作“成膜磷脂”。
两性磷脂化合物一般含有至少一个磷酸基和至少一个、优选两个亲脂长链碳氢基团。
合适磷脂的实例包括甘油和一个或优选两个(等同或不同)脂肪酸残基的酯以及甘油和磷酸的酯,其中磷酸残基又与亲水基团结合,例如胆碱(磷脂酰胆碱-PC)、丝氨酸(磷脂酰丝氨酸-PS)、甘油(磷脂酰甘油-PG)、乙醇胺(磷脂酰乙醇胺-PE)、纤维醇(磷脂酰纤维醇)等基团。磷脂与脂肪酸的仅仅一个残基的酯在本领域内通常称作磷脂的“溶血”形式。存在于磷脂中的脂肪酸残基通常是长链脂族酸,一般含有12-24个、优选14-22个碳原子;脂族链可含有一个或多个不饱和基团,或者优选地完全饱和基团。包括在磷脂中的合适脂肪酸的实例有,例如月桂酸、肉豆蔻酸、棕榈酸、硬脂酸、花生四烯酸、山萮酸、油酸、亚油酸和亚麻酸。优选的是采用例如肉豆蔻酸、棕榈酸、硬脂酸和花生四烯酸之类的饱和脂肪酸。
磷脂的进一步实例是磷脂酸,即甘油-磷脂酸和脂肪酸的二酯;鞘脂类例如鞘磷脂,即甘油二酯与脂肪酸的残基被神经酰胺链取代的那些磷脂酰胆碱类似物;心磷脂,即1,3-二磷脂酰甘油与脂肪酸的酯;糖脂例如神经节苷脂GM1(或GM2)或脑苷脂类;糖脂;硫苷脂和糖鞘脂。
正如此处所用的,术语磷脂包括能够单独使用或作为混合物使用的天然生成的、半合成或合成制备产物。
天然生成的磷脂实例有,天然磷脂酰胆碱(磷脂酰胆碱(PC)衍生物)例如一般为大豆或蛋黄卵磷脂。
半合成磷脂的实例有,天然生成的磷脂酰胆碱的部分或完全氢化衍生物。优选的磷脂是磷脂酰胆碱、乙基磷脂酰胆碱、磷脂酰甘油、磷脂酸、磷脂酰乙醇胺、磷脂酰丝氨酸或鞘磷脂的脂肪酸二酯。
优选磷脂的实例如有二月桂酰基-磷脂酰胆碱(DLPC)、二肉豆蔻酰基-磷脂酰胆碱(DMPC)、二棕榈酰基-磷脂酰胆碱(DPPC)、二花生四烯酰基-磷脂酰胆碱(DAPC)、二硬脂酰基-磷脂酰胆碱(DSPC)、二油酰基-磷脂酰胆碱(DOPC)、1,2二硬脂酰基-sn-甘油-3-乙基胆碱磷酸(乙基-DSPC)、双十五酰-磷脂酰胆碱(DPDPC)、1-肉豆蔻酰-2-棕榈酰-磷脂酰胆碱(MPPC)、1-棕榈酰-2-肉豆蔻酰-磷脂酰胆碱(PMPC)、1-棕榈酰-2-硬脂酰-磷脂酰胆碱(PSPC)、1-硬脂酰-2-棕榈酰-磷脂酰胆碱(SPPC)、1-棕榈酰-2-油基磷脂酰胆碱(POPC)、1-油基-2-棕榈酰-磷脂酰胆碱(OPPC)、二月硅酰-磷脂酰胆碱(DLPC)及其碱金属盐、二花生四烯酰基磷脂酰甘油(DLPG)及其碱金属盐、二肉豆蔻酰基磷脂酰甘油(DMPG)及其碱金属盐、二棕榈酰基磷脂酰甘油(DPPG)及其碱金属盐、二硬脂酰基磷脂酰甘油(DSPG)及其碱金属盐、二油酰基-磷脂酰甘油(DOPG)及其碱金属盐、二肉豆蔻酰基磷脂酸(DMPA)及其碱金属盐、二棕榈酰基磷脂酸(DPPA)及其碱金属盐、二硬脂酰基磷脂酸(DSPA)、二花生四烯酰基磷脂酸(DAPA)及其碱金属盐、二肉豆蔻酰基磷脂酰乙醇胺(DMEC)、二棕榈酰基磷脂酰乙醇胺(DPPE)、二硬脂酰基磷脂酰乙醇胺(DSPE)、二油基磷脂乙醇胺(DOPE)、二花生四烯酰基磷脂酰乙醇胺(DAPE)、二亚麻酰基磷脂酰乙醇胺(DLPE)、二肉豆蔻酰基磷脂酰丝氨酸(DMPS)、二花生四烯酰基磷脂酰丝氨酸(DAPS)、二棕榈酰基磷脂酰丝氨酸(DPPS)、二硬脂酰基磷脂酰丝氨酸(DSPS)、二油酰基磷脂酰丝氨酸(DOPS)、二棕榈酰基鞘磷脂(DPSP)和二硬脂酰基鞘磷脂(DSSP)。
术语磷脂进一步包括改性磷脂,例如亲水基又结合到另一亲水基上的磷脂。改性磷脂的实例有,用聚乙二醇(PEG)改性的磷脂酰乙醇胺,即亲水的乙醇胺部分连接到不同分子量(例如300-5000道尔顿)的PEG分子上的磷脂酰乙醇胺,例如具有PEG聚合物附着到其上的DPPE-PEG或DSPE-PEG,即DPPE(或DSPE)。例如,DPPE-PEG2000是指具有平均分子量约2000的PEG聚合物附着到其上的DPPE。
特别优选的磷脂是DAPC、DSPC、DPPA、DSPA、DMPS、DPPS、DSPS和乙基-DSPC。最优选的是DAPC或DSPC。
也可以采用磷脂混合物,例如DPPC、DSPC和/或DAPC与DSPS、DPPS、DSPA、DPPA、DSPG、DPPG、乙基-DSPC和/或乙基-DPPC的混合物。
在一些实施方案中,磷脂是微泡的稳定被膜的主要成分,至少占形成充气微泡被膜的成分总量的50%(w/w)。在一些优选实施方案中,基本上被膜全体(即至少为90%,并且高达100%,按重量计)都是由磷脂形成的。
磷脂可便利地以与上述列出的任何两性化合物混合的形式来使用。由此,例如,磷脂(例如胆固醇、麦角固醇、植物甾醇、谷甾醇、羊膜甾醇、维生素E、丙基五倍子酸酯或棕榈酸抗坏血酸酯)、脂肪酸例如肉豆蔻酸、棕榈酸、硬脂酸、花生四烯酸及其衍生物或者丁基化羟基甲苯和/或其它非磷脂化合物,可任选地加入到一种或多种上述磷脂中,所占的比例为0-50%、优选高达25%(按重量计)。特别优选的是棕榈酸。
为了将所需的总净电荷赋予微泡,被膜应该包括携带总净电荷的至少一个组分,尤其是带电的两性材料,优选脂质或磷脂。
携带总负电荷的磷脂实例是,磷脂酰丝氨酸的衍生物、尤其是它的脂肪酸二酯,例如DMPS、DPPS、DSPS;磷脂酸的衍生物、尤其是它的脂肪酸二酯,例如DMPA、DPPA、DSPA;磷脂酰甘油的衍生物、尤其是它的脂肪酸二酯,例如DMPG、DPPG和DSPG。改性的磷脂、尤其是PEG-改性的磷脂酰乙醇胺例如DMPE-PEG2000、DMPE-PEG3000、DMPE-PEG4000、DPPE-PEG5000、DPPE-PEG2000、DPPE-PEG3000、DPPE-PEG4000、DPPE-PEG5000、DSPE-PEG2000、DSPE-PEG3000、DSPE-PEG4000、DSPE-PEG5000、DAPE-PEG2000、DAPE-PEG3000、DAPE-PEG4000或DAPE-PEG5000,也可用作带负电荷的分子。以上提到的磷脂的溶血形式例如溶血磷脂酰丝氨酸衍生物(例如溶血-DMPS、-DPPS或-DSPS)、溶血磷脂酸衍生物(例如溶血-DMPA、-DPPA或-DSPA)和溶血磷脂酰甘油衍生物(例如溶血-DMPG、-DPPG或-DSPG),也可有益地用作带负电荷的化合物。带负电荷的脂质的实例是胆汁酸盐例如胆酸盐、脱氧胆酸盐或甘氨胆酸盐;和(C12-C24)、优选(C14-C22)脂肪酸盐例如棕榈酸盐、硬脂酸盐、1,2-二棕榈酰-sn-3-琥珀酰甘油盐或1,3-二棕榈酰-2-琥珀酰甘油盐。
优选地,带负电荷的化合物选自以下物质DPPA、DPPS、DSPG、DSPE-PEG2000、DSPE-PEG5000或这些物质的混合物。
带负电荷的组分一般与相应的正抗衡离子相结合,所述抗衡离子可以是单-(例如碱金属或氨)、二-(例如碱土金属)或三-价(例如铝)。抗衡离子优选选自于碱金属阳离子,例如Li+、Na+或K+,更优选Na+。
携带总正电荷的磷脂实例是,乙基磷脂酰胆碱的衍生物,尤其是乙基磷脂酰胆碱与脂肪酸的酯,例如1,2-二硬脂酰-sn-甘油基-3-乙基胆碱磷酸(乙基-DSPC或DSEPC)、1,2-二棕榈酰-sn-甘油基-3-乙基胆碱磷酸(乙基-DPPC或DPEPC)。负抗衡离子优选卤族离子,尤其是氯或溴。带正电荷的脂质实例有,包括至少一个(C10-C20)、优选(C14-C18)烷基链、具有卤族抗衡离子(例如氯或溴)的烷基铵盐,例如硬脂酰氯化铵、十六烷基氯化铵、二甲基双十八烷基溴化铵(DDAB)、十六烷基三甲基溴化铵(CTAB)。带正电荷的脂质的进一步实例有,包括一个或优选两个通过(C3-C6)亚烷基桥连接到N原子上的(C10-C20)、优选(C14-C18)酰基链、具有卤族抗衡离子(例如氯或溴)的三价或四价铵盐,例如1,2-二硬脂酰-3-三甲基氨-丙烷(DSTAP)、1,2-二棕榈酰-3-三甲基氨-丙烷(DPTAP)、1,2-油酰-3-三甲基氨-丙烷(DOTAP)、1,2-二硬脂酰-3-二甲基氨-丙烷(DSDAP)。
优选将DSEPC、DPEPC和/或DSTAP用作微囊被膜中的带正电荷的化合物。
带正电荷的组分一般与相应的负抗衡离子相结合,所述负抗衡离子可以是单-(例如卤素)、二-(例如硫酸盐)或三-价(例如磷酸盐)。抗衡离子优选选自于卤素离子,例如F-(氟)、Cl-(氯)或Br-(溴)。
为了与MAC发生有效的静电相互作用,微囊被膜中的带电化合物的总量应该至少为形成所述被膜的材料总量的1%(按摩尔计),优选至少为5%,甚至更优选至少为10%。在微囊和MAC的一些优选组合中,已经观察到,带电化合物在微囊被膜中的量至少为20%、优选至少为40%时,能够使相当高量的MAC结合到所述微囊中。虽然在一些实施方案中,微囊的全体被膜可由带电化合物形成,但是已经观察到,有益的是,至少可将微量的中性化合物加入到形成所述被膜的配方中。优选地,带电组分的总量由此等于或低于形成微囊被膜的组分总量的约95%(按摩尔计),更优选等于或低于90%,并且下至等于或低于80%的特别优选的量。
中性及带电磷脂和/或带电脂质的混合物,能够令人满意地用来形成本发明组件的微囊。优选地采用两种或多种脂质或磷脂的混合物,其中至少一种带有中性电荷,至少一种带有总净电荷。更优选的是,采用两种或更多种脂质或磷脂的混合物,其中至少一种是中性的,至少一种带有正电荷,以便获得具有总正电荷的微囊。带电脂质或磷脂的量占脂质和磷脂总量的约95%-约1%(按摩尔计),优选为80%-20%(按摩尔计)。
中性磷脂和带电脂质或磷脂的优选混合物是,例如DPPG/DSPC、DSTAP/DAPC、DPPS/DSPC、DPPS/DAPC、DSPA/DAPC、DSPA/DSPC和DSPG/DSPC。
其它赋性剂或添加剂可存在于干配方中,或者与用于重组的含水载体一起加入,而不必包括(或仅部分包括)在微囊的稳定被成膜中。这些包括pH调节剂、渗透压调剂剂、增粘剂、乳化剂、填充剂等,并且可以常规量来使用。例如,可采用类似于聚丙二醇和聚乙二醇的化合物以及它们的共聚物。增粘剂或稳定剂的实例是选自以下物质的化合物线性及交联的多-和寡-糖、蔗糖、类似于聚乙二醇的亲水性聚合物。
由于充气微囊的制备可包括冻干或喷雾干燥步骤,因此有益的是,在配方中包括一种或多种具有冷冻保护和/或冻干保护作用的试剂和/或一种或多种填充剂,例如氨基酸例如氨基乙酸;碳水化合物,例如糖(例如蔗糖、甘露醇、麦芽糖、海藻糖、葡萄糖、乳糖或环糊精),或者多糖(例如葡聚糖);或聚二元醇(例如聚乙二醇)。
可用于本发明组件的微泡能够按照本领域内任何公知的方法来生产。一般,制造方法包括含有如上所述的两性材料的干粉末状材料的制备,优选地通过对包括所述材料的含水或有机悬浮液进行冻干(冷冻干燥)来制备。
例如,如WO91/15244中所述,成膜两性化合物首先利用任何脂质体形成方法转化成层状形式。例如,包含成膜脂质并且任选地包括其它添加剂(例如增粘剂、非成膜表面活性剂、电介质等)的水溶液可接受高速机械匀化或者在声频或超声频率下接受声处理,然后冻干形成游离的可流动的粉末,然后将粉末在气体的存在下贮存起来。在冻干之前可实施任选的洗涤步骤(如US 5,597,549中所公开的)。
按照一个替换型实施方案(例如在上述的US 5,597,549中有所描述),成膜化合物及亲水性稳定剂(例如聚乙二醇、聚乙烯吡咯烷酮、聚乙烯醇、乙二醇酸、苹果酸或麦芽糖醇)能够溶解在有机溶剂中(例如叔丁醇、2-甲基-2-丁醇或C2Cl4F2),然后将该溶液冻干形成干粉。
或者是,如以上提到的WO 04/069284中所公开的,磷脂(选自于以上提到的那些,并包括以上鉴定的带电磷脂中的至少一种)和冻干保护剂(例如前面列出的那些,尤其是碳水化合物、糖醇、聚乙二醇以及这些物质的混合物)可分散在具有水不混溶的有机溶剂(例如支链或直链烷烃、烯烃、环烷烃、芳香烃、烷基醚、酮、卤化烃、全氟化烃或这些物质的混合物)的水乳液中。然后将如此获得的含有被磷脂材料(并任选地被其它两性成膜化合物)包围和稳定的溶剂微滴的乳液,按照常规技术进行冻干,从而获得冻干材料,然后将冻干材料贮存起来(例如在合适气体的存在下贮存在瓶中),并可与含水载体重组,从而最终获得充气微泡悬浮液。
制备充气微泡的进一步工艺包括如下制备气体微泡分散体在所需气体的存在下使包含磷脂(以及任选地包括其它两性成膜化合物和/或添加剂)的含水介质接受受控的高搅拌能量(例如借助于转子定子混合器),并将所获得的分散体冻干,从而产生干燥的重组产品。此工艺的一个实例如在WO 97/29782中给出,该文献在此处作为参考并入本文。
喷雾干燥技术(如US 5,605,673中所公开的)也可用来获得含有本发明组件的微囊的干燥粉末。
用以上任一技术获得的干燥或冻干产品通常是粉末或饼状形式的,并与所需气体接触(例如在瓶内)贮存。产品在合适的含水液态载体(是生理上可接受的、无菌的并且可注射的)内容易重组,从而形成充气微囊。合适的液态载体是水、含水溶液例如盐水(它有益的是平衡的,从而最终的注射产品不是低渗的),或一种或多种张力调节物(例如盐或糖、糖醇、乙二醇或其它非离子多羟基化合物材料(例如葡萄糖、蔗糖、山梨糖醇、甘露醇、乙二醇、聚乙二醇、丙二醇等)的溶液。
微球适用于按照本发明组件的其它充气微囊在本领域内被称作“微球”。通常,这些充气微囊具有材料被膜,被膜的厚度大于微泡稳定膜-被膜的厚度。根据形成所述被膜的材料(它可以是例如聚合的、蛋白质的、水不溶性的脂质、或者这些形式的任意组合),所述厚度通常为至少50nm,一般为至少100nm,甚至高达几百纳米(例如300nm)。
在对超声的声响应方面,微球通常也不同于微泡。虽然微泡的超声行为事实上更接近于“游离”气泡的行为,但是微球(可能是因为更高的被膜硬度)在低水平的声压能量(例如在约0.1的机械指数)辐射时通常反应极差(在所反射的回声信号的强度方面)。
可用于制备本发明组件的微球实例优选是具有聚合被膜(优选包括可生物降解的聚合物)或基于可生物降解的水不溶性脂质的被膜(例如US 5,711,933和US 6,333,021中描述的那些,这些文献在此作为参考全部并入本文)的微球。也可采用具有蛋白质被膜的微球,即用例如US-A-4,276,885或EP-A-0324938中描述的那些天然蛋白质(白蛋白、血红蛋白)制成的被膜。
形成可注射微球被膜的聚合物优选是亲水性、可生物降解的生理上相容的聚合物。这些聚合物(可以是天然的或合成的)的实例是基本上不溶的多糖(例如脱乙酰壳多糖或壳质)、聚氰基丙烯酸酯、聚交酯和聚乙交酯以及它们的共聚物、交酯和内酯(例如γ-己内酯或δ-戊内酯)的共聚物、环氧乙烷和交酯的共聚物、聚乙烯亚胺、多肽和蛋白质(例如明胶、胶原、球蛋白或白蛋白)。在上述US 5,711,933中提到的其它合适的聚合物包括聚-(原)酯、聚乳酸和聚乙醇酸以及它们的共聚物(例如DEXON、Davis & Geck,Montreal,Canada);聚(DL-交酯-co-γ-己内酯)、聚(DL-交酯-co-δ-戊内酯)、聚(DL-交酯-co-γ-丁内酯)、聚烷基氰基丙烯酸酯;聚酰胺、聚羟基丁酯;聚二噁酮;聚-β-氨基酮;聚磷腈;和聚酐。也可采用聚氨基酸(例如聚谷氨酸和聚天冬氨酸)以及它们的衍生物,例如与低级醇或二醇的部分酯。还可采用与其它氨基酸(例如蛋氨酸、亮氨酸、缬氨酸、脯氨酸、甘氨酸、丙氨酸等)的共聚物。也可采用具有受控的生物降解性的聚谷氨酸和聚天冬氨酸的衍生物(例如WO 87/03891、US4,888,398或EP 130935中描述的那些,这些文献在此作为参考全部并入本文)。这些聚合物(以及与其它氨基酸的共聚物)具有如下类型的分子式(NH-CHA-CO)W-(NH-CHX-CO)Y-,其中X代表氨基酸残基的侧链(例如甲基、异丙基、异丁基或苄基);A是以下分子式基团-(CH2)nCOOR1R2-OCOR、-(CH2)nCOO-CHR1COOR、-(CH2)nCO(NH-CHX-CO)mNH-CH(COOH)-(CH2)PCOOH,或者它们的相应酸酐,其中R1和R2代表H或低级烷基,R代表烷基或芳基;或者R和R1由取代或未取代的连接成员连接在一起,从而提供5-或6-元环;n、m和p是不超过5的小整数;以及w和y是为了具有不低于5000的分子量而选择的整数。
非生物降解的聚合物(例如用于制备在消化道使用的微球)可选自于最不溶于水的生理上可接受的生物抗性聚合物,包括聚烯烃(聚苯乙烯)、丙烯酸类树脂(聚丙烯酸酯、聚丙烯腈)、聚酯(聚碳酸酯)、聚氨酯、聚脲和它们的共聚物。ABS(丙烯酰基-丁二烯-苯乙烯)是优选的共聚物。
用于形成本发明组件的微球的可生物降解的水不溶性脂质包括例如固态水不溶性单-、二-、三-甘油酯、脂肪酸、脂肪酸酯、甾醇例如胆固醇、石蜡以及它们的混合物。单-、二-、三-甘油酯主要包括单-、二-、三-月桂精化合物以及相应的-肉豆蔻酸酯、-棕榈酸酯、-硬脂酸酯、-花生四烯酸酯和-山萮酸酯衍生物。特别有用的是单-、二-、三-肉豆蔻酸酯、-棕榈酸酯、-硬脂酸酯以及混合的三甘油酯例如二棕榈-油酸三甘油酯;三棕榈酸甘油酯和三硬脂酸甘油酯是优选的。脂肪酸包括具有12个碳原子或更多碳原子的固态(在室温下,约18-25℃)脂肪酸(优选是饱和的),包括例如月桂酸、花生四烯酸、山萮酸、棕榈酸、硬脂酸、癸二酸、肉豆蔻酸、蜡酸、蜂花酸和芥酸以及它们的脂肪酸酯。优选地,脂肪酸和它们的酯用于和其它甘油酯进行混合。
甾醇优选地用于和其它甘油酯和/或脂肪酸进行混合,并选自于胆固醇、植物甾醇、羊毛甾醇、麦角甾醇等以及甾醇与上述脂肪酸的酯;然而,胆固醇是优选的。
优选的可生物降解的脂质是三甘油酯例如三棕榈精、三硬脂精或上述三甘油酯的混合物。
任选地,高达70%(按重量计)的可生物降解的聚合物(例如前面提到的那些),可与形成微球被膜的可生物降解的水不溶性脂质混合在一起。有益的是,也可采用离子聚合物(即其结构中携带离子部分的聚合物)、优选可生物降解的离子聚合物,以形成微球的稳定被膜,由此将所需的总净电荷赋予其上。离子聚合物可用作稳定被膜的主成分,或者以不同的量(例如2-80%,按重量计)与非离子聚合物进行混合。合适的离子聚合物是例如包括季铵化氮原子的聚合物(例如季铵化胺),或包括羧基、硫酸根、磺酸根或磷酸根部分的聚合物。合适的离子聚合物的实例包括(不限于)聚氮丙啶、聚(二烯丙基二甲基氯化铵)、聚{双(2-氯乙基)醚-alt-1,3-双[3-(二甲基氨)丙基]脲}季铵化(Polyquaternium-2)、聚(4-乙烯基吡啶三溴化物)、羟乙基纤维素乙氧基化物季铵化(Polyquaternium-4)、聚(p-二甲苯四氢噻吩氯化物)、聚(L-赖氨酸)、壳质、二乙烯氨乙基葡聚糖、聚(丙烯酸)、聚(甲基丙烯酸)、聚(苯乙烯-alt-马来酸)、聚(氨基酸)、褐藻酸、聚(尿苷酸)、透明质酸即聚(β-葡糖醛酸-alt-β-N-乙酰葡糖胺(clucosamide))、聚(半乳糖醛酸)、聚(乙酸乙烯酯-co-巴豆酸)、DNA、聚(3,3’4,4’-二苯甲酮四酸二酐-co-4,4’-氧联二苯胺)、聚(异戊二烯-graft-马来酸单甲基酯)、谷氨酸(glutammic acid)和烷基谷氨酸的共聚物、肝素、聚(苯乙烯磺酸酯)、磺化聚(异邻苯二甲酸)、聚(乙烯基磺酸酯、钾盐)、聚(乙烯基硫酸酯、钾盐)、硫酸软骨素A、葡聚糖硫酸盐、岩藻依聚糖、聚磷酸、磷酸钠、聚乙烯基磷酸钠、聚-L-lisine氢溴化物、聚氨基葡糖、聚氨基葡糖硫酸酯、褐藻酸钠、褐藻酸以及木素磺酸盐。
常规添加剂也可并入微球被膜内,以改进其物理特性例如分散性、弹性和水渗透性。尤其是,将有效量的两性材料加入到为生产所述微球而制备的乳剂中,以便增大其稳定性。所述材料可有益地在本说明书前面提到的那些两性化合物(例如脂质、磷脂和改性磷脂)中选择。
所加入的两性材料有益地是携带总净电荷的化合物。优选的带电脂质、磷脂和改性磷脂是前面提到的那些。
为了与MAC发生有效的静电相互作用,微球被膜中带电添加剂的总量应该至少为形成所述被膜的材料总量的1%(按摩尔计)。然而,带电组分的总量优选低于形成微球被膜的材料总量的70%(按摩尔计)。带电化合物的量优选是2%-40%。
其它赋性剂或添加剂、尤其是用于制备微球的赋性剂和添加剂(例如再分散剂或增粘剂),可并入被膜内。
含有微球的可生物降解的聚合物可按照例如US 5,711,933中公开的工艺来制备,该文献在此处引入作为参考,此工艺包括(a)将疏水性有机相乳化到水相,以便获得所述疏水相液滴作为所述水相中的水包油乳剂;(b)将不溶于水相的挥发性溶剂中的至少一种聚合物溶液加入到所述乳剂中,从而所述聚合物形成围绕所述液滴的一个层;(c)蒸发所述挥发性溶剂,以便聚合物通过围绕液滴的界面沉淀而发生沉积,液滴然后形成具有由所述聚合物膜包裹的所述疏水相核心的珠,所述珠悬浮在所述水相中;(d)通过使所述悬浮液承受减小的压力进行蒸发而除去所述包裹的疏水相;以及(e)用合适的气体代替所述包裹的疏水相。
含有微球的可生物降解的脂质能够按照例如US 6,333,021中公开的工艺来制备(该文献在此处引入作为参考),即分散溶解在水相载体中的有机溶剂内的微囊被膜的一种或多种固态组分的混合物。乳剂水相可含有有效量的用来稳定乳剂的两性材料。
一定量的再分散剂和/或防冻剂或冻干保护剂(例如前面提到的那些)然后在-30℃以下冷冻之前,加入到水相中的有机溶液微滴乳剂中。任何常规的再分散剂都可采用;选自以下物质的再分散剂是优选的糖、白蛋白、明胶、聚乙烯吡咯烷酮(PVP)、聚乙烯醇(PVA)、聚乙二醇(PEG)和环氧乙烷-环氧丙烷嵌段共聚物(例如Pluronic或Synperonic)或者它们的混合物。当微囊是非凝聚的、干燥和立即分散的粉末形式时,为了避免颗粒凝聚而加入的再分散剂尤其有用。冷冻乳剂然后承受减小的压力,以便有效地冻干,即通过将有机溶剂从载体相液滴和水中升华出来而去除,然后使冷冻-干燥产品与干燥气体接触。
生物相容的气体任何生物相容的气体、气体前体或它们的混合物都可用来填充上述微囊,气体是根据所选形态选择的。
气体包括例如空气;氮气;氧气;二氧化碳;氢气;一氧化二氮;惰性气体例如氦、氩、氙或氪;放射性气体例如Xe133。或Kr81;超极化惰性气体例如超极化氦、超极化氙或超极化氖;低分子量烃(例如含有高达7个碳原子),例如烷烃(例如甲烷、乙烷、丙烷、丁烷、异丁烷、戊烷或异戊烷)、环烷烃(例如环丁烷或环戊烷)、烯烃(例如丙烯、丁烯或异丁烯)或炔烃(例如乙炔);醚;酮;酯;卤化气体,优选氟化气体,例如卤化、氟化或全氟化低分子量烃(例如含有高达7个碳原子);或任意这些前述物质的混合物。当使用卤化烃时,优选所述化合物中的至少一些、更优选所有卤素原子是氟原子。
氟化气体是优选的,尤其是全氟化气体,特别是在超声成像领域中。氟化气体包括含有至少一个氟原子的材料,例如氟化烃(含有一个或多个碳原子和氟的有机化合物);六氟化硫;氟化、优选全氟化酮例如全氟化丙酮;和氟化、优选全氟化醚例如全氟化乙醚。优选化合物是全氟化气体,例如SF6或全氟化碳(全氟化烃),即所有氢原子都被氟原子取代的烃,已知是为了形成特别稳定的微泡悬浮液,如EP 0554 213中公开的,该文献在此作为参考并入本文。
术语全氟碳包括饱和的、不饱和的以及环化全氟碳。生物相容的生理上可接受的全氟碳的实例是全氟烷烃,例如全氟甲烷、全氟乙烷、全氟丙烷、全氟丁烷(例如全氟-n-丁烷,任选地是与其它异构体例如全氟-异丁烷的混合物形式)、全氟戊烷、全氟己烷或全氟庚烷;全氟烯烃,例如全氟丙烯、全氟丁烯(全氟丁-2烯)或者全氟丁二烯;全氟炔烃(例如全氟丁-2-炔);以及全氟环烷烃(例如全氟环丁烷、全氟甲基环丁烷、全氟二甲基环丁烷、全氟三甲基环丁烷、全氟环戊烷、全氟甲基环戊烷、全氟二甲基环戊烷、全氟环己烷、全氟甲基环己烷和全氟环庚烷)。优选的饱和全氟碳具有以下分子式CnFn+2,其中n为1-12,优选2-10,更优选3-8,甚至更优选3-6。合适的全氟碳包括例如CF4、C2F6、C3F8、C4F8、C4F10、C5F12、C6F12、C6F14、C7F14、C7F16、C8F18和C9F20。
特别优选的气体是SF6或者选自以下物质的全氟碳CF4、C2F6、C3F8、C4F8、C4F10或它们的混合物;SF6、C3F8或C4F10是特别优选的。
还有益的是采用任何比例的任意上述气体的混合物。例如,混合物可包括常规气体(例如氮气、空气或二氧化碳)和形成稳定微泡悬浮液的气体(例如六氟化硫或如上所述的全氟碳)。合适气体混合物的实例如在WO 94/09829中发现,该文献在此作为参考并入本文。以下组合是特别优选的气体(A)和(B)的混合物,其中气体(B)是氟化气体,优选选自SF6、CF4、C2F6、C3F6、C3F8、C4F6、C4F8、C4F10、C5F10、C5F12、或它们的混合物,(A)选自空气、氧气、氮气、二氧化碳或它们的混合物。气体(B)的量为混合物总量的0.5%-95%,优选约5%-80%。
在某些环境中,期望包括气态物质的前体(即能够在体内转化成气体的材料)。优选地,气体的前体及其衍生的气体是生理上可接受的。气体的前体可以是pH激活的、光激活的、温度激活的等。例如,某些全氟碳可用作温度激活的气体前体。这些全氟碳(例如全氟戊烷和全氟己烷)具有室温(或者试剂制备或贮存温度)以上但体温以下的液态/气态转变温度;由此,它们发生液相/气相转变,并在人体内转变成气体。
对于超声回波扫描术,生物相容气体或气体混合物优选地选自空气、氮气、二氧化碳、氦气、氪气、氙气、氩气、甲烷、卤化烃(包括氟化气体例如全氟碳和六氟化硫)或它们的混合物。有益的是,可采用全氟碳(特别是C4F10或C3F8、)或SF6、任选地是与空气或氮气的混合物形式。
为了在MRI中使用组件,微囊优选包含超极化惰性气体例如超极化氖、超极化氦、超极化氙或它们的混合物,任选地是与空气、CO2、氧气、氮气、氦气、氙气或如上所述的任何卤化烃的混合物形式。
对于闪烁扫描术,按照本发明的微囊优选包含放射性气体例如Xe133或Kr81或它们的混合物、任选地是与空气、CO2、氧气、氮气、氦气、氪或如上所述的任何卤化烃的混合物形式。
微囊相结合组分(MAC)与微囊相结合的组件的第二组分(MAC)可以是包括携带总净电荷的生物相容性表面活性剂的任何结构实体。特别是,所述结构实体优选是通过多个(优选两性)分子的联合而形成的超分子结构。在一些实施方案中,所述带电化合物与中性的其它表面活性剂和/或添加剂混合。根据组件的具体应用,MAC还包括所需的靶向配体、生物活性剂和/或诊断剂。适合制备按照本发明组件的MAC的生物相容性表面活性剂可选自前面列出的那些化合物,例如(C2-C10)有机酸、包括(C12-C24)、优选(C14-C22)脂族链的有机脂肪酸、这些物质的药物可接受的(碱性)盐、以及与聚氧乙烯的相应酯,例如棕榈酸、硬脂酸、花生四烯酸、油酸、十二烷酸钠、草酸钠或酒石酸钠或聚氧乙烯脂肪酸硬脂酸盐;聚离子(碱性)盐,例如柠檬酸钠、聚丙烯酸钠、磷酸钠;有机胺、酰氨、四价铵(卤)盐,优选含有(C8-C22)碳氢链,包括它的聚氧乙基化衍生物,例如乙醇胺、三乙醇胺、烷基胺、链烷醇酰胺、氯化三甲基烷基胺、聚氧乙基化烷基胺、聚氧乙基化链烷醇酰胺;氨基酸;磷脂,例如磷脂酰胆碱、乙基磷脂酰胆碱、磷脂酰甘油、磷脂酸、磷脂酰乙醇胺、磷脂酰丝氨酸或鞘磷脂的脂肪酸二酯;单-或寡-糖与(C12-C24)、优选(C14-C22)有机脂肪酸的酯,例如失水山梨糖醇月桂酸酯;聚合表面活性剂,即包括疏水性和亲水性部分的嵌段共聚物,例如环氧乙烷/环氧丙烷的嵌段共聚物;有饥磺酸酯,例如碱性(例如钠)(C12-C24)烷基、优选(C14-C22)烷基磺酸盐;全氟有机酸,例如全氟辛酸;以及这些物质的混合物。优选化合物是前面列在微泡的合适组分中的那些中性或带电两性材料,包括脂质、磷脂和改性磷脂。优选的MAC是胶束形式的。
MAC的制备可按照常规技术来实现,例如将形成MAC的相关组分分散在含水载体中并任选地洗涤所获得的悬浮液,以便除去过量材料。
所述第二组分优选是纳米组分,即它们的相对尺寸约100nm或更小,优选约80nm或更小,更优选约50nm或更小。MAC的尺寸、尤其是其按个数计的平均直径,可按照常规技术(例如光子相干谱)来测定。例如,可采用ZetaSizer 3000Has(Malvern Instruments Gmbh)。尤其是当MAC将所需的靶向配体、生物活性剂和/或诊断剂并入其结构时,MAC的尺寸优选至少0.1nm,更优选1nm。
优选地,MAC具有比MAC相结合的微囊的平均尺寸至少小10倍或更小,更优选的是至少小50倍或更小的平均尺寸。所述的平均尺寸通常不低于1000倍,优选不低于500倍。
正如所理解的,由于MAC比充气微囊的尺寸小得多,因此可将相当大量的MAC联合到微囊上。由此,就使组件结合更多的靶向部分和/或增大并入其内的可释放治疗剂或诊断剂的量而言,增加了组件的效力。此外,MAC的所述相当小的尺寸允许获得可与微囊尺寸类似的尺寸的组件。事实上优选的是,按照本发明组件的按个数计的平均直径不高于在装配之前测定的微囊的平均直径的30%,更优选的是不高于20%,甚至更优选的是不高于10%。
在本发明的一些实施方案中,带电材料可形成基本上MAC全体,即90%或更多(按摩尔计)。在一些其它实施方案中,优选的是,形成所述MAC结构的带电分子不代表形成所述结构的化合物全体,由此与一定量的中性化合物混合。所述带电分子由此代表小于形成所述MAC的材料总量的90%(按摩尔计)。另一方面,申请人已经观察到,MAC中的带电分子的量优选至少是形成所述被膜的材料总量的0.5%(按摩尔计),以便与带电微囊有效作用。优选地,所述量至少为1%,更优选至少为2%(按摩尔计)。在本发明的一些优选实施方案中,形成MAC结构的带电分子的量优选约50%或更低,更优选约20%或更低。
胶束如前所述,与本发明组件中的微囊相结合的优选组分是胶束。如本文所用的术语“胶束”,包括胶束和混合胶束,在此处,术语混合胶束是指由两种或更多种不同化合物的混合物形成的胶束结构,其中至少一种化合物是能够形成胶束结构的两性化合物。术语混合胶束由此在其含义内也包括由至少一种化合物(优选两性化合物)形成的胶束,该化合物在如此分散到含水载体中时不能形成胶束结构,但是在与适量的胶束形成两性化合物结合使用时能够形成所述结构。混合胶束的实例是由未改性磷脂(在作为单一材料分散到含水载体中时通常不能形成胶束)和胶束形成化合物(例如,PEG改性的磷脂或脂肪酸盐)形成的胶束。正如本领域内公知的,当两性分子的浓度超过被称作CMC(临界胶束浓度)的预定值时,分散在水中的两性分子就形成胶束。在低于CMC的浓度,分子通常作为单一分子分散在水溶液中。在CMC之上,两性分子倾向于在超分子结构中有机化,从而与溶液中的游离分子平衡,所述超分子结构的特征是,分子的疏水性(脂质)尾部向结构的内部定位,而分子的亲水性(极性或离子)头部位于结构的外部上。两性分子的CMC可以利用本领域内的技术标准在实验上测定。例如,表面活性剂的CMC是通过将特性作为表面活性剂的浓度函数作图而确定的。该特性经常随着表面活性剂浓度的增大(高达CMC)而呈线性变化,并且在此浓度之后,曲线(或特性)变成非线性的。能够用于确定CMC的合适特性包括折射系数、光散射、表面张力、电导率、渗透压等。为了本发明的目的,优选的胶束形成材料是具有相当低CMC(例如约10mM或更低)的那些材料。
胶束一般有约0.1nm-约100nm,优选的是约1nm-约50nm的尺寸。按个数计的平均直径(DN)为约50nm或更小,优选约20nm或更小,甚至更优选10nm或更小,甚至下至例如1nm,优选约2nm。
有关胶束、胶束系统及其制备方法的综述可以在例如以下参考书中找到“药物传送中的表面活性剂和聚合物”(“Surfactants andPolymers in Drug Delivery”,by M.Malmsten,Ch.2,pp.19-50,Marcel dekker Inc.Ed.,2002)。
可用于形成与本发明组件中的微囊相结合的胶束的合适材料可选自前面列出的脂质和磷脂材料。
胶束形成化合物的实例是PEG改性的磷脂,具体包括PEG改性的磷脂酰乙醇胺,例如DMPE-PEG2000、DMPE-PEG3000、DMPE-PEG4000、DPPE-PEG5000、DPPE-PEG2000、DPPE-PEG3000、DPPE-PEG4000、DPPE-PEG5000、DSPE-PEG2000、DSPE-PEG3000、DSPE-PEG4000、DSPE-PEG5000、DAPE-PEG2000、DAPE-PEG3000、DAPE-PEG4000或DAPE-PEG5000;包括至少一个(C10-C20)、优选(C14-C18)烷基链的烷基铵盐,例如硬脂酰氯化铵、十六烷基氯化铵、二甲基双十八烷基溴化铵(DDAB)、十六烷基三甲基溴化铵(CTAB);包括一个或优选两个通过(C3-C6)亚烷基桥连接到N原子上的(C10-C20)、优选(C14-C18)酰基链的三价或四价铵盐,例如1,2-二硬脂酰-3-三甲基氨-丙烷(DSTAP)、1,2-二棕榈酰-3-三甲基氨-丙烷(DPTAP)、1,2-二油酰-3-三甲基氨-丙烷(DOTAP)、1,2-二硬脂酰-3-二甲基氨-丙烷(DSDAP);脂肪酸盐,优选碱性的,特别是钠盐,例如棕榈酸钠、硬脂酸钠、油酸钠、亚油酸钠、十二酸钠、1,2-二棕榈酰-sn-3-琥珀酰甘油钠盐或1,3-二棕榈酰-2-琥珀酰甘油钠盐。
其内包括疏水性部分和亲水性部分的聚合物(也称作“聚合表面活性剂”)也可用来制备胶束悬浮液。合适的聚合表面活性剂的实例包括但不限于聚环氧乙烷(PEO)、例如(C8-C16)n-烷基PEO单醚、(C8-C10)n-烷基苯基PEO、四甲基丁苯基PEO、PEO聚山梨酸酯、这些PEO在出售时的商品名为Brij、Lubrol、Triton、Nonidet或Tween;嵌段共聚物例如环氧乙烷/环氧丙烷嵌段共聚物(例如Pluronic或Synperonic),优选具有约3000-20000道尔顿的MW,更优选5000-15000道尔顿的MW;糖衍生物,例如(C6-C10)n烷基-β-D-吡喃葡糖苷、(C8-C12)n烷基-β-D-麦芽糖苷;(C8-C16)烷基二甲基氨丙烷-磺酸盐;和胆汁酸及其衍生物,例如胆酸钠或脱氧胆酸钠。
用于制备包括在本发明组件中的胶束的另外的脂质包括例如未改性的磷脂,例如前面提到的磷脂酰胆碱、乙基磷脂酰胆碱、磷脂酰甘油、磷脂酸、磷脂酰乙醇胺、磷脂酰丝氨酸或鞘磷脂的脂肪酸二酯。由于这些未改性的磷脂在分散到含水载体中时通常不能形成胶束结构(因为这些化合物在分散到水溶液中时倾向于作为脂质体来联合),因此所述未改性的磷脂优选以与前面提到的任何胶束形成化合物的混合物形式来使用。尤其是,它们的量应该优选为小于形成胶束结构的化合物的混合物总重量的约80%,更优选约70%或更小。按照一个优选实施方案,胶束组分是用包括约30%-70%、优选约40%-60%(按重量计)未改性磷脂的混合物形成的。混合物的剩余物可以是以上提到的任何胶束形成表面活性剂。
所需的总净电荷由前面提到的任何带负电荷或正电荷的化合物(尤其是脂质或磷脂,包括改性磷脂)赋予胶束。
由此,适合将总负电荷赋予胶束的磷脂实例是磷脂酰丝氨酸衍生物,例如DMPS、DPPS、DSPS;磷脂酸衍生物,例如DMPA、DPPA、DSPA;磷脂酰甘油衍生物,例如DMPG、DPPG和DSPG。也可有益地采用改性磷脂,尤其是PEG改性的磷脂酰乙醇胺,例如DMPE-PEG750、-PEG1000、-PEG2000、-PEG3000或-PEG5000;DPPE-PEG750、-PEG1000、PEG2000、-PEG3000或-PEG5000;DSPE-PEG750、-PEG1000、PEG2000、-PEG3000或-PEG5000;DAPE-PEG750、-PEG1000、PEG2000、-PEG3000或-PEG5000;和上述磷脂的相应溶血形式,例如溶血磷脂酰丝氨酸衍生物、溶血磷脂酸衍生物(例如溶血-DMPA、-DPPA或-DSPA)和溶血磷脂酰甘油衍生物(例如溶血-DMPG、-DPPG或-DSPG)。带负电荷磷脂的实例是胆汁酸盐例如胆酸盐、脱氧胆酸盐或甘氨胆酸盐;和脂肪酸例如棕榈酸盐、硬脂酸盐、1,2-二棕榈酰-sn-3-琥珀酰甘油盐或1,3-二棕榈酰-2-琥珀酰甘油盐。
优选地,带负电荷的化合物选自DPPA、DPPS、DSPG、DSPE-PEG2000、DSPE-PEG5000或它们的混合物。
带负电荷的组分一般与相应的正抗衡离子相结合,所述抗衡离子可以是单-(例如碱金属)、二-(例如碱土金属)或三-价(例如铝)。抗衡离子优选地选自碱金属阳离子例如Li+、Na+或K+,更优选Na+。
适合将总正电荷电荷赋予胶束的磷脂实例是磷脂酰胆碱的酯,例如1,2-二硬脂酰-sn-甘油基-3-乙基胆碱磷酸(乙基-DSPC)、1,2-二棕榈酰-sn-甘油基-3-乙基胆碱磷酸(乙基-DPPC)。负抗衡离子优选卤族离子,尤其是氯或溴。带正电荷的脂质实例有,包括至少一个(C10-C20)、优选(C14-C18)烷基链的烷基铵盐,或包括一个或优选两个通过(C3-C6)亚烷基桥连接到N原子上的(C10-C20)、优选(C14-C18)酰基链的三价或四价铵盐,例如前面列出的那些。
优选将乙基-DPPC、乙基-DSPC、DSTAP或它们的混合物用作带正电荷的化合物。
带正电荷的组分一般与相应的正抗衡离子相结合,所述抗衡离子可以是单-(例如卤素)、二-(例如硫酸盐)或三-价(例如磷酸盐)。抗衡离子优选选自卤素离子,例如F-(氟)、Cl-(氯)或Br-(溴)。
而且,例如在前面微球形成材料部分中列出的那些离子聚合物可有益地用来形成具有总(负或正)净电荷的胶束。
如上所述,带电分子在一些实施方案中有益地与中性两性化合物例如前面列出的那些两性化合物(包括中性磷脂)混合,以形成所需的胶束结构。与上述带电化合物混合的优选中性化合物是聚合表面活性剂,例如环氧乙烷-环氧丙烷嵌段共聚物例如Pluronic F68、Pluronic F108、Pluronic F-127(Sigma Aldrich,Missouri,USA);聚氧乙基化烷基醚例如Brij78(Sigma Aldrich,Missouri,USA);聚氧乙烯脂肪酸酯例如Myrj53或Myrj59(Sigma Aldrich,Missouri,USA);聚氧乙烯山梨醇脂肪酸酯例如Tween60(Sigma Aldrich,Missouri,USA);聚乙二醇叔-辛苯基醚例如TritonX-100(SigmaAldrich,Missouri,USA);十二烷基硫酸钠(SDS)。按照本发明的一个实施方案,胶束是用带电两性化合物与中性磷脂以及一种或多种上述中性化合物的混合物形成的。
在本发明的一些优选实施方案中,带电表面活性剂的这个量形成基本上胶束全体(即胶束形成材料总重量的至少80%,优选至少90%,更优选100%)。在一些其它优选实施方案中,尤其是当形成胶束的至少一种化合物是未改性磷脂时,形成胶束的带电表面活性剂的总量优选约1%-80%,更优选2%-50%。
胶束如本领域所公知的那样是通过将上述化合物分散在含水液态载体中并任选地搅拌该混合物而制备的。合适液态载体的实例是水、盐水溶液(0.9%的氯化钠)、磷酸缓冲盐水(10mM,pH 7.4)、HEPES缓冲液(20mM,pH7.4)、5%w/w的葡萄糖水溶液。例如,以上化合物可以约1-100mg/ml的浓度分散在含水液体中并借助于搅拌或超声进行溶解。
胶束然后在与含有微囊的悬浮液混合或(如说明书的后面所详细解释的)分散到制备微囊的含水有机乳剂中之前,作为含水分散体(例如在用于其制备的含水载体中)贮存起来。或者是,微囊悬浮液按照常规技术冻干,以便消除液体并贮存最终的冻干产品,以便之后使用。
脂质体作为MAC与按照本发明的组件的微囊相结合的其它超分子结构是脂质体。尤其是小单层载体(SUV)脂质体。
术语脂质体包括基本上为球形的包括脂质化合物的两性化合物凝聚体,一般是一个或多个同心层形式。它们一般是在含水悬浮液中形成的,并包含至少一个两性化合物双层。形成双层的外层的两性化合物的亲水头部指向球形结构的外部,而形成双层的内层的两性化合物的亲水头部指向所述球形结构的内部。脂质体的球形结构的内部通常填充有相同的含水悬浮液的液体,其任选地含有不存在于(或存在的量较少)外部含水悬浮液中的附加化合物。
用于制备脂质体的优选材料是磷脂,例如前面列出的那些,其任选地是与前面列出的任何其它两性化合物的混合物形式。
SUV脂质体可按照常规技术来形成,例如通过适当处理MLV(多层大囊泡)悬浮液、例如通过超声、挤出或微流化。MLV诸如可通过如下步骤而获得将磷脂分散在有机溶剂中,然后在真空下蒸发该有机溶剂,从而获得磷脂膜,最后在高于磷脂转变温度的温度下将该膜水合。如此获得的MLV由此暴露到超声辐射中,从而获得所需的SUV脂质体。或者是,MLV可通过具有孔径渐减(例如1.0、0.8、0.6、0.4和0.2μm)的多个膜(例如聚碳酸酯膜)挤出,然后通过具有更小孔径的挤出机(例如LIPEX Biomembranes,Canada),从而获得最终的SUV。另一种替换的SUV制备工艺是,MLV可以在微流化机(例如来自Microfluidics Corporation)中于高压下进行匀化,以便将脂质体尺寸减小到约100nm或更小,这取决于脂质体在微流化机中再循环的量。SUV的这些及其它制备方法例如公开在参考书“脂质体,一种实践方法”(“Liposomes,a practical approach”,Roger R.C.New编辑,牛津大学出版社,1989)中。
SUV脂质体的尺寸一般为约25nm-约100nm,优选约30nm-约100nm。按数目计的平均直径可在约30nm-60nm,优选约30-约50nm之间变化。
脂质体及其制备方法的综述也在上面提到的参考书中给出,即“药物传送中的表面活性以及聚合物”(“Surfactants and Polymers inDrug Delivery”,M.Malmsten著,第4章,第87-131页,MarcelDekker Inc.Ed.,2002)。
作为MAC与本发明组件中的微囊相结合的其它结构包括胶体纳米颗粒,例如胶体金纳米颗粒。这些纳米颗粒一般通过如下步骤获得将合适的分散剂加入到包括基本上不溶的固态纳米颗粒的水溶液中,由此形成胶体纳米颗粒的含水悬浮液(即用分散剂包被的固态纳米颗粒)。例如,通过将具有柠檬酸钠的金纳米颗粒(具有约2-50nm的直径)分散到水溶液中,而获得胶体金纳米颗粒(参见例如Grabar,“金胶体单层的制备和表征(Preparation and Characterization ofAu colloid monolayers)”,分析化学,第67卷,第735卷,1995)。与充气微囊相结合的胶体金纳米颗粒可用来在微囊分裂(例如由受控的高能超声辐射所诱发)时增大在所选组织中的渗透深度。由此,包括胶体金纳米颗粒的组件例如能够与包括生物活性剂的其它MAC相结合,以便增大所述生物活性剂在所选组织内的渗透深度,由此提高疗效。
其它MAC可以用固态聚合纳米颗粒形成。这些固态聚合纳米颗粒是用前面有关充气微球的制备部分中列出的任意聚合材料形成的,因此包括可生物降解的生理上可接受的聚合物,例如基本上水不溶的多糖(例如脱乙酰壳多糖或壳质)、聚氰基丙烯酸酯、聚交酯和聚乙交脂以及它们的共聚物、交酯和内酯(例如γ-己内酯或δ-戊内酯)的共聚物、环氧乙烷和交酯的共聚物、聚乙烯亚胺、多肽和蛋白质(例如明胶、胶原、球蛋白或白蛋白)。其它合适的聚合物是在上述US5,711,933中提到的那些聚合物以及前面列出的那些聚合物。也可采用非生物降解的聚合物,尤其是水不溶的生理上可接受的生物耐受性聚合物,并且优选以与任何以上生物降解聚合物的混合物形式来使用。所述聚合物可以是例如聚烯烃(例如聚苯乙烯)、丙烯酸树脂(例如聚丙烯腈的聚丙烯酸酯)、聚酯(例如聚碳酸酯)、聚氨酯、聚脲以及它们的共聚物。ABS(丙烯酰-丁二烯-苯乙烯)是优选的共聚物。
靶向配体和生物活性/诊断剂按照本发明的组件的MAC(尤其是胶束形式),在其结构内可有益地包括具有靶向、诊断和/或生物活性的化合物。
包括在MAC中的靶向配体可以是合成、半合成或天然生成的。可用作靶向配体的材料或物质包括例如(但不限于)蛋白质,包括抗体、抗体片段、受体分子、受体结合分子、糖蛋白和植物凝集素;肽,包括寡肽和多肽;肽模拟物;糖,包括单糖和多糖;维生素;类固醇、类固醇类似物、激素、辅因子、生物活性剂和遗传材料,包括核苷、核苷酸和多核苷酸。
合适的靶物和靶向配体的实例如公开在US 6,139,819中,该文献作为参考在此并入本文。
靶向配体本身可以是与包括在MAC最终结构中的MAC组合物的其它组分混合的化合物,或者是结合到用于MAC形成的两性化合物上的化合物。
在一个优选实施方案中,靶向配体可以通过共价键结合到MAC的两性分子上。在这样的情况下,需要存在于两性分子上的特异性反应部分将取决于结合到其上的特定靶向配体。例如,如果靶向配体可通过氨基连接到两性分子上,那么两性分子的合适反应性部分可以是异硫氰基(将形成硫脲键)、活性酯(用于形成酰氨键)、醛基(用于形成被还原为烷基胺键的亚胺键)等;如果靶向配体可通过硫羟基连接到两性分子上,那么两性分子的合适互补反应部分包括卤乙酰基衍生物或马来酰亚胺(用于形成硫醚键);以及如果靶向配体可通过羧基连接到两性分子上,那么两性分子的合适反应部分可能是胺和酰肼(用于形成酰胺或烷基酰胺键)。为了共价结合所需的靶向配体,形成MAC的至少部分两性化合物由此应该含有合适的反应部分,并且含有互补官能部分的靶向配体将按照公知技术,例如通过将其加入到包括MAC的两性组分的含水分散体中而连接到其上。两性化合物可以在制备MAC之前与所需的靶向配体合并,如此获得的组合可用于MAC的制备工艺中。或者是,靶向配体在MAC的制备工艺过程中可连接到各自的两性化合物上,或者可直接连接到已经在胶束结构中的两性化合物上。
按照一个替换型实施方案,靶向配体也可以经由物理和/或静电相互作用适当联合到MAC上。例如,对互补部分具有高亲和力和选择性的官能部分可以引入到两性分子中,而互补部分将连接到靶向配体上。例如,亲和素(或链霉亲和素)部分(对生物素具有高亲和力)可共价连接到磷脂上,而互补的生物素部分可以并入合适的靶向配体(例如肽或抗体)中。生物素标记的靶向配体由此将借助于亲和素-生物素偶合系统联合到MAC的亲和素标记的磷脂上。或者是,磷脂和靶向配体都配有生物素部分,然后借助于亲和素(是能够桥接这两个生物素部分的双官能组分)彼此偶合。磷脂和肽的生物素/亲和素偶合实例也公开在上述US 6,139,819中。或者是,范德华作用、静电相互作用及其它相关方法可以将靶向配体联合或结合到两性分子上。
按照一个替换型实施方案,靶向配体可以是与形成MAC的组分混合以便最终并入MAC结构的化合物,例如国际专利申请WO 98/18501或99/55383中公开的脂肽,这两篇文献作为参考在此并入本文。
或者是,首先制备MAC,其包括具有能够与靶向配体的相应互补部分作用的合适部分的化合物;此后,将所需的靶向配体加入到MAC悬浮液中,以便结合到MAC上的相应互补部分上。另一替换形式是,可制备组件,其包括具有能够与靶向配体的相应互补部分相互作用的合适部分的化合物的MAC;此后,将所需的靶向配体加入到组件悬浮液中,以便结合到MAC的相应部分上。
组件所指向的合适特异性靶物实例是例如纤维蛋白和激活血小板上的GPIIbIIa结合受体。纤维蛋白和血小板事实上通常以“血栓”的形式存在,即可以在血流中形成并导致血管阻塞的凝固物。合适的结合肽例如公开在上述US 6,139,819中。专门靶向纤维蛋白的其它结合肽例如公开在国际专利申请WO 02/055544中,该文献作为参考在此并入本文。
重要靶物的其它实例包括易致病斑中的受体和肿瘤特异性受体,例如激酶活动域(KDR)和VEGF(血管内皮生长因子)/KDR复合物。适用于KDR或VEGF/KDR复合物的结合肽例如公开在国际专利申请WO03/74005或WO 03/084574中,这两篇文献作为参考在此并入本文。
生物活性剂包括能够用于病人的任何病理状态(包括疾病、痛苦、疾病伤害或损伤)治疗(包括包括诊断、抑制、缓解、减轻疼痛或治愈)的任何化合物或材料。生物活性剂的实例是前面列出的那些。在这些物质中,药物或药品是优选的,尤其是包括基本上是疏水的或者含有基本上疏水的相关部分的有机分子(一般是合成分子)的那些药物。这些分子事实上可相当容易地并入MAC的结构中,尤其是胶束的结构中,因为它们与形成MAC的两性材料的亲脂(或疏水)部分具有亲和力。例如,有机分子能够分散在含有形成MAC、尤其是胶束的两性材料的含水载体中,在此处其通过亲和掺入到MAC的疏水部分中。或者是,亲水药物或有机分子也可并入MAC,尤其是在后者是脂质体形式的时候。在这种情况中,所述亲水化合物优选地包含在脂质体的内部含水部分中。
可并入或联合到MAC结构上的药物实例是例如上述WO 99/53963中提到的那些,因此包括抗癌剂例如长春新碱、长春花碱、长春地辛、白消安、瘤可宁、螺铂、顺铂、碳铂、甲氨蝶呤、阿霉素、丝裂霉素、争光霉素、阿糖胞苷、阿拉伯糖腺嘌呤、巯嘌呤、氯苯二氯乙烷、丙卡巴肼、放线菌素D、(antinomycin D)、柔红霉素、盐酸阿霉素、紫杉酚、光辉霉素、氨鲁米特、癌腺治、氟他胺、亮丙瑞林、醋酸甲地孕酮、他莫西芬、去氢睾内酯、曲洛司坦、安丫啶(m-AMSA)、门冬酰胺酶(Lasparagiase)、表鬼臼毒素吡喃葡糖苷、干扰素a-2a和2b、血液产品例如血卟啉或前述物质的衍生物;生物反应调节剂例如胞壁酰肽;抗真菌剂例如酮康唑、制霉菌素、灰黄霉素、氟胞嘧啶、咪康唑或两性霉素B;激素或激素类似物例如生长激素、促黑激素、雌二醇、双丙酸倍氯米松、倍他米松、醋酸可的松、地塞米松、氟尼缩松、氢化可的松、甲强龙、醋酸帕拉米松、氢化泼尼松、泼尼松、曲安西龙或醋酸氟氢可的松;维生素例如维生素B12或维生素A;酶例如碱性磷酸酶或超氧化锰岐化酶;抗过敏剂例如amelexanox;抗凝剂例如华法令、苯丙香豆素或肝素;抗血栓剂;循环药物例如普奈洛尔;代谢增强剂例如谷胱甘肽;抗结核药例如p-氨基水杨酸、异烟肼、硫酸卷曲霉素、cyclosexine、乙胺丁醇、乙硫异烟肼、吡嗪酰胺、利复平或硫酸链霉素;抗病毒剂例如阿昔洛韦、金刚烷胺、叠氮胸苷、利巴韦林或阿糖腺苷;血管扩张剂例如地尔硫桌、硝苯地平、异博定、四硝赤醇、硝酸异山梨酯、硝酸甘油或硝酸戊四醇酯;抗生素例如氨苯砜、氯霉素、新霉素、头孢克罗、头孢羟氨卞、先锋霉素IV、头孢拉定、红霉素、氟林肯霉素、林可霉素、阿莫西林、氨卞青霉素、巴氨西林、羧苄西林、双氯西林、环西林、picloxacillin、表缩酮氨卞青霉素、二甲氧基苯青霉素、乙氧奈胺青霉素、青霉素或四环素;消炎药例如氟苯水杨酸、布洛芬、吲哚美辛、meclefenamate、甲芬那酸、萘普生、保泰松、炎痛喜康、托美汀、乙酰水杨酸或水杨酸盐;抗原虫剂例如氯喹、甲硝唑、奎宁或锑酸葡胺;抗类风湿药例如青霉胺;麻醉药例如复方樟脑酊;鸦片类例如可待因、吗啡或阿片;强心苷例如西地兰、洋地黄毒苷、地高辛、洋地黄苷或洋地黄;神经肌肉阻断剂例如甲磺酸阿曲库铵、加拉碘胺、溴化己芴胺、碘二甲箭毒、溴化潘侃朗宁、氯化琥珀酰胆碱、氯化筒箭毒碱或维库溴胺;镇静剂例如阿米妥、阿米妥钠、阿鲁赖特、仲丁比妥钠、水合氯醛、乙氯戊炔醇、炔己蚁胺、盐酸氟西洋、导眠能、盐酸甲氧异丁嗪、诺卢达、盐酸咪达唑仑、副醛、戊巴比妥、司可巴比妥钠、塔布布妥、替马西洋或三唑仑;局部麻醉剂例如左布比卡因、氯普鲁卡因、依替卡因、利多卡因、甲哌卡因、普鲁卡因或丁卡因;全身麻醉剂例如氟哌利多、依托咪脂、具有氟哌利多的枸橼酸芬太尼、盐酸氯胺酮、美索比妥钠或硫喷妥以及药物可接受的盐(例如,例如盐酸或氢溴酸类的酸加成盐,或者例如钠、钙或镁盐之类的碱盐)或其衍生物(例如醋酸盐);和放射性化学物质例如包括α-、β-或γ-发射剂例如177Lu、90Y或131I。尤其重要的是抗血栓剂例如肝素和具有肝素样活性的药剂,例如抗凝血酶III、双肽肝素和依诺肝素;血小板凝集抑制剂例如噻氯匹定、乙酰水杨酸、双嘧达莫、伊洛前列素和阿昔单抗;以及溶栓酶例如链激酶和纤维蛋白溶解酶原激活素。生物活性剂的其它实例包括遗传材料例如核酸、天然或合成来源的RNA和和DNA(包括重组RNA和DNA)。正如以上专利中提到的,编码某些蛋白质的DNA可用于治疗许多不同种类的疾病。例如可提供肿瘤坏死因子或白介素-2以治疗晚期癌症;胸苷激酶治疗卵巢癌或脑肿瘤;白介素-2治疗成神经细胞瘤、恶性黑素瘤或肾癌;以及白介素-4可治疗癌症。
可并入或联接到本发明组件的MAC中的诊断剂可以是使与诊断技术有关的成像增强的任何化合物、组合物或颗粒,所述诊断技术包括磁共振成像、X-射线(尤其是计算机化X线断层照相术)、光学成像、核成像或分子成像。合适诊断剂的实例如是磁铁矿纳米颗粒、碘化化合物(例如Iomeprol)或顺磁离子复合物(例如疏水钆复合物)。例如,磁铁矿纳米颗粒能够与例如前面提到的那些带负电荷的两性材料(以及任选地还有中性材料)混合,以便稳定所述颗粒并保持其分散在含水溶液中。US 5,545,395(该文献作为参考在此引入本文)给出制备所述稳定化磁铁矿颗粒的一些实例,例如通过采用用于稳定所述颗粒的DPPA和Pluronic的混合物。或者是,钆复合物可与适当的胶束形成化合物(例如欧洲专利EP 804 251中公开的那些,该文献作为参考在此引入本文)混合,以形成含有钆的MAC。
组件为了评估本发明组件的相对组成,申请人已经发现,微囊和MAC中的带电化合物的量(表示为“电荷当量”)和微囊及组件悬浮液的ζ-电势是有用的。
术语“电荷当量”(EC),表示每摩尔所述化合物的电荷数。由此,一摩尔一价离子化合物含有一个EC,一摩尔二价离子化合物含有2个EC等。
ζ-电势(零电势),也称作动电势,是胶体颗粒相对于长距离的块介质电势的电势。按照常规的微型电穿孔分析方法、例如通过利用激光-多普勒-风力测定法测定驱动电场中的颗粒速度,来测定ζ-电势。例如,可有益地采用ZetaSizer 3000Hsa(Malvern InstrumentGmbH)。实践中,首先测定微囊的初始悬浮液的ζ-电势,该电势可具有正值或负值,这取决于微囊是含有带正电荷的化合物还是含有带负电荷的化合物。然后,测定含有组件的最终悬浮液的ζ-电势(即,在用于去除可能的未结合MAC的必需洗涤步骤之后)。通常,与微囊符号相反的MAC的加入,决定悬浮液的ζ-电势绝对值或多或少地减小。具体地说,包括带正电荷的微囊的悬浮液将显示在加入带负电荷的MAC悬浮液后ζ-电势减小,而包括带负电荷的微囊的悬浮液将显示,在加入带正电荷的MAC悬浮液后ζ-电势相对增大(即绝对值减小)。正如申请人所观察的,优选的组件是显示绝对值相对于初始微囊悬浮液的ζ-电势明显减小,即至少减小所述初始值的50%,优选至少75%,更优选至少90%的那些悬浮液。特别优选的组件悬浮液是显示基本上中性ζ-电势(即0±10mV,对应于微囊悬浮液的初始电势绝对减小约100%)或符号与初始微囊悬浮液的ζ-电势相反的ζ-电势的那些悬浮液。正如申请人所观察的,当组件悬浮液的ζ-电势相对于初始微囊悬浮液的ζ-电势绝对减小不超过50%时,这表示没有足够数目的MAC联合到微囊上。
按照一个优选实施方案,组件中的带电MAC的量如此将基本上中性的ζ-电势赋予所述组件,或者将符号与微囊的ζ-电势相反的ζ-电势赋予组件。正如申请人所观察的,为了获得所述中性或符号与组件的ζ-电势相反的ζ-电势,组件不必包含来自MAC的过量电荷当量。事实上,已经观察到,包括正微囊和负MAC并具有约1∶5(即,微囊上的正电荷过量5倍)的、MAC的EC与微囊中相反电荷当量之比的组件,仍然显示基本上中性或负的ζ-电势。虽然不希望界定于任何具体的理论,但是猜测,包括在MAC中的(负)电荷位于组件的外表面上;如果与微囊相结合的MAC的数目足够高,那么微囊上过量的(正)相反电荷可导致至少部分被所述MAC掩蔽。由此,因为在颗粒上测定的ζ-电势受存在于所述颗粒外边界上的电荷的强烈影响,所以,如果带(负)电荷的MAC的量足以部分掩蔽微囊的(正)电荷的话,甚至具有派生于微囊的过量电荷(正)当量的组件也可显示负ζ-电势。以上所有内容当然也可应用于由带负电荷的微囊和带正电荷的MAC形成的组件。
通常,在组件的最终悬浮液中微囊上的EC与MAC上的电荷EC之比,可以在约10∶1-约1∶10之间变化。按照一个优选实施方案,在所形成的组件中微囊/MAC的EC之比优选约3∶1或更小,更优选约2∶1或更小,甚至更优选约3∶2或更小。根据形成微囊和MAC的带电化合物的量,所述比例当然更低,例如约1∶1,并且下至例如约1∶4或更小。
鉴于MAC的尺寸相当小,因此组件的尺寸(按数目计的平均直径)一般为约10μm或更低,并且通常为约1μm或更高。按照本发明组件的优选尺寸是约1μm-约8μm,更优选约2μm-约5μm。
按照本发明的另一实施方案,多层组件可通过使具有交替电荷的充气微囊与多层组分相结合而形成。由此,例如,有可能使具有正电荷的第一层组分(例如胶束)与带负电荷的微囊相结合;然后可以使具有负电荷的第二层组分(例如还是胶束或者脂质体)与此组件相结合等等。虽然第一层组分与微囊的联合导致ζ-电势的绝对值(相对于在单一微囊悬浮液上测定的ζ-电势)减小,但是第二层组分(具有与第一组分相反的电荷)的进一步联合将导致ζ-电势再次向更接近于单一微囊悬浮液的值变化。
按照第一种制备方法,可通过将包括微囊的含水悬浮液(按照以上提到的任何制造方法获得)与包括组件的第二组分的含水悬浮液(按照以上提到的任何制造方法获得)进行混合,而获得组件。
任选地,如此获得的混合物可进行一个或多个洗涤步骤,以便除去过量的未联合组分。洗涤可通过利用合适的洗涤溶液(例如蒸馏水、磷酸盐缓冲盐水、Tris/甘油缓冲液、盐水或5%的葡萄糖溶液)、按照任何常规洗涤技术来实施。由此使包括本发明组件的被洗混合物相(通常是上层相)分开并收集起来;任选地,将回收的含有组件的悬浮液在使用之前,用例如以上提到的任何生理上可接受的载体进行最后稀释。
包括本发明组件的悬浮液在形成之后可以贮存起来,以便随后施用,或者直接施用。如果需要的话,可去除悬浮液的液态载体(例如通过冻干),从而获得干粉形式的组件,组件在重组之前能够贮存相当长的时间(优选地是在适合重组之后形成充气微囊的气体的存在下)。
或者是,组件的两个组分可作为干燥形式(例如冻干)的单独组分贮存,并在施用之前重组为悬浮液。为了贮存,干燥组分优选地保持在与水重组之后将形成微囊的气体环境中。与含水液态载体的重组可单独发生在包括组件的各自组分的两个干燥组合物上,由此获得两个单独的悬浮液,随后将这两个悬浮液进行混合,从而获得所需的组件悬浮液。或者是,这两个干燥组合物可以混合在一起,然后与含水液态载体重组为一个悬浮液。在后一种情形中,组件的混合组分是在与含水液态载体重组之后将形成微囊的气体的存在下贮存的。按照一个优选实施方案,干燥的MAC组合物首先与生理上可接受的含水载体重组,所获得的悬浮液然后用于重组干燥的微囊组合物,从而最终获得组件悬浮液。
以上任何制备方法也可用于制备如上所述的多层组件,即首先将带电充气微囊与具有相反电荷的第一组分混合,然后将所形成的组件与具有与微囊相同电荷的第二组分混合。
为了用两个单独的微囊和MAC制剂制备组件,有益的是,相对于最终组件中所需的MAC的相对量加入过量的MAC,这具体是因为一定量的所述MAC可以在组件悬浮液的任选洗涤步骤过程中去除。通常,优选的是,用于制备MAC的组合物中的EC量至少基本上等于用于制备微囊的组合物中的EC(即EC之比为大约1∶1)。优选地,所述EC之比大约为2∶1或更高,更优选至少大约3∶1或更高,甚至高达例如30∶1。
按照一个优选实施方案,将MAC(特别是如上定义的胶束)的含水悬浮液加入到包括磷脂和冻干保护剂、按照以上提到的WO04/069284中公开的方法制备的含水/有机乳剂中。在这种情况中,带电MAC将与包围乳剂微滴的两性材料的相反电荷层相结合。MAC通常以这样的量加入即,使MAC中的电荷当量与悬浮液微囊中的EC之比至少为大约1∶2或更高,优选2∶3或更高,甚至更优选至少1∶1或更高,甚至高达例如10∶1。同样,MAC的含水悬浮液可加入到气体微泡分散体中,所述分散体是通过在所需气体的存在下使包括磷脂(以及任选地还包括其它两性成膜化合物和/或添加剂)的含水介质承受受控的高搅拌能量而获得的(如前所述)。
混合物的冷冻干燥使得所需组件成为冻干粉末,将该粉末与所需气体接触贮存,随后通过加入含水载体而重组为生理悬浮液。
与贮存的冻干产品(组件、微囊和/或MAC)接触的气体可存在于基本上为大气压(例如约1020mbar+/-5%)或低于大气压的压力(例如900mbar或更低)下的贮存容器中,如欧洲专利申请EP 1228770中所公开的。
冻干造影剂重组之后的可注射组合物,应该尽可能地与血液等渗。因此,在注射之前,少量的等渗剂也可以加入到包括本发明组件的悬浮液中。等渗剂是药物中通用的生理溶液,例如含水盐溶液(0.9%的NaCl)、2.6%的甘油溶液或5%的葡萄糖溶液。含水悬浮液的重组通常是通过将气体贮存的干燥成膜表面活性剂简单溶解并平缓搅拌而获得的。
重组液的体积和浓度可按需平衡,从而获得的备用药剂基本上等渗。因此,重组流体的体积和浓度的选择将取决于存在于冻干产品中的稳定剂(以及其它填充剂)的种类和用量。
正如本领域技术人员所理解的,按照本发明的组件在制备用于不同目的不同组件时具有相当大的灵活性。事实上,用于超声诊断/治疗方法的基本载体组分的结构(即微囊)无需进行任何具体修改,由此避免了所述组分稳定性方面的缺陷。这样的组分仅需要在其被膜上具有总净电荷,而且通过利用通常用于形成所述被膜的常规材料可容易地获得该结果。事实上,微囊与MAC之间的静电相互作用使得两个组分之间有效联合,而无需修改微囊的结构。另一方面,组件的第二组分,即其稳定性对其组成的改变非常不敏感的组分,通过联合所需的靶向配体和/或生物活性化合物于其上,能够容易地适合组件所要求的具体目的。而且,由于MAC相对于微囊的尺寸相当小,因此可将相当多的MAC联合到每个微囊上,由此提高系统的效率。
此外,组件的微囊可容易地与多种不同的纳米组分相结合,由此获得“多用途”组件。具体地说,带电微囊(例如带正电荷)的单一制剂可用作与任何所需类型的携带相反电荷(例如负电荷)的MAC相结合的载体。或者是,通过制备如前所述的多层组件(其中带相反电荷的不同组分是作为交替层围绕微囊设置的),也可获得多用途组件。与微囊相结合的不同MAC在其化学组成或超分子结构(例如胶束-脂质体)方面,以及在包含在其内的靶向配体、诊断剂和/或生物活性剂方面可以是不同的。有益的是,多用途组件将包含这些方面的任意组合。例如,微囊组分可与在其结构中包括至少一种靶向配体(能够连接到与病理状态或疾病有关的特定受体上)的第一纳米组分(例如胶束形式的)合并,以及与包括第二靶向配体或生物活性化合物(例如用于治疗所述病理状态或疾病的治疗化合物)的第二纳米组分(例如胶束形式或脂质体形式)合并。当采用包括“靶向配体携带组分”和“生物活性化合物携带组分”的组合的组件时,尤其是在制备“多层组件”时,携带靶向配体的组分作为最后组分优选单独与充气微囊相结合,以便使组件具有有效的靶向活性。多用途组件的一个实例如是这样的组件该组件包括充气微囊、包括结合到肿瘤特异性受体上的胶束形式的第一组分和包括用于治疗肿瘤的放射性化学物质(结合到胶束形成化合物上或者并入脂质体内)的第二组分。
本发明的组件由此可用于各种诊断和/或治疗方法。
例如,包括具有合适靶向配体的MAC的组件可用来靶向特定器官或组织,然后,按照常规的超声成像技术对所述器官或组织有选择地进行成像,因为结合到所述器官或组织上的充气微囊使得成像增强。如果诊断剂(例如用于MRI)也包括在组件中,那么可利用综合诊断技术。而且,如果生物活性剂包括在组件中(例如包括在脂质体中),那么通过应用能够损坏充气微囊的受控声功率,可促使所述生物活性剂超声介导释放在所选靶物(例如靶向配体结合在此处)上,这正如例如WO 99/39738中所公开的,该文献作为参考在此并入本文。
当然,本发明的组件还可一起含有携带靶向配体或药物活性剂的组分和不含所述化合物、用于例如平衡组件的总电荷的组分。
如前所述,还观察到,为了形成按照本发明的组件,组分、尤其是多个胶束与充气微囊的联合,将导致所述微囊的抗压性增强。例如,观察到,显示约500mm Hg的PC50(即,使微囊群中的50%以上微囊损坏的临界压力)的微囊,当联合到不同种类的胶束上以形成本发明的组件时,可将PC50值增大到至少600mm Hg,甚至高达约800mm Hg。
试剂盒本发明另一方面涉及一种诊断试剂盒,该试剂盒包括本发明的组件或者其各自的单独组分,任选地还包括含水液态载体。
按照第一实施方案,所述试剂盒是包括本发明的组件同时包括含水液态载体的二组分试剂盒。所述二组分试剂盒能够包括两个单独的容器或双室容器。
在前一种情形中,第一容器优选是常规的隔膜密封瓶,其中包含作为与所需气体接触的冻干残余物的组件(按照上述任何方法获得)的小瓶,用隔膜密封,载体液体可通过该隔膜进行注射,以便重组充气微囊/MAC组件悬浮液。载体液体包含在优选采取注射器形式的第二容器内。注射器优选地用重组悬浮液重新填充,并且随后通过注射用来施用造影剂。与所形成的组件不同的是,第一容器也可含有单独冻干的MAC和微囊组合物的混合物,进而在用含水载体重组之后将形成所需的组件。虽然通常手摇容器能够提供重组悬浮液所需的能量,但是可配备用于直接或允许将足够的能量用于容器的装置(例如Vortex混合器),以便确保组件悬浮液进行适当重组。双室容器优选是双室注射器,其中组分例如借助于可去除的隔膜保持隔离,并且一旦冻干物通过平缓摇动而发生重组,容器就可直接用于注射造影剂。与前面一样,可配备用于直接或允许将足够的能量用于容器的装置。
本领域的普通技术人员应该理解的是,能够以无菌方式将干粉与含水溶液合并的其它二室重组系统也包括在本发明的范围内。在这些系统中,特别有益的是,如果将含水相置于水不溶性气体与环境之间,可以延长产品的有效期。
按照另一实施方案,本发明的试剂盒是包括MAC组合物、微囊组合物并任选地包括含水载体的至少二组分试剂盒。
这些优选地是作为至少两个单独容器存在的,第一个含有冻干微囊组合物(例如与所需气体接触),第二个含有所需的冻干MAC组合物(任选地与所需气体接触或者在真空下)。有益的是,试剂盒中可包括含有用于重组的含水载体的第三任选容器。如果需要的话,试剂盒中可包括含有其它冻干MAC组合物的附加容器。为了施用,MAC悬浮液首先在含水载体中重组,然后,所获得的悬浮液用于重组微囊组合物,由此形成所需的组件悬浮液。
不需要特殊容器瓶或连接系统,本发明可采用常规容器、瓶或适配器。仅要求塞子与容器之间良好密封。因此,密封质量是首要的关注因素;密封完整性的任何退化都能够使不需要的物质进入瓶内。除了确保无菌之外,真空保持度对于在周围环境或减小的压力下塞好的产品也是至关重要的,以确保安全、合适的重组。形成容器气密封接的塞子材料优选是弹性化合物或基于弹性体(例如聚(异丁烯)或丁基橡胶)的多组分药剂。可便利地使用来自Daiko Seiko Itd.的丁基橡胶塞。
具体实施例方式
实施例在这些实施例中用到以下材料PBS磷酸盐缓冲盐水10mM的磷酸钠,0.9w/w NaCl,pH=7.4Tris缓冲 Tris缓冲盐水10mM的Tris(羟甲基)氨甲烷,0.9w/w NaCl,pH=7.4HEPES缓冲液4-(2-羟乙基)-1-哌嗪乙基磺酸(20mM)
和NaCl(150mM),pH=7.4Tris甘油缓冲液 Tris(羟甲基)氨甲烷1g/l和0.3M甘油,pH=7.2DIO18标记物3,3’-双十八烷基噁羰花青(Molecular Probes Inc.,U.S.A.)Gd-DTPA-(SE)2钆-二乙烯三胺五乙酸复合物的二硬脂酸酯(按照以下文献制备G.W.Kabalka等人,Magnetic Resonance in Medicine8(1998),89-95)DSPG 二硬脂酰磷脂酰甘油钠盐(Genzyme)IUPAC1,2-二硬脂酰-sn-甘油酰-3-[磷-rac-(1-甘油)]DAPC 二花生四烯酰基磷脂酰胆碱(Avanti polar Lipids)IUPAC1,2-二花生四烯酰-sn-甘油酰-3-胆碱磷酸DSTAP 1,2-二硬脂酰-3-三甲基氨基-丙烷氯化物(Avantipolar Lipids)DSPC 二硬脂酰磷脂酰胆碱Genzyme)IUPAC1,2-二硬脂酰-sn-甘油酰-3-胆碱磷酸DPPG 二棕榈酰磷脂酰甘油钠盐(Genzyme)IUPAC1,2-二棕榈酰-sn-甘油酰-3-[磷-rac-(1-甘油)]DPPA 二棕榈酰磷脂酸钠盐(Genzyme)IUPAC1,2-二棕榈酰-sn-甘油酰-3-磷酸盐DPPC 二棕榈酰磷脂酰胆碱(Genzyme)IUPAC1,2-二棕榈酰-sn-甘油酰-3-胆碱磷酸DSEPC 二硬脂酰乙基磷脂酰胆碱(Avanti polar Lipids)IUPAC1,2-二硬脂酰-sn-甘油酰-3-乙基胆碱磷酸NaDOC 脱氧胆酸钠(Fluka)DSPE-PEG2000 用PEG2000改性的二硬脂酰磷脂酰乙醇胺钠盐(Nektar Therapeutics)
乙基-SPC3 大豆乙基胆碱磷酸乙基-DSPC和乙基-DPPC的4∶1(w/w)混合物DPPE-cap-生物素 1,2-二棕榈酰-sn-甘油酰-3-磷酸乙醇胺-N-(帽生物素基)钠盐(Avanti Polar Lipids)PEG4000 聚乙二醇,MW=4000(Fluka)Pluronic 68 环氧乙烷/环氧丙烷嵌段共聚物(Fluka)C4F10全氟丁烷微囊的尺寸和浓度利用库尔特计数Multisizer(孔径30μm)来测定。
微囊悬浮液的ζ-电势利用1mM NaCl中的Malvern Zetasizer3000Hsa来测定。
胶束制剂的尺寸用Malvern Zetasizer 3000Hsa来测定。
实施例1带正电荷的微球的制备将三棕榈精(60mg)溶解在40℃的环己烷(0.6ml)中。将此有机相保持在40℃,直到乳化为止。将40mg的乙基-SPC3(阳离子磷脂)在65℃的30ml蒸馏水中分散15分钟,然后将分散体冷却到40℃。
利用Polytron均化器PT3000(10000转,1分钟),将有机相乳化在含水相中。该乳剂然后用5ml PVA(200mg,Mw=9000,来自Aldrich)的蒸馏水溶液进行稀释,随后冷却到5℃,在-45℃冷冻10分钟,然后冻干(0.2mbar,24小时)。
在空气的存在下将冻干物重新分散在蒸馏水(20ml)中,利用磷酸盐缓冲盐水和最终的微球悬浮液(20ml),通过离心(600g,10分钟)将微球洗涤两次。此制剂的大小特征如下DV50=2.54μm;DN=1.57μm。
实施例1a
荧光标记的带正电荷的微球的制备通过在有机相中加入5%(按重量计)(相对于三棕榈精的总量而言)的亲脂荧光探针DIO18以便荧光标记微球,而重复实施例1。此制剂的大小特征如下DV50=2.38μm;DN=1.45μm。
实施例2a-2e含有DSTAP的带正电荷的微泡的制备将15mg DAPC和阳离子脂质DSTAP(参见表1中的相对比例)的混合物以及985mg PEG4000溶解在50℃的叔-丁醇(10ml)中。溶液是在10ml的小瓶(每个小瓶中有50mg的干物)中取样的,然后在Christ Epsilon 2-12DS冷冻干器中冻干(-30℃,0.56mbar,24小时)。在额外干燥(25℃,0.1mbar,5小时)之后,用弹性塞塞好小瓶,并用铝箔进行密封。
将所获得的冻干物暴露于所需气体中(50∶50v/v的C4F10/N2),然后重新分散在5ml PBS缓冲液中,由此获得带正电荷的微泡悬浮液。悬浮微泡的大小特征在表1中列出。
表1含有DSTAP的微泡

实施例3a-3c带负电荷的微泡的制备通过用相同总量(15mg)、不同相对量(如表2所示)的DPPG/DSPC混合物取代DAPC/DSTAP混合物,来重复实施例2a-2e的制备过程。悬浮微泡的大小特征在表2中列出。
表2含有DPPG的微泡

实施例4带正电荷的微泡的制备将DSTAP(200mg)在80℃、100ml含有5.4%(w/w)的丙二醇与甘油(3∶10w/w)混合物的水中分散5分钟,然后冷却到室温。
将分散体转移到C4F10应器中,并且以20000转(Polytron PT3000)匀化10分钟,保持转子定子混合杆,以使开口稍稍在液体表面之上。所获得的微泡用水、通过离心洗涤两次,然后重新分散在7.5%的葡萄糖溶液中。
悬浮液是在10ml的小瓶(每个小瓶中有2ml)中取样的。将小瓶冷却到-45℃,并冻干24小时,然后塞好、密封并保持在室温下。重新悬浮在蒸馏水中的微泡的大小特征如下DV=4.04;DN=1.75。
实施例5a-5d带负电荷的胶束的制备利用安装在Branson 250超声波降解器(输出30%,10分钟)上的3mm超声探针,将50mg的Gd-DTPA-(SE)2(含有痕量的放射性153Gd)和10mg的NaDOC分散在5%的含水葡萄糖(10ml)中,从而获得阴离子胶束的含水悬浮液。通过将不同量的不同化合物分散在相同体积的葡萄糖水溶液中(如下表3所示),来重复相同的制备过程。
表3带负电荷的胶束

实施例6a-6f含有DPPA的带负电荷的胶束的制备利用3mm的超声探针(Branson 250超声波降解器,输出30%,10分钟),将不同量的阴离子磷脂DPPA和中性磷脂DPPC(如表4所示)与16mg Pluronic F68一起分散在10ml的PBS中。将少量的DPPC-H3(对于10ml的最终悬浮液,约2.5μCi)作为放射性标记物加入到胶束制剂中。
超声降解之后,使溶液通过0.2μm的滤器(Millipore)进行过滤。在冷却到室温之后,利用Malvern Zetasizer 3000HSA测定胶束的大小,利用稀释在10ml LSC cocktail Hionic Fluor(PackardBioscience)中的50μl溶液,测定具体的放射活性,并在Tricarb2200A液体闪烁分析仪(Packard Bioscience)中进行计数。
表4含有DPPA的带负电荷的胶束

实施例7a-7b含有DSPE-PEG的带负电荷的胶束的制备将20mg的DSPE-PEG2000溶解在圆底烧瓶中的1ml、60℃的氯仿/乙醇(1/1,v/v)中,并在真空下将溶剂蒸发掉,从而在烧瓶内壁上留下一层薄膜。此膜进一步在真空室中干燥过夜。然后在60℃用10ml的Hepes缓冲液将脂质膜水合30分钟。随后将溶液在0.2μm的滤器上进行过滤,并在表征之前冷却到室温。将滤液在水中稀释(稀释比1∶3),并用Malvern Zetasizer 3000HSA分析尺寸分布。按照上述过程的两个不同制备结果总结在表5中。
表5

实施例8含有乙基-SPC3的带正电荷的胶束的制备利用安装在Branson 250超声波降解器(输出30%,10分钟)上的3mm超声探针,将16mg的乙基-SPC3和16mg的pluronic F68分散在5%的含水葡萄糖(10ml)中,从而获得阳离子胶束的含水悬浮液。
实施例9a-9e含有DSTAP的带正电荷的胶束的制备通过用带正电荷的DSTAP代替带负电荷的DPPA来重复实施例6a-6f的制备。不同制备过程的脂质和磷脂的相对量在表6中示出。
表6含有DSTAP的带正电荷的胶束

实施例10a-10b具有阳离子微球和阴离子胶束的组件的制备使实施例1的微球悬浮液(1ml)分别与不同体积(在表7中示出)的实施例5a或实施例5b的胶束制剂混合。1小时之后,用PBS通过离心(600g,5分钟)将悬浮液洗涤两次,并重新分散在PBS(1.2ml)中。通过利用Cobra IIγ-射线自动仪(Packard Bioscience)测定悬浮液的Gd153放射活性(γ计数),来确定结合胶束的量(被表达成,所测定的组件悬浮液放射活性占所测定的初始胶束制剂放射活性的百分比)。结果在表7中给出。
表7

正如从上表推出的,虽然结合胶束的相对量(即,结合胶束占所加入的胶束总量的百分比)随着加入到微囊悬浮液中的胶束总量(即胶束悬浮液的体积)的增大而减小,但是结合胶束的绝对量(由表7中的第一栏和最后一栏的产品给出)却是增大的。
通过制备分别带有实施例1的微球和实施例5c或5d的胶束制剂的组件,而获得基本上类似的结果。
实施例11实施例10a-10b的组件的结合活性的测定为了测试实施例10a和10b(10μl和100μl的每个胶束悬浮液制剂)的组件的结合活性,如下制备中性亲和素包被的表面向十二孔板(NuncTM)的每个孔中加入碳酸盐缓冲液(pH9.5,300μl)和NeutrAvidinTM(Pierce,1mg/ml,50μl)。温育(-4℃,过夜)之后,所述孔用含有0.1%Tween 20的PBS洗涤两次,用PBS洗涤两次。加入牛血清白蛋白(2%的PBS溶液,350μl)并且在温育(25℃,1小时)之后,用含有0.1%Tween 20的PBS洗涤两次,用PBS洗涤两次。
将按照实施例10a和10b制备的2×108个组件加入到每个孔中,然后所述孔用PBS填充,进行密封,并转动板。反相温育(2小时,-25℃)之后,所述孔用PBS洗涤两次,并通过具有40倍放大倍数的透镜的光学显微镜观察表面。含有生物素化胶束、来自实施例10b的组件对中性亲和素包被的表面表现出亲和力,100μl/ml的制剂比10μl/ml的制剂具有更高的表面覆盖度。实施例10a的相应未生物素化制剂表现出对中性亲和素包被的表面没有结合活性。
通过将包括实施例1的微球和实施例5c的未生物素化胶束的组件的结合活性与包括实施例1的微球和实施例5d的生物素化胶束的相应组件进行比较,而获得基本上类似的结果。
实施例12a-12b
具有阳离子微泡和阴离子胶束的组件的制备使实施例2d的微球悬浮液(1ml)分别与不同体积(在表8中示出)的实施例5a或实施例5b的胶束制剂混合。将悬浮液轻轻搅拌1小时,然后用Tris甘油缓冲液通过离心(180g,5分钟)洗涤两次。将infranatant弃掉,并将残余物分散在Tris甘油缓冲液(1ml)中。所获得的组件的大小、浓度和ζ-电势在表8中给出。
表8

在这两种情况中,胶束悬浮液的体积增大决定所获得的相应组件悬浮液的ζ-电势减小。
通过分别用实施例2c或2e的微泡悬浮液代替实施例2d的微泡悬浮液,或者用实施例5c和5d的胶束制剂代替实施例5a和5b的胶束制剂,而获得基本上类似的结果。
实施例13实施例12a-12b的组件的结合活性的测定为了测试实施例12a-12b的组件的结合活性,如实施例11中所述制备中性亲和素包被的表面,并用不同量(300、100、30和10μl)的实施例12a和12b的制剂进行测试。
在光学显微镜上观察100μl/ml和300μl/ml的实施例12b的制剂的标记结合活性。在30μl/ml的制剂中观察到较低的结合,而在10μl/ml的混合物中观察到较差的结合。实施例12a的所有组件(不包含生物素化胶束)都显示没有结合活性。
实施例14a-14b具有阳离子微泡和阴离子胶束的组件的制备将按照实施例4获得的小瓶中的冻干内容物暴露于C4F10中,并重新分散在2ml的蒸馏水中。悬浮液用PBS通过离心(180g,10分钟)洗涤两次,并重新分散在2ml的PBS中。
加入50μl、分别按照实施例5a或5b制备的胶束制剂,在C4F10环境中用旋转搅拌器将混合物搅拌过夜,然后通过离心(180g,10分钟)用PBS洗涤两次,最后重新分散在2ml的PBS中。
表9提供了实施例14a和14b的组件的特征。
表9

正如从上表中推出的,基本上全体胶束都与所形成的组件中的微泡相结合,所述组件具有基本上与初始微泡相同的平均直径。
实施例15具有阴离子微泡和阳离子胶束的组件的制备使按照实施例3b制备的微泡悬浮液(1ml)与不同体积(在表10中示出)的实施例8的胶束制剂混合。将悬浮液轻轻搅拌1小时,然后用Tris甘油缓冲液通过离心(180g,5分钟)洗涤两次。将infranatant弃掉,并将获得的组件分散在Tris甘油缓冲液(1ml)中。组件的一些特征在表10中给出。
表10

可观察到,利用能够决定微泡悬浮液的初始ζ-电势的符号反转的一定量胶束,组件的平均尺寸变得更接近初始微泡的尺寸。
实施例16确定结合胶束的量作为包括阳离子微泡和阴离子胶束的组件制剂中的带电化合物的量的函数为了获得总计30个组件制剂,通过在5ml的玻璃管中将300μl、按照实施例6a-6f制备的胶束溶液混合到1ml、按照实施例2a-2e制备的微泡的PBS悬浮液中,来制备不同的组件悬浮液。将混合的悬浮液轻轻搅拌30分钟,然后通过离心(180g,10分钟)洗涤两次,以去除未结合的材料。通过添加并入胶束内的放射性标记分子DPPC-3H,来评估结合到微泡上的胶束中的脂质分子的量。

图1表示出包括按照实施例2a-2e制备的各个微囊的组件的测定结果,其中线A-E代表作为所述胶束中的带电化合物的量的函数、结合到微囊上的胶束的量。
从所述附图中可注意到,对于包括实施例6a(无带电表面活性剂)的胶束的组件制剂,基本上没有观察到结合胶束。而且,结合到微囊上的胶束的量随着包括在微囊中的带电化合物的量的增加而增加。最后,对于胶束/微囊组件的这个特定组合,可观察到,当胶束中的带电化合物的相对量为总量的约1%-5%(w/w)时,有更高量的胶束结合到微囊上。
实施例17确定结合胶束的量作为包括阴离子微泡和阳离子胶束的组件制剂中的带电化合物的量的函数为了获得总计15个组件制剂,通过在5ml的玻璃管中分别将300μl、按照实施例9a-9e制备的每个胶束溶液混合到1ml、按照实施例3a-3c制备的每个微泡悬浮液中,来制备不同的组件悬浮液。将混合的悬浮液轻轻搅拌30分钟,然后通过离心(180g,10分钟)洗涤两次,以去除未结合的材料。通过添加并入胶束内的放射性标记分子DPPC-3H,来评估结合到微泡上的胶束中的脂质分子的量。
可观察到与实施例16的组件制剂类似的结果,即,通过增加包括在微囊中的带电化合物的量,可增加结合到微囊上的胶束的量,并且尤其是对于微囊含有更低量的带电化合物的组件而言,当胶束中的带电化合物的相对量为约1%-5%(w/w)时,有更高量的胶束结合到微囊上。
实施例18确定结合胶束的量作为加入到包括不同量带电化合物的微泡悬浮液中的胶束的量的函数为了获得总计12个组件制剂,将不同量(50、100、250和500μl)的、按照实施例7a或7b制备的胶束制剂与1ml、按照实施例2b、2d和2e制备的微泡制剂合并(尤其是2b和2d与7a合并,2d与7b合并)。将混合物轻轻搅拌30分钟,用水通过离心(180g/10分钟)洗涤两次,以去除未结合的材料。
通过用库尔特计数器测定大小分布以及用Malvern Zetasizer测定ζ-电势,来表征所生成的悬浮液。将一部分样品在0.2mbar冻干24小时,并利用HPLC分析冻干物,以便测定组件(μg PE-PEG/ml的泡)中的DSPE-PEG的量。结果汇总在下表11中,该表示出了包括在用于形成组件的混合物中的DSPE-PEG的初始量、组件中DSPE-PEG的最终量(对应于结合胶束的量)、最终组件中的正、负电荷之间的比例(表示成电荷当量)以及最终悬浮液中的各自ζ-电势。
表11阳离子微泡和阴离子胶束

从上表中观察到,通常,微囊中的带电化合物的量越高,最终组件中的结合胶束的量就越高。此外,就同一微泡制剂而言,结合DSPE-PEG的量越高,EC比例就越高,各自的ζ-电势值就越低。
实施例19阳离子微囊与阴离子胶束的组件以及阴离子微囊与阴离子胶束的对照混合物称量20mg的DSPE-PEG2000,并溶解在圆底烧瓶中60℃的氯仿/甲醇(1/1,v/v)中,然后在真空中蒸发溶剂混合物,从而在烧瓶内壁上沉积一层薄膜。此膜在真空室中进一步干燥过夜。
脂质膜用60℃、10ml的5%葡萄糖水合30分钟,溶液在0.2μm滤器上进行过滤,然后在表征之前冷却到室温。
将上述制备过程重复两次。
通过利用50/50(w/w)的DAPC与DSTAP混合物或50/50(w/w)的DSPC与DPPG混合物,如实施例2e(带正电荷)和3b(带负电荷)中所述来制备微泡。在重组之前将小瓶暴露于50/50(v/v)的C4F10/N2中。
将2.5ml的胶束溶液用2.5ml的5%葡萄糖进行稀释。利用胶束的稀释溶液将冻干微泡进行重组,并涡旋2分钟,然后轻轻混合30分钟。
所获得的悬浮液用5%葡萄糖(通过离心,180g/10分钟)洗涤两次,并将上清液重新分散在2.5ml的5%葡萄糖中。利用MalvernZetasizer 3000Hsa(50μl/10ml NaCl 1mM)测定每个悬浮液的ζ-电势。利用HPLC测定每个悬浮液中的DSPE-PEG2000的量。结果在下表12中给出。
表12阴离子胶束与阴离子或阳离子微泡的混合物

从上表中观察到,在阴离子微泡上基本上没有获得阴离子胶束的结合,即,在最终混合物中仅发现可忽略量的DSPE-PEG,而ζ-电势仍旧基本上为负的。
实施例20阳离子微球-胶体金组件按照实施例1制备的阳离子微球悬浮液与用柠檬酸钠(Polysciences,60nm)稳定的金颗粒胶体悬浮液,以不同比例(表示为金颗粒数/微球数,参见表13)进行混合。2小时之后,将飘浮的颗粒分出并重新分散在蒸馏水中。表13表示出,ζ-电势的中性值是在约200的金颗粒/微球的比例时获得的。
表13

实施例21阳离子微泡-磁铁矿组件按照US 5,545,395制备用DPPA/Pluronic F108(FE/DPPA/Pluronic F108的比例为3/15/15,按mg/ml计)包被的磁铁矿。用Tris(1g/l)/甘油(0.3M)缓冲液(pH7.05)将溶液稀释100倍。在SF6大气下用5ml的磁铁矿溶液将阳离子微泡(按照实施例2d制备,只是所用的气体是SF6,而不是C4F10/N2混合物)重新分散。涡旋2分钟之后,将悬浮液轻轻混合1小时。然后用Tris/甘油缓冲液、通过离心(180g/10分钟)将飘浮的颗粒洗涤两次。用库尔特计数Multisizer测定大小和浓度。用Malvern Zetasizer 3000Hsa(稀释50μl/10ml水)测定ζ-电势。用驰豫时间(T2)测定法(BrueckerMinispec MQ20)测定磁铁矿的结合,并与在相同的没有磁铁矿颗粒的微泡制剂上完成的对照实验进行比较。结果在表14中给出。
表14

正如从上表中看到的,随着ζ-电势相对于对照悬浮液的进一步减小,观察到T2大幅减小,从而证实含有磁铁矿的胶束基本上结合到微泡上。
实施例22在体内施用中带相反电荷的胶束对带电微泡表面的作用利用80/20(w/w)的DAPC与DSTPA混合物、如实施例2d中所述来制备带正电荷的微泡。利用50/50(w/w)的DSPC与DPPG混合物、如实施例3b中所述来制备带负电荷的微泡。小瓶在用Tris/甘油缓冲液(5ml)重组之前暴露于50/50(v/v)的C4F10/N2中。
按照实施例6f(带负电荷)和实施例8(带正电荷)制备胶束。然后,制备微泡或组件的以下悬浮液悬浮液A将600μl的Tris/甘油缓冲液与2ml的微泡(实施例2d-带正电荷)混合,并轻轻混合30分钟。
悬浮液B将600μl的按照实施例6g的胶束(带负电荷)与2ml的微泡(实施例2d-带正电荷)混合,并轻轻混合30分钟。
悬浮液C将600μl的Tris/甘油缓冲液与2ml的微泡(实施例3b-带负电荷)混合,并轻轻混合30分钟。
悬浮液D将600μl的按照实施例8的胶束(带正电荷)与2ml的微泡(实施例3b-带负电荷)混合,并轻轻混合30分钟。
所有悬浮液用Tris/甘油缓冲液(通过离心,180g/10分钟)洗涤两次,并将上清夜重新分散在2ml的缓冲液中。利用库尔特计数器测定大小和浓度。用Malvern Zetasizer 3000Hsa(50μl/10ml NaCl 1mM)测定每个悬浮液的ζ-电势,并在下表15中示出。
表15

以每kg体重5E+06微泡的剂量将悬浮液注射到兔耳静脉中。利用配有间歇成像(二帧/秒)的4C1-S转换器和高机械指数(MI)的AcusonSequoia 512在相干反差成像(CCI)中实施二维回波描记术。将肾的图像在录像机上记录3分钟,并分析此序列,以便测定在皮层(图2和3)选择的感兴趣区域(ROI)中作为时间函数的平均象素强度。
正如在附图上看到的,在微泡上添加带相反电荷的胶束,这显著地改变了微泡的体内行为。由此,在肾皮质上几乎检测不到带正电荷的泡(悬浮液A)。然而,与带负电荷的胶束温育之后,相同的微泡(悬浮液B)在ROI显示出更强的信号。类似的带负电荷的微泡(悬浮液C)在肾脏显示出强信号。然而,与带正电荷的胶束混合之后,在ROI中几乎没有检测到信号。
实施例23阳离子微泡与包括药物的阴离子胶束的组件如下表16所示,使2ml的微泡悬浮液(按照实施例2a制备,分散在PBS中)与不同量的Fungizone溶液(两性霉素B与脱氧胆酸钠在PBS中的胶束悬浮液)混合。将悬浮液轻轻搅拌1小时,然后用PBS缓冲液、通过离心(180g/5分钟)洗涤两次。将infranatant弃掉,并将获得的组件分散在缓冲液(1ml)中。用库尔特计数Multisizer(孔径30μm,50μl/100ml NaCl 0.9%)测定大小和浓度。用MalvernZetasizer 3000Hsa(50μl/10ml蒸馏水)测定ζ-电势。用分光光度计(409nm,50μl的、2ml CHCl3/MeOH 1/1中的组件)测定微泡上两性霉素B的量,并与Fungizone的校正曲线进行比较。下表16中示出的结果表明,通过增大所加入的胶束的量,组件中可包括增加量的药物。
表16-具有药物的组件

实施例24具有双层胶束的组件实施例24a带负电荷的泡的制备利用与US 5,830,435的实施例3中所述相似的方法制备含有DPPC/DPPS的微泡。简言之,通过将59.2mg的DPPC和40.8mg的DPPS分散在含有1g丙二醇的100ml蒸馏水中,而获得多层脂质体(MLV)。将脂质体在搅拌下于70℃温育30分钟。脂质体的平均直径为DN=约1.4μm,DV约2.7μm。
将脂质体悬浮液引入配备高速机械乳化器(Megatron MT3000,Kinematica,Switzerland)的气密玻璃反应器中。将含有C4F10的气袋与乳化器的混合室相连。匀化(10,000转,1分钟)之后,获得微泡的乳状悬浮液。通过倾析去除infranatant(约90ml,含有大部分脂质体)。将上清夜(含有微泡)回收并重新悬浮在蒸馏水中,至总体积达100ml。重复倾析步骤,并将最终的微泡悬浮液重新悬浮在10%的麦芽糖中。将几个等分的悬浮液收集在10ml玻璃瓶内(每个瓶中1ml悬浮液),将样品在-45℃冷冻,并冻干。
冻干之后,将瓶用橡胶塞封闭,抽成真空并用含有1∶1(v/v)的C4F10与空气混合物的气体混合物和填充。通过塞子将2ml的蒸馏水注入瓶内并手摇,从而产生微泡。
实施例24b阳离子和阴离子胶束的制备实施例24b1用3.73mg/ml的DSPE-PTE020(多臂PEG-磷脂,NOF Corporation,Japan)和1.27mg的阳离子磷脂DPEPC(二棕榈酰甘油酰-3-乙基胆碱磷酸,AvantiPolar Lipids,Inc.USA)制备阳离子胶束。
实施例24b2用4.1mg/ml的DSPE-PEG2000和0.9mg的GPIIbIIIa结合脂肽(DPPE-PEG2000-Lys-Gln-Ala-Gly-Asp-Val,按照US 6,139,819的实施例3制备的)制备阴离子、官能化胶束。
在5%的葡萄糖溶液中制备带正电荷及带负电荷的胶束。
实施例24c具有带负电荷的泡和带有相反电荷的多MAC层的组件的制备将50μl和500μl的按照实施例24b1制备的阳离子胶束分别加入到含有约1×109的按照实施例24a制备的带负电荷的微泡的两个制剂中。将混合物轻轻搅拌30分钟,然后通过离心(10’/1000转)洗涤两次,并重新悬浮在5%的葡萄糖溶液中。将获得的组件的大小和ζ-电势(如所测定的)列在以下的表17中(“组件1”行)。结果表明,在用一层阳离子胶束包被带负电荷的微泡之后,所测定的组件悬浮液的ζ-电势变成正的。
然后,将100μl和250μl的阴离子胶束悬浮液(按照实施例24b2制备)分别加入到含有50μl阳离子胶束的组件和含有500μl阳离子胶束的组件中。将两种混合物轻轻搅拌30分钟,然后通过离心(10’/1000转)洗涤两次,并重新悬浮在5%的葡萄糖溶液中。将获得的双层组件的直径和ζ-电势列在以下的表17中(“组件2”行);第二层带负电荷的胶束的存在决定ζ-电势的相应负值。
表17

包括多个交替带电层的类似组件也能够用其它种类的MAC(例如脂质体和纳米颗粒)来制造。例如,带负电荷的微泡可用阳离子和含有药物的脂质体来包被,然后用携带靶向部分的第二层阴离子胶束来包被。
实施例25用乳剂制备组件将含有DAPC和DSTAP(80∶20,2mg/ml)的50ml蒸馏水在70℃加热30分钟,然后冷却到室温。利用高速匀化器(Polytron,10,000转,1分钟)将4ml的全氟己烷乳化在此含水相中。正如用MalvernMastersizer所测定的,生成的乳剂显示以体积计的中值直径为DV50=5.0μm,以数目计的平均直径DN=2.7μm。通过离心洗涤乳剂,并将其重新悬浮在水中。将不同量的按照实施例24b2制备的阴离子胶束分别加入到三个等分的以上阳离子乳剂中,对于每ml乳剂其各自的浓度为135μl、270μl和540μl。在温育(在轻轻搅拌下于室温中30分钟)并通过离心除去过量的胶束之后,将胶束包被的乳剂重新分散在20%(w/w)含水PEG4000溶液中。将乳剂-胶束组件分布在瓶中(2ml/瓶),然后在瓶中进行冷冻和冻干。用C4F10疏散和取代冻干物瓶中的空气。用2ml的5%葡萄糖溶液重组之后,获得乳状微泡-胶束组件悬浮液。库尔特计数器和ζ-电势的分析结果收集在以下的表18中。
表18

阴离子胶束的量增大的制剂,导致微泡的量增大。而且,表面电荷特性也能够按需进行调整(ζ-电势值从正变到负)。
实施例26用气体乳剂制备组件利用C4F10作为气相、DPPS作为磷脂(2mg/ml)以稳定微泡、按照实施例24a获得带负电荷的微泡。在通过DPPS脂质体的高速机械乳化(MegatronMT3000 Kinematica,Switzerland)生成泡之后,利用1μl的聚碳酸酯膜(Nuclepore)通过渗滤30分钟来洗涤微泡,以除去泡悬浮液中过量的磷脂。将含有缀合到特异于P-选择蛋白(70∶30摩尔比,5mg/ml)的兔抗-鼠单克隆IgG1上的DPEPC和DSPE-PEG2000的阳离子胶束,加入到泡悬浮液(50μl胶束用于1ml的微泡中,即约5×109个泡/ml)中。将混合物于室温中轻轻搅拌30分钟并进行离心。将组件(上清夜)重新悬浮在10%的麦芽糖溶液中,冷冻并冻干(2ml/瓶)。冻干之后,冻干物用C4F10气化,并且用2ml的蒸馏水进行重组。计数器分析显示,在冻干之后,超过90%的微泡-胶束组件仍然是完整的。这些微泡显示出Dn=1.3μm,Dv=2.9μm。流式细胞术测定证实,组件表面上存在生化活性的IgG1抗体。
权利要求
1.一种组件,包括携带第一总净电荷的充气微囊和与所述微囊相结合的组分,其中所述组分携带符号与所述第一净电荷相反的第二总净电荷,所述组分包括生物相容的表面活性剂,并具有100nm或更小的直径。
2.根据权利要求1所述的组件,其特征在于,所述相结合组分具有80nm或更小的直径。
3.根据权利要求1所述的组件,其特征在于,所述相结合组分具有50nm或更小的直径。
4.根据权利要求1所述的组件,其特征在于,所述相结合组分包括靶向配体、生物活性剂、诊断剂或这些物质的任意组合。
5.根据权利要求4所述的组件,其特征在于,还包括携带总净电荷的第二组分,所述第二组分任选地包括不同的靶向配体、生物活性剂、诊断剂或这些物质的任意组合。
6.根据权利要求5所述的组件,其特征在于,所述第二组分携带符号与所述微囊的电荷相同的总净电荷。
7.根据权利要求1所述的组件,其特征在于,所述生物相容的表面活性剂是两性材料。
8.根据权利要求1所述的组件,其特征在于,所述生物相容的表面活性剂选自(C2-C10)有机酸、包括(C12-C24)脂族链的有机脂肪酸、这些物质的药物可接受的盐以及与聚氧乙烯的相应酯;聚离子(碱性)盐;有机胺;酰胺;四价铵盐;氨基酸;磷脂;单-或寡-糖与(C12-C24)有机脂肪酸的酯;有饥磺酸酯;全氟有机酸;聚合表面活性剂;以及上述这些物质的混合物。
9.根据权利要求1所述的组件,其特征在于,每摩尔微囊的电荷数与每摩尔第二组分的电荷数之比,为大约10∶1-大约1∶10。
10.根据权利要求9所述的组件,其特征在于,所述比例为大约3∶1或更小。
11.根据权利要求9所述的组件,其特征在于,所述比例为大约2∶1或更小。
12.根据权利要求1所述的组件,其特征在于,所述微囊是用包括两性成膜化合物的被膜所稳定的微泡,或具有材料被膜的微球。
13.根据权利要求12所述的组件,其特征在于,包括在使所述微泡稳定的被膜中的所述两性成膜化合物是磷脂。
14.根据权利要求13所述的组件,其特征在于,所述被膜包括携带正或负净电荷的磷脂或脂质。
15.根据权利要求14所述的组件,其特征在于,所述磷脂或脂质选自磷脂酰丝氨酸衍生物、磷脂酸衍生物、磷脂酰甘油衍生物、聚乙二醇改性的磷脂酰乙醇胺、乙基磷脂酰胆碱衍生物和各自的溶血形式;胆汁酸盐;脱氧胆汁酸盐;甘氨胆酸盐;这些物质的(C12-C24)脂肪酸盐;包括至少一个(C10-C20)烷基链的烷基铵盐;包括至少一个通过(C3-C6)亚烷基桥连接到氮原子上的(C10-C20)酰基链的三价或四价铵盐;以及上述这些物质的混合物。
16.根据权利要求12所述的组件,其特征在于,所述微球的材料被膜包括聚合材料、蛋白质材料、水不溶性脂质或这些材料的任意组合。
17.根据权利要求12或13所述的组件,其特征在于,所述微球的材料被膜包括离子生物降解聚合物。
18.根据权利要求13所述的组件,其特征在于,所述微球的材料被膜还包括携带正或负净电荷的磷脂或脂质。
19.根据权利要求18所述的组件,其特征在于,所述磷脂或脂质选自磷脂酰丝氨酸衍生物、磷脂酸衍生物、磷脂酰甘油衍生物、聚乙二醇改性的磷脂酰乙醇胺、乙基磷脂酰胆碱衍生物和各自的溶血形式;胆汁酸盐;脱氧胆汁酸盐;甘氨胆酸盐;这些物质的(C12-C24)脂肪酸盐;包括至少一个(C10-C20)烷基链的烷基铵盐;包括至少一个通过(C3-C6)亚烷基桥连接到氮原子上的(C10-C20)酰基链的三价或四价铵盐;以及上述这些物质的混合物。
20.根据权利要求1-6任一项所述的组件,其特征在于,与所述微囊相结合的所述组分是胶束。
21.根据权利要求20所述的组件,其特征在于,所述胶束包括聚乙二醇改性的磷脂;包括至少一个(C10-C20)烷基链的烷基铵盐;包括至少一个通过(C3-C6)亚烷基桥连接到氮原子上的(C10-C20)酰基链的三价或四价铵盐;(C12-C24)脂肪酸盐;聚合表面活性剂;或上述这些物质的混合物。
22.根据权利要求20所述的组件,其特征在于,所述胶束包括磷脂酰胆碱、乙基磷脂酰胆碱、磷脂酰甘油、磷脂酸、磷脂酰乙醇胺、磷脂酰丝氨酸或鞘磷脂的(C12-C24)脂肪酸二酯。
23.根据权利要求20所述的组件,其特征在于,所述胶束包括携带正或负净电荷的磷脂或脂质,或聚合离子表面活性剂。
24.根据权利要求23所述的组件,其特征在于,所述磷脂或脂质选自磷脂酰丝氨酸衍生物、磷脂酸衍生物、磷脂酰甘油衍生物、聚乙二醇改性的磷脂酰乙醇胺、乙基磷脂酰胆碱衍生物和各自的溶血形式;胆汁酸盐;脱氧胆汁酸盐;甘氨胆酸盐;这些物质的(C12-C24)脂肪酸盐;包括至少一个(C10-C20)烷基链的烷基铵盐;包括至少一个通过(C3-C6)亚烷基桥连接到氮原子上的(C10-C20)酰基链的三价或四价铵盐;以及上述这些物质的混合物。
25.根据权利要求1所述的组件,其特征在于,与所述微囊相结合的所述组分是胶体纳米颗粒。
26.根据权利要求1所述的组件,其特征在于,与所述微囊相结合的所述组分是固态聚合纳米颗粒。
27.包括根据权利要求1-26任一项所述的组件的生理上可接受的液体的含水悬浮液。
28.根据权利要求1-26任一项所述的组件,其特征在于,药物可接受的载体中的所述组件的含水悬浮液显示出£-电势,所述£-电势相对于形成所述组件的充气微囊的相同载体中的含水悬浮液的£-电势,其绝对值至少减小50%。
29.根据权利要求28所述的组件,其特征在于,所述£-电势的绝对值至少减小75%。
30.根据权利要求28所述的组件,其特征在于,所述£-电势的绝对值减小约100%或更多。
31.药盒,单独地包括a)作为第一组分、携带第一总净电荷的充气微囊或其前体;b)可与所述微囊相结合的第二组分或其前体,所述第二组分或其前体携带符号与所述第一净电荷相反的第二总净电荷,所述相结合的组分具有100nm或更小的直径。
32.根据权利要求31所述的药盒,其特征在于,还包括药物可接受的液态载体。
33.根据权利要求32所述的药盒,其特征在于,所述第一和第二组分是单独的冻干制剂形式。
34.药盒,包括a)作为第一组分、携带第一总净电荷的充气微囊或其前体;b)与所述微囊相结合的第二组分或其前体,所述第二组分或其前体携带符号与所述第一净电荷相反的第二总净电荷,所述相结合的组分包括生物相容的表面活性剂,而且具有100nm或更小的直径。
35.根据权利要求1-26任一项所述的组件的制备方法,包括将包含充气微囊或其前体的制剂与包含待与所述微囊相结合的组分或其前体的制剂进行混合。
36.根据权利要求35所述的方法,其特征在于,包括1)制备包括充气微囊的第一含水悬浮液;2)制备包括将要与所述充气微囊相结合的组分的第二含水悬浮液;3)将所述两个悬浮液混合,从而获得包括所述组件的含水悬浮液。
37.根据权利要求35所述的方法,其特征在于,包括1)制备包括充气微囊的第一含水悬浮液;2)冻干所述悬浮液,从而获得第一冻干产物;3)制备包括将要与所述充气微囊相结合的组分的第二悬浮液;4)冻干所述悬浮液,从而获得第二冻干产物;5)在气体的存在下,将所述第一和所述第二冻干产物与生理上可接受的含水载体进行重组,从而获得包括组件的含水悬浮液。
38.根据权利要求37所述的方法,其特征在于,所述步骤5)包括以下步骤a)将第二冻干产物与生理上可接受的含水载体进行重组,从而获得包括将要与充气微囊相结合的组分的悬浮液,以及b)在气体的存在下,将第一冻干产物与所述悬浮液进行重组。
39.根据权利要求35所述的方法,其特征在于,包括1)制备包括有机溶剂、磷脂和冻干保护剂的含水乳剂;2)制备包括将要与充气微囊相结合的组分的含水悬浮液;3)将所述含水悬浮液与所述含水乳剂进行混合;以及4)将混合物冻干,以除去水和有机溶剂,从而获得包括所述组件的冻干产品。
40.制备权利要求6所述组件的方法,其特征在于,包括将携带符号与充气微囊的符号相同的总净电荷的第二组分,混合到按照权利要求35-39任一项获得的组件中。
41.根据权利要求1-29任一项所述的组件制备药物活性药剂的用途。
42.一种超声诊断成像方法,包括施用反差增强剂量的根据权利要求1-26任一项的组件的含水悬浮液。
43.一种治疗方法,包括施用治疗有效量的如权利要求1-26任一项所限定的组件、还包括生物活性剂的含水悬浮液。
全文摘要
本发明涉及一种组件,这种组件包括充气微囊和能够通过静电相互作用与所述微囊的外表面相结合的结构实体(微囊相结合组分MAC),借此改善其物理-化学特性。所述MAC可任选地包括靶向配体、生物活性剂、诊断剂或它们的任意组合。本发明的组件是用充气微泡或微球以及具有小于100pm直径的MAC(尤其是胶束)形成的,并且在诊断和/或治疗活性药剂中用作活性组分,尤其是用于增强超声反差成像领域中的成像,这些成像技术包括定向超声成像、超声介导给药及其它成像技术,例如分子共振成像(MRI)或核成像。
文档编号A61K49/22GK1897979SQ200480038619
公开日2007年1月17日 申请日期2004年12月21日 优先权日2003年12月22日
发明者M·施奈德, P·比萨, 闫锋, A·塞嫩泰 申请人:伯拉考开发股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1