专利名称:图像对照装置、患者定位装置及图像对照方法
技术领域:
本发明涉及ー种图像对照装置和患者定位装置,在用X射线、Y射线、粒子射线等放射线对患者的患部进行照射来进行癌症治疗的放射线治疗装置中,该图像对照装置利用CT图像数据等,且该患者定位装置利用该图像对照装置,将患者定位在照射出放射线的放射线照射位置。
背景技术:
近年来,在以癌症治疗为目的的放射线治疗装置中,对利用了质子或重离子等粒子射线的癌症治疗装置(特别地被称作粒子射线治疗装置)进行着开发和建设。众所周知,与X射线、Y射线等现有的放射线治疗相比,利用粒子射线的粒子射线治疗能集中地照射 到癌症患部,即,能对应于患部的形状精确地照射粒子射线,能在不影响正常细胞的情况下进行治疗。在粒子射线治疗中,将粒子射线高精度地照射到癌症等患部很重要。因此,在进行粒子射线治疗时,利用固定件等来固定患者使得不会相对于治疗室(照射室)的治疗台发生错位。为了高精度地将癌症等患部定位在放射线照射范围中,利用激光指示器等对患者进行粗略固定等设置,接着,利用X射线图像等对患者患部进行精确定位。在专利文献I中,提出了床(bed)定位装置及其定位方法,在该床定位装置和定位方法中,对X射线透视图像的基准图像和利用X射线接收器所拍摄的当前图像中的任ー个图像都不指定相同的多个标志(monument)的相同位置,来进行两阶段图案匹配,生成驱动治疗台的定位用信息。在I次图案匹配中,对2维当前图像设定第二设定区域,该第二设定区域与第一设定区域大小大致相同,其中第一设定区域包含对2维基准图像设置的等中心(isocenter)(射束照射中心),在2维当前图像的区域内依次移动第二设定区域,在第二设定区域的各位置下,对第一设定区域内的2维基准图像和第二设定区域内的2维当前图像进行比较,提取出具有与第一设定区域的2维基准图像最类似的2维当前图像的第二设定区域。在2次图案匹配中,将在I次图案匹配中提取出的第二设定区域内的2维当前图像与所述第一设定区域内的2维基准图像进行比较,进行图案匹配以使两个图像最一致。现有技术文献专利文献专利文献I :日本国专利第3748433号公报(0007 0009段、0049段、图8、图9)发明所要解决的技术问题由于患部的形状是3维立体形状,因此将患部定位到治疗计划时的患部位置吋,使用3维图像相比于使用2维图像能使定位精度更高。一般而言,制作治疗计划数据时,使用X射线CT (计算机断层显像Computed Tomography)图像来确定3维的患部形状。近年来,会有如下要求治疗室中要具备X射线CT装置,要使用治疗时由X射线CT装置所拍摄的X射线CT当前图像和治疗计划时的X射线CT图像,来进行定位。X射线透视图像中,不能良好地反映出作为软组织的患部,因此基本上使用骨骼来进行位置匹配,而使用X射线CT图像进行定位是由于能对X射线CT图像所反映的患部之间进行位置匹配。因此,在现有的2阶段图案匹配中,考虑将基准图像和当前图像扩展到3维图像的情形。3维基准图像和3维当前图像包含用X射线CT装置拍摄的多个断层图像(切片图像)。3维当前图像出于被X射线辐射等观点设想为图像片数较少的情况,因此需要对具有密集的图像信息的3维基准图像和具有比3维基准图像要稀疏的图像信息的3维当前图像进行比较。在现有的2阶段图案匹配中,存在如下问题尽管分别具有相同密度的图像信息的2维基准图像与2维当前图像之间能够进行比较,但在对图像信息密度不同的3维基准图像和3维当前图像进行比较时,不能仅通过将现有技术的图像维度单纯地从2维提高到3维,来实现2阶段图案匹配。即,存在如下问题不能与现有技术相同地,单纯地从所设定的第一设定区域内的3维基准图像向第二设定区域内的3维当前图像进行I次图案匹配,单纯地将所提取的第二设定区域内的3维当前图像与第一设定区域内的3维基准图像进行
比较,以实现使两个3维图像最一致的图案匹配。
发明内容
本发明的目的在干,在对放射线治疗的患者进行定位吋,即使是在3维当前图像的断层图像数比3维基准图像要少的情况下,也能实现高精度的2阶段图案匹配(2阶段对照)。用于解决技术问题的技术方案本发明所涉及的图像对照装置包括3维图像输入部,该3维图像输入部分别读取放射线治疗的治疗计划时所拍摄的3维基准图像和进行治疗时所拍摄的3维当前图像;对照处理部,该对照处理部对3维基准图像和3维当前图像进行对照,计算出体位修正量以使3维当前图像中的患部的位置姿势与3维基准图像中的患部的位置姿势相一致。对照处理部具有1次对照部;该I次对照部根据3维基准图像对3维当前图像进行I次图案匹配;以及2次对照部,该2次对照部根据规定的模板区域对规定的检索对象区域进行2次图案匹配,其中规定的模板区域根据3维基准图像或3维当前图像中的ー个并基于I次图案匹配结果而生成,而规定的检索对象区域根据与规定的模板区域的生成基础所不同的3维基准图像或3维当前图像中的另ー个并基于I次图案匹配结果而生成。发明效果本发明所涉及的图像对照装置根据3维基准图像对3维当前图像进行I次图案匹配,接着,基于I次图案匹配结果,生成规定的模板区域和规定的检索对象区域,执行检索对象区域和模板区域的2维图案匹配,因此即使是在3维当前图像的断层图像数比3维基准图像要少的情况下,也能实现高精度的2阶段图案匹配。
图I是表示本发明的实施方式I所涉及的图像对照装置和患者定位装置的结构的图。图2是表示与本发明的图像对照装置和患者定位装置相关的整体设备结构的图。图3是表示本发明的实施方式I所涉及的3维基准图像和基准图像模板区域的图。
图4是表示本发明的实施方式I所涉及的3维当前图像的图。图5是对本发明的实施方式I所涉及的I次图案匹配方法进行说明的图。图6是对图5的I次图案匹配方法中的基准图像模板区域和切片图像的关系进行说明的图。图7是表示由本发明的实施方式I所涉及的I次图案匹配方法所提取的切片图像的I次提取区域的图。图8是对本发明的实施方式I所涉及的2次图案匹配方法进行说明的图。图9是对图8的2次图案匹配方法中的基准图像模板区域和切片图像的关系进行说明的图。图10是对本发明的实施方式2所涉及的I次图案匹配方法进行说明的图。 图11是对图10的I次图案匹配方法中的基准图像模板区域和切片图像的关系进行说明的图。图12是表示本发明的实施方式2所涉及的姿势变换后的3维基准图像的图。图13是对本发明的实施方式2所涉及的2次图案匹配方法进行说明的图。图14是表示本发明的实施方式3所涉及的图像对照装置和患者定位装置的结构的图。
具体实施例方式实施方式I图I是表示本发明的实施方式I所涉及的图像对照装置和患者定位装置的结构的图,图2是表示与本发明的图像对照装置和患者定位装置相关的整体设备结构的图。在图2中,I是用于进行要在放射线治疗之前所进行的治疗计划的CT仿真器室,在该CT仿真器室中存在CT台架2、CT图像拍摄用床的顶板3,使患者4横卧在顶板3之上,并拍摄治疗计划用CT图像数据以使其包含患部5。另ー方面,6是用来进行放射线治疗的治疗室,在该治疗室中存在CT台架7、旋转治疗台8,且在旋转治疗台8的上部有顶板9,使患者10横卧在顶板9之上,并拍摄定位用CT图像数据以使其包含治疗时的患部11。此处,定位是指根据治疗计划用CT图像数据算出治疗时的患者10和患部11的位置,计算出体位修正量使得与治疗计划相一致,进行位置匹配以使治疗时的患部11到达放射线治疗的射束照射中心12。通过以顶板9上承载着患者10的状态对旋转治疗台8进行驱动控制来移动顶板9的位置,从而实现位置匹配。旋转治疗台8可进行平移/旋转的6自由度的驱动修正,并且通过将旋转治疗台8的顶板9旋转180度,从而能从CT拍摄位置(图2中以实线表示)移动至进行放射线照射的照射床13的某一治疗位置(图2中以虚线表示)。另外,尽管在图2中示出CT拍摄位置和治疗位置具有180度的对置位置关系,然而配置方式不限于此,两者的位置关系也可以是成90度等的其它角度的位置关系。治疗计划用CT图像数据和定位用CT图像数据被传输到定位计算机14。治疗计划用CT图像数据成为3维基准图像,定位用CT图像数据成为3维当前图像。本发明中的图像对照装置29和患者定位装置30都与存在于该定位计算机14内的计算机软件相关,且图像对照装置29计算上述体位修正量(平移量、旋转量),并且患者定位装置30包含图像对照装置29而且还具有基于该体位修正量计算出对旋转治疗台8 (根据情况简单称作治疗台8)的各驱动轴进行控制的參数的功能。患者定位装置30通过根据图像对照装置29所得到的匹配结果(对照結果)来控制治疗台8,从而对粒子射线治疗的对象患部进行引导以使其位于治疗装置的射束照射中心12。在现有的放射线治疗中的定位中,通过对照根据治疗计划用CT图像数据所生成的DRR(数字重建放射成像术Digitally Reconstructed Radiography)图像或与此同时拍摄的X射线透视图像、和治疗时的治疗室中所拍摄的X射线透视图像,来计算出位置偏移量。在X射线透视图像中,由于不能良好地反映出作为软组织的患部,因而基本上进行使用骨骼的位置匹配。在本实施方式中所表述的使用CT图像数据的定位具有如下特征在治疗室6中设置CT台架7,且由于利用即将进行治疗前的CT图像数据和治疗计划用CT图像数据来进行位置匹配,因此能直接描绘出患部,且能进行患部的位置匹配。接着,对本实施方式中的图像对照装置29和患者定位装置30的上述体位修正量 的计算步骤进行说明。图I表示构成图像对照装置和患者定位装置的各数据处理部之间的关系,此处,图像对照装置29具备读取CT图像数据的3维图像输入部21 ;对照处理部22 ;对照结果显示部23 ;以及对照结果输出部24。对图像对照装置29添加了治疗台控制參数计算部26的装置是患者定位装置30。如上所述,3维基准图像是进行治疗计划时用于治疗计划而拍摄的数据,其特征在于,由人工输入表示作为粒子射线治疗对象的患部的患部信息(患部形状等)。3维当前图像是进行治疗时用于患者定位而拍摄的数据,其特征在于,出于抑制被X射线辐射的观点,断层图像(还称作切片图像)的片数较少。本发明中,采用进行2阶段图案匹配的结构根据3维基准图像对3维当前图像进行I次图案匹配;接着,基于I次图案匹配结果,生成规定的模板区域和规定的检索对象区域,使用该规定的模板区域,同向或反向地进行2次图案匹配。在2阶段图案匹配中,通过使进行I次图案匹配时的匹配參数和进行2次图案匹配时的匹配參数不相同,从而能实现高速和高精度的处理。例如,存在如下方法在低分辨率下、以大范围作为对象来进行I次图案匹配,并使用所找到的模板区域或检索对象区域,在高分辨率下、以筛选出的范围作为对象来进行2次图案匹配。对3维图像输入部21进行说明。3维图像输入部21读取由X射线CT装置所拍摄的、由多个断层图像构成的图像群、DICOM(医学数字成像与通信Digital Imaging andCommunications in Medicine)形式的图像数据(切片图像群)以作为3维体数据。治疗计划用CT图像数据是进行治疗计划时的3维体数据,即3维基准图像。定位用CT图像数据是进行治疗时的3维体数据,即3维当前图像。另外,CT图像数据不限于DICOM形式,也可以是其它形式的数据。对照处理部22对3维基准图像和3维当前图像进行对照(图案匹配),计算出体位修正量以使3维当前图像中的患部位置姿势与所述3维基准图像中的患部的位置姿势相一致。对照结果显示部23在定位计算机14的显示器画面上显示由对照处理部22进行对照后的结果(下述的体位修正量、或将以该体位修正量移动后的3维当前图像与3维基准图像相重合来显示的图像等)。对照结果输出部24输出利用对照处理部22对3维基准图像和3维当前图像进行对照时的修正量、即利用对照处理部22计算出的体位修正量(平移量、旋转量)。治疗台控制參数计算部26将对照结果输出部24的输出值(平移3轴[ΛΧ、八¥、八2],旋转3轴[八ム、八8、八(],共6个自由度)转换成对治疗台8的各轴进行控制的參数,即计算出參数。治疗台8基于利用治疗台控制參数计算部26所计算出的治疗台控制參数,来驱动治疗台8的各轴的驱动装置。由此,能计算出体位修正量使得与治疗计划相一致,且能进行位置匹配以使进行治疗时的患部11到达放射线治疗的射束照射中心12。对照处理部22具有位置姿势变换部25 ; I次对照部16 ;2次对照部17 ;基准模板区域生成部18。在进行I次图案匹配或2次图案匹配时,位置姿势变换部25改变对象数据的位置姿势。I次对照部16根据3维基准图像对3维当前图像进行I次图案匹配。2次对照部17根据规定的模板区域对规定的检索对象区域进行2次图案匹配,其中规定的模板区域根据3维基准图像或3维当前图像中的ー个并基于I次图案匹配结果而生成,而规定的检索对象区域根据与规定的模板区域的生成基础不同的3维基准图像或3维当前图像中的另ー个并基于I次图案匹配结果而生成。利用图3至图9,来详细说明对照处理部22。图3是表示本发明的实施方式I所 涉及的3维基准图像和基准图像模板区域的图。图4是表示本发明的实施方式I所涉及的3维当前图像的图。图5是对本发明的实施方式I所涉及的I次图案匹配方法进行说明的图。图6是对图5的I次图案匹配方法中的基准图像模板区域和切片图像的关系进行说明的图。图7是表示由本发明的实施方式I所涉及的I次图案匹配方法所提取的切片图像的I次提取区域的图。图8是对本发明的实施方式I所涉及的2次图案匹配方法进行说明的图。图9是对图8的2次图案匹配方法中的基准图像模板区域和切片图像的关系进行说明的图。对照处理部22的基准模板区域生成部18使用在进行治疗计划时所输入的患部形状(患部信息),从3维基准图像31生成基准图像模板区域33。3维基准图像31由多个切片图像32来构成。在图3中,出于方便,示出了由5片切片图像32a、32b、32c、32d、32e所构成的示例。患部形状作为ROI (感兴趣的区域Region of Interest) 35、作为在姆个切片图像中包围患部的闭轮廓来输入。可将包含上述闭轮廓的区域例如作为外接四边形34,且将包含各外接四边形34的长方体区域作为模板区域。将该模板区域作为基准图像模板区域33。对照处理部22的I次对照部16进行I次图案匹配以将基准图像模板区域33匹配到3维当前图像36。图4所示的3维当前图像36表示由3片切片图像37a、37b、37c构成的示例。图5所示的当前图像区域38表示成为包含3片切片图像37a、37b、37c的长方体。如图5所示,在当前图像区域38中使基准图像模板区域33 (33a.33b.33c)以光栅扫描状移动,计算出与3维当前图像36的相关值。作为相关值,可利用归ー化互相关值等、在图像匹配(图像对照)中所利用的所有相关值。基准图像模板区域33a沿扫描路径39a以光栅扫描状在切片图像37a中移动。同样,基准图像模板区域33b沿扫描路径39b以光栅扫描状在切片图像37b中移动,基准图像模板区域33c沿扫描路径39c以光栅扫描状在切片图像37c中移动。为了使附图简单,简略地示出扫描路径39b、39c。进行I次图案匹配时,如图6所示,对构成基准图像模板区域33的每个切片图像53,与构成当前图像区域38的切片图像37进行图像对照。切片图像53是在3维基准图像31的切片图像32中由基准图像模板区域33所划分成的图像。基准图像模板区域33由与3维基准图像的5片切片图像32a、32b、32c、32d、32e相对应的5片切片图像53a、53b、53c、53d、53e构成。因而,在进行I次图案匹配吋,分别利用基准图像模板区域33中的5片切片图像53a、53b、53c、53d、53e,对3维当前图像36的切片图像37a进行图像对照。对3维当前图像36的切片图像37b、37c,同样进行图像对照。I次对照部16从3维当前图像36的各切片图像37提取出I次提取区域43,以使其包含当前图像区域38与当前图像模板区域33的相关值最高的区域。如图7所示,从3维当前图像36的切片图像37a提取出I次提取区域43a。同样,从3维当前图像36的切片图像37b、37c提取出I次提取区域43b、43c。生成作为用于2次图案匹配的检索对象区域的I次提取当前图像区域42,以使其包含I次提取区域43a、43b、43c。这样,I次对照部16生成I次提取当前图像区域42,该I次提取当前图像区域42作为用于2次图案匹配的检索对象区域。此处,由于在定位前的状态下,3维基准图像31和3维当前图像36的姿势(旋转3轴)不一致,因此在如图5的简单的光栅扫描中,在3维当前图像36的切片片数较少的情况下,尽管不能进行连角度偏移也能检测出的高精度的匹配,但提取出用于进行2次图案匹配的I次提取区域43却不成问题。因此,在I次图案匹配中,计算出相关值而不检测角度偏移,在其后的2次图案匹配中,进行连角度偏移也能检测出的精度高的匹配。对2次图案匹配进行说明。在2次图案匹配中,利用对照处理部22的位置姿势变换部25生成对从3维基准图像31生成的基准图像模板区域33的位置姿势进行变换后的位置姿势变换模板区域40。在2次图案匹配中,如图8和图9所示,在进行匹配时,追加基准图像模板区域33的姿势变化量(旋转3轴)以作为參数。2次对照部17在利用位置姿势变换部25进行位置姿势变换后的位置姿势变换模板区域40与切片图像片数较少的3维当前图像36的I次提取当前图像区域42之间,进行连角度偏移也包含的高精度的匹配。通过这样,能实现连角度偏移也包含的高精度的2阶段图案匹配。通过将包含由I次图案匹配求出的区域在内的狭窄范围作为对象以作为2次图案匹配的探索范围,从而能使用包含以低分辨率、将宽范围作为对象来进行I次图案匹配而找出的I次提取区域43在内的I次提取当前图像区域42,以高分辨率进行2次图案匹配,且能缩短图案匹配所需的时间。图8所示的I次提取当前图像区域42表示为包含3个I次提取区域43a、43b、43c的长方体。作为对位置姿势进行变换后的基准图像模板区域的位置姿势变换模板区域40a沿扫描路径39a、以光栅扫描状在切片图像37a的I次提取区域43a中移动。同样,作为对位置姿势进行变换后的基准图像模板区域的位置姿势变换模板区域40b沿扫描路径3%、以光栅扫描状在切片图像37b的I次提取区域43b中移动,作为对位置姿势进行变换后的基准图像模板区域的位置姿势变换模板区域40c沿扫描路径39c、以光栅扫描状在切片图像37c的I次提取区域43c中移动。为了使附图简单,简略地示出扫描路径39b、39c。
在进行2次图案匹配时,如图9所示,利用2次对照部17,在位置姿势变换模板区域40的剖面41与构成I次提取当前图像区域42的切片图像37的I次提取区域43之间进行图像对照。此外,也可在切片图像55与剖面41之间进行图像对照,该切片图像55是在3维当前图像36的切片图像37中由I次提取当前图像区域42所划分成的图像。从3维基准图像31的多个切片图像32生成位置姿势变换模板区域40的剖面41。例如,剖面 41的数据是从构成3维基准图像31的多个切片图像32截取的。通常,位置姿势变换模板区域40的剖面41的数据密度与3维当前图像36的I次提取区域43的数据密度不相同,但计算出剖面41的每个像素的相关值即可。此外,位置姿势变换模板区域40的剖面41还可包含进行了补全使得剖面41的数据密度与3维当前图像36的I次提取区域43的数据密度相同的数据。此处,对实施方式I的2阶段图案匹配方法进行总结。首先,对照处理部22的基准模板区域生成部18从3维基准图像31生成基准图像模板区域33 (基准图像模板区域生成步骤)。I次对照部16根据基准图像模板区域33对3维当前图像36执行I次图案匹配(I次图案匹配步骤)。I次图案匹配对构成基准图像模板区域33的每个切片图像53,与构成当前图像区域38的切片图像37进行图像对照。I次对照部16在每次扫描基准图像模板区域33时,计算出当前图像区域38与基准图像模板区域33之间的相关值(相关值计算步骤),通过I次图案匹配,提取出I次提取区域43以使其包含当前图像区域38与基准图像模板区域33之间的相关值最高的区域(I次提取区域提取步骤)。I次对照部16生成作为用于2次图案匹配的检索对象区域的I次提取当前图像区域42,以使其包含构成当 前图像区域38的每个切片图像37的I次提取区域43 (检索对象生成步骤)。实施方式I的2阶段图案匹配方法包含基准图像模板区域生成步骤;1次图案匹配步骤;以及下述的2次图案匹配步骤。I次图案匹配步骤包含相关值计算步骤;1次提取区域提取步骤;以及检索对象生成步骤。接着,对照处理部22的2次对照部17根据由位置姿势变换部25对基准图像模板区域33的位置姿势进行变换后的位置姿势变换模板区域40对3维当前图像36的I次提取当前图像区域42执行2次图案匹配(2次图案匹配步骤)。2次图案匹配生成变换成规定的位置姿势后的位置姿势变换模板区域40的多个剖面41 (剖面生成步骤),针对每个剖面41,在构成I次提取当前图像区域42的切片图像37的I次提取区域43或切片图像55、与该剖面41之间进行图像对照。在每次扫描位置姿势变换模板区域40时,2次对照部17计算I次提取当前图像区域42与位置姿势变换模板区域40的多个剖面41的相关值(相关值计算步骤)。此外,位置姿势变换部25进行变换以成为与之前的位置姿势不同的位置姿势(位置姿势变换步骤),2次对照部17生成该位置姿势中的位置姿势变换模板区域40的多个剖面41 (剖面生成步骤),在每次扫描位置姿势变换模板区域40时,计算I次提取当前图像区域42与位置姿势变换模板区域40的多个剖面41的相关值(相关值计算步骤)。对照处理部22的2次对照部17将作为计算出的相关值中最高相关值的3维基准图像与3维当前图像的位置姿势关系(位置姿势信息)选定为最佳解(最佳解选定步骤)。由此来实现图案匹配以使得3维基准图像与3维当前图像——这两种3维图像最一致。2次图案匹配步骤包含剖面生成步骤;相关值计算步骤;位置姿势变换步骤;以及最佳解选定步骤。图案匹配结束后,对照处理部22根据其相关值在计算出的相关值中为最高的位置姿势变换模板区域40的位置姿势,计算出对3维基准图像31和3维当前图像36进行对照时的体位修正量(平移量、旋转量)(体位修正量计算步骤)。对照结果显示部23在计算机14的显示器画面中显示体位修正量、将以该体位修正量进行移动后的3维当前图像与3维基准图像相重合来显示的图像等。对照结果输出部24输出利用对照处理部22对3维基准图像31和3维当前图像36进行对照时的体位修正量(平移量、旋转量)(体位修正量输出步骤)。治疗台控制参数计算部26将对照结果输出部24的输出值(平移3轴[ΛΧ、八¥、八2],旋转3轴[八八、八8、八(],共6个自由度)转换成对治疗台8的各轴进行控制的参数,即计算出参数(治疗台控制参数计算步骤)。治疗台8基于利用治疗台控制参数计算部26所计算出的治疗台控制参数,来驱动治疗台8的各轴的驱动装置(治疗台驱动步骤)。实施方式I所涉及的图像对照装置29进行从3维基准图像31到3维当前图像36的I次图案匹配,接着,基于I次图案匹配结果,从3维基准图像31生成作为规定的用于2次图案匹配的模板区域的位置姿势变换模板区域40,从3维当前图像36生成作为用于2次图案匹配的规定的检索对象区域的I次提取当前图像区域42以使其包含I次提取区域43,因此即使3维当前图像36的断层图像数(切片图像数)比3维基准图像31要少的情况下,也能实现精度高的2阶段图案匹配。由于实施方式I所涉及的图像对照装置29即使在3维当前图像36的断层图像数(切片图像数)比3维基准图像31要少的情况下,也能实现精度高的2阶段图案匹配,因此能减少位置匹配时的来自X射线CT装置的3维当前图像36的断层图像数,能降低位置匹配时的因X射线CT装置的患者辐射暴露量。实施方式I所涉及的图像对照装置29基于从3维基准图像31对3维当前图像36 执行I次图案匹配的结果而生成I次提取当前图像区域42,通过将其区域比当前图像区域38要狭窄的I次提取当前图像区域42作为检索对象,从而利用包含I次提取区域43的I次提取当前图像区域42,能进行高分辨率的2次图案匹配,能缩短图案匹配所需时间,其中I次提取区域43是以低分辨率、将宽范围作为对象进行I次图案匹配来找到的。实施方式I所涉及的患者定位装置30基于利用图像对照装置29计算出的体位修正量,能使得与进行治疗计划时的位置姿势相匹配。由于能使得与进行治疗计划时的位置姿势相匹配,因此能进行位置匹配以使进行治疗时的患部11到达放射线治疗的射束照射中心12。实施方式I所涉及的患者定位装置30可利用位置姿势变换部25生成位置姿势变换模板区域40,该位置姿势变换模板区域40适合用于从由3维基准图像31获得的基准图像模板区域33匹配到断层图像数(切片图像数)比3维基准图像31要少的3维当前图像36,能实现连角度偏移也包含的精度高的2阶段图案匹配。实施方式I所涉及的图像对照装置29包括3维图像输入部21,该3维图像输入部21分别读取放射线治疗的治疗计划时所拍摄的3维基准图像31和进行治疗时所拍摄的3维当前图像36 ;以及对照处理部22,该对照处理部22对3维基准图像31和3维当前图像36进行对照,计算体位修正量以使3维当前图像36中的患部的位置姿势与3维基准图像31中的患部的位置姿势相一致,对照处理部22具有I次对照部16,该I次对照部16根据3维基准图像31对3维当前图像36进行I次图案匹配;以及2次对照部17,该2次对照部17根据规定的模板区域(位置姿势变换模板区域40)对规定的检索对象区域42进行2次图案匹配,其中规定的模板区域根据3维基准图像31或3维当前图像36中的一个并基于I次图案匹配结果而生成,而规定的检索对象区域42根据与规定的模板区域(位置姿势变换区域40)的生成基础不同的3维基准图像31或3维当前图像36中的另一个并基于I次图案匹配结果而生成,因此,即使在3维当前图像36的断层图像数比3维基准图像31要少的情况下,也能实现精度高的2阶段图案匹配。实施方式I所涉及的患者定位装置30包括图像对照装置29 ;以及治疗台控制参数计算部26,该治疗台控制参数计算部26基于利用图像对照装置29计算出的体位修正量来控制治疗台8的各轴,且图像对照装置29包括3维图像输入部21,该3维图像输入部21分别读取放射线治疗的治疗计划时所拍摄的3维基准图像31和进行治疗时所拍摄的3维当前图像36 ;以及对照处理部22,该对照处理部22对3维基准图像31和3维当前图像36进行对照,计算出体位修正量以使3维当前图像36中的患部的位置姿势与3维基准图像31中的患部的位置姿势相一致。对照处理部22具有1次对照部16,该I次对照部16根据3维基准图像31对3维当前图像36进行I次图案匹配;以及2次对照部17,该2次对照部17根据规定的模板区域(位置姿势变换模板区域40)对规定的检索对象区域42进行2次图案匹配,其中规定的模板区域根据3维基准图像31或3维当前图像36中的一个并基于I次图案匹配结果而生成,而规定的检索对象区域42根据与规定的模板区域(位置姿势变换区域40)的生成基础不同的3维基准图像31或3维当前图像36中的另一个并基于I次图案匹配结果而生成,因此,即使在3维当前图像36的断层图像数比3维基准图像31要少的情况下,也能进行精度高的定位。实施方式I涉及图像对照方法,该图像对照方法对放射线治疗的治疗计划时所拍摄的3维基准图像31和进行治疗时所拍摄的3维当前图像36进行对照;该图像对照方法包含1次图案匹配步骤,该I次图案匹配步骤根据3维基准图像31对3维当前图像36进 行I次图案匹配;以及2次图案匹配步骤,该2次图案匹配步骤根据规定的模板区域(位置姿势变换模板区域40)对规定的检索对象区域42进行2次图案匹配,其中规定的模板区域根据3维基准图像31或3维当前图像36中的一个并基于I次图案匹配结果而生成,而规定的检索对象区域42根据与规定的模板区域(位置姿势变换区域40)的生成基础不同的3维基准图像31或3维当前图像36中的另一个并基于I次图案匹配结果而生成,因此,即使在3维当前图像36的断层图像数比3维基准图像31要少的情况下,也能实现精度高的2阶段图案匹配。实施方式2在实施方式2的2阶段图案匹配中,进行从3维基准图像31到3维当前图像36的I次图案匹配,接着,基于I次图案匹配的结果,从3维当前图像36生成作为规定的用于2次图案匹配的模板区域的当前图像模板区域44,将对3维基准图像31的位置姿势进行变换后的姿势变换基准图像区域47作为检索对象,根据当前模板区域44对姿势变换基准图像区域47进行2次图案匹配。2次图案匹配是与I次图案匹配反向的图案匹配。图10是对本发明的实施方式2所涉及的I次图案匹配方法进行说明的图,图11是对图10的I次图案匹配方法中的基准图像模板区域和切片图像的关系进行说明的图。在实施方式2中,通过I次图案匹配,I次对照部16进行连旋转3轴也包含的探索并求出姿势变化量。图10所示的当前图像区域38表示成为包含3片切片图像37a、37b、37c的长方体。成为实施方式2的基准图像模板区域的位置姿势变换模板区域40a、40b、40c是利用位置姿势变换部25进行位置姿势变换后的区域。但是,初始位置姿势为默认状态,例如,旋转3轴的参数为O。作为对位置姿势进行变换后的基准图像模板区域的位置姿势变换模板区域40a沿扫描路径39a、以光栅扫描状在切片图像37a中移动。同样,作为对位置姿势进行变换后的基准图像模板区域40b的位置姿势变换模板区域37b沿扫描路径3%、以光栅扫描状在切片图像37b中移动,对位置姿势进行变换后的位置姿势变换模板区域40c沿扫描路径39c、以光栅扫描状在切片图像37c中移动。为了使附图简单,简略地示出扫描路径3%、39c。一边对位置姿势进行变换,并一边进行3维当前图像36的切片图像37a、37b、37c与位置姿势变换模板区域40的相关计算。例如,使旋转3轴的每个轴以规定的变化量或变化率发生变化,来进行相关计算,移动到下一扫描位置,进行相关计算。如图11所示,I次对照部16在位置姿势变换模板区域40的剖面41与构成当前图像区域38的切片图像37之间进行图像对照。位置姿势变换模板区域40的剖面41是将位置姿势变换模板区域40以与作为初始位置姿势的3维基准图像31的切片图像32相平行的面来切断的面,且是从3维基准图像31的多个切片图像32生成的(剖面生成步骤)。例如,能使用实施方式I中所说明的方法。即,剖面41的数据可从构成3维基准图像31的多个切片图像32截取的。此夕卜,位置姿势变换模板区域40的剖面41还可包含进行了补全使得剖面41的数据密度与3维当前图像36的数据密度相同的数据。接着,I次对照部16生成当前图像模板区域44,该当前图像模板区域44用于2次 匹配。I次对照部16例如根据各切片图像37a、37b、37c的每个图像中连旋转3轴都包含的探索结果,来求出相关值最高的位置姿势变换模板区域40的剖面41、此时的位置姿势变换模板区域40的姿势变化量、以及与该剖面41相对应的切片图像37的提取区域。I次对照部16从求出的每个切片图像的提取区域中生成当前图像模板区域44以使其包含相关值最高的3维当前图像的提取区域。当前图像模板区域44是2维图像。接着,如图12所示,利用对照处理部22的位置姿势变换部25,使3维基准图像31整体的姿势以生成当前图像模板区域44时所求出的上述姿势变化量进行变化,并生成姿势变换后的3维姿势变换基准图像45,即生成姿势变换基准图像区域47。图12是表示本发明的实施方式2所涉及的姿势变换后的3维基准图像的图。切片图像46a、46b、46c、46d、46e分别为对切片图像32a、32b、32c、32d、32e以上述姿势变化量进行姿势变化后的切片图像。接着,如图13所示,2次对照部17沿扫描路径49、以光栅扫描状将当前图像模板区域44匹配到作为姿势变换后的3维姿势变换基准图像45的姿势变换基准图像区域47,从而能高速地仅检测出平移偏移。图13是对本发明的实施方式2所涉及的2次图案匹配方法进行说明的图。进行姿势变换后的姿势变换基准图像区域47表示成为包含5片切片图像46a、46b、46c、46d、46e的长方体。对照执行面48是与如下姿势对应的图像面,该姿势是与利用I次图案匹配对应于3维当前图像36的切片图像37的姿势之间的相关值最高的姿势,即是变成与如下姿势同等的姿势的面,该姿势与姿势变换基准图像区域47中的3维当前图像36的切片图像37对应。2次对照部17从姿势变换基准图像区域47生成规定的对照执行面48,从3维姿势变换基准图像45的多个切片图像46生成(对照执行面生成步骤)。例如,能使用实施方式I中所说明的方法。即,对照执行面48的数据可从构成3维姿势变换基准图像45的多个切片图像截取。此外,对照执行面48包含进行了补全使得对照执行面48的数据密度与当前图像模板区域44的数据密度相同。对实施方式2的2阶段图案匹配方法进行总结。首先,对照处理部22利用位置姿势变换部25,从3维基准图像31生成进行位置变换后的位置姿势变换模板区域40 (位置姿势变换模板区域生成步骤)。对照处理部22的I次对照部16将位置姿势变换模板区域40对3维当前图像36执行I次图案匹配(I次图案匹配步骤)。每次使位置姿势变换模板区域40的位置姿势发生变化(每次执行位置姿势变换步骤时)时,I次图案匹配对构成当前图像区域38的各切片图像37生成位置姿势变换模板区域40的剖面41 (剖面生成步骤),在该位置姿势变换模板区域40的剖面41与构成当前图像区域38的切片图像37之间进行图像对照。每次使位置姿势变换模板区域40的位置姿势发生变化时,I次对照部16计算出当前图像区域38与位置姿势变换模板区域40的相关值(相关值计算步骤)。此外,每次扫描位置姿势变换模板区域40时,I次对照部16计算出当前图像区域38与位置姿势变换模板区域40的相关值,利用I次图案匹配,生成当前图像模板区域44,以使其包含当前图像区域38和位置姿势变换模板区域40的相关值最高的位置姿势变换模板区域40的提取区域(当前图像模板区域生成步骤)。接着,对照处理部22利用位置姿势变换部25,使3维基准图像31整体的姿势以生成当前图像模板区域44时所求出的上述姿势变化量来变化,并生成姿势变换后的3维姿势变换基准图像45,即生成姿势变换基准图像区域47 (姿势变换基准图像区域生成步骤)。2次对照部17将当前图像模板区域44对姿势变换基准图像区域47执行2次图案匹配(2次图案匹配步骤)。2次图案匹配通过对照执行面生成步骤来生成对照执行面48,对由对照执行面生成步骤所生成的对照执行面48与当前图像模板区域44进行图像对照。在进行该图像对照时,不使当前图像模板区域44旋转而进行平移,同时计算对照执行面48与当前图像模板区域44的相关值(相关值计算步骤)。在2次图案匹配中,对照处理部22的2次对照部17将所计算出的相关值中最高相关值的3维姿势变换基准图像45与当前图像模板区域44的位置姿势关系(位置姿势信息)选定为最佳解(最佳解选定步骤)。由此,通过2阶段匹配来实现图案匹配使得3维基准图像31与3维当前图像36这两种3维图像最一致。实施方式2的2阶段图案匹配方法包含位置姿势变换模板区域生成步骤;1次图案匹配步骤;姿势变换基准图像区域生成步骤;以及2次图案匹配步骤。I次图案匹配步骤包含剖面生成步骤;相关值计算步骤;位置姿势变换步骤;以及当前图像模板区域生成步骤。2次图案匹配步骤包含对照执行面生成步骤;相关值计算步骤;以及最佳解选定步骤。图案匹配结束后,对照处理部22从其相关值在计算出的相关值中为最高的3维姿势变换基准图像45中的高相关值区域的位置姿势计算出对3维基准图像31和3维当前图像36进行对照时的体位修正量(平移量、旋转量)(体位修正量计算步骤)。对照结果显示部23在计算机14的显示器画面中显示体位修正量、或将以该体位修正量进行移动后的3维当前图像重合到3维基准图像来显示的图像等。对照结果输出部24输出利用对照处理部22对3维基准图像31和3维当前图像36进行对照时的体位修正量(平移量、旋转量)(体位修正量输出步骤)。治疗台控制参数计算部26将对照结果输出部24的输出值(平移3轴[ΛΧ、ΛΥ、ΛΖ],旋转3轴[ΛΑ、ΛΒ、AC],共6个自由度)转换成对治疗台8的各轴进行控制的参数,即计算出参数(治疗台控制参数计算步骤)。治疗台8基于利用治疗台控制参数计算部26所计算的治疗台控制参数,来驱动治疗台8的各轴的驱动装置(治疗台驱动步骤)。实施方式2所涉及的图像对照装置29根据3维基准图像31的位置姿势变换模板区域40对3维当前图像36进行作为连旋转3轴也包含的图像对照的I次图案匹配,接着,基于I次图案匹配结果,从3维当前图像36生成作为用于2次图案匹配的模板区域的当前图像模板区域44,因此,即使在3维当前图像36的断层图像数(切片图像数)比3维基准图像31要少的情况下,也能实现精度高的2阶段图案匹配。实施方式2所涉及的图像对照装置29通过从3维基准图像31生成作为姿势变换后的3维基准图像的3维姿势变换基准图像45,即通过生成姿势变换基准图像区域47,从而可使用2维的当前图像模板区域44,并利用不伴有旋转移动的平移移动来对姿势变换基准图像区域47实现直接图案匹配。在2次图案匹配中,由于仅计算每次平移移动的相关值,因此与计算每次旋转移动和平移移动的相关值的情况相比,实现了 2次图案匹配的高速化。实施方式3实施方式3与实施方式I和2的不同在于,利用人体数据库(图谱模型atlasmodel)来生成实施方式I的用于I次图案匹配的基准图像模板区域33、或实施方式2的作 为位置姿势变换模板区域40的基础的基准图像模板区域33。图14是表示本发明的实施方式3所涉及的图像对照装置和患者定位装置的结构的图。实施方式3所涉及的图像对照装置29与实施方式I和2所涉及的图像对照装置29的不同点在于,其具有人体数据库输入部50 ;以及平均模板区域生成部51。实施方式3所涉及的患者定位装置30具有图像对照装置29和治疗台控制参数计算部26。人体数据库输入部50从数据库装置等存储装置获取人体数据库(图谱模型)。平均模板区域生成部51从与患者4、10的患部5、11相对应的人体数据库的脏器部分截取平均模板区域54。对照处理部22的基准模板区域生成部18通过将该平均模板区域54图案匹配到3维基准图像31,从而自动生成基准图像模板区域33 (基准图像模板区域生成步骤)。利用上述基准图像模板区域33,执行实施方式I的2阶段图案匹配或实施方式2的2阶段图案匹配。通过这样,即使不在3维基准图像上预先准备表示患部的信息(患部形状等),也能实现2阶段图案匹配。另外,还考虑了平均模板区域生成部51从与患者4、10的患部5、11相对应的人体数据库的脏器部分截取2维的平均模板区域的情况。在2维的平均模板区域54的情况下,截取多个2维的平均模板区域,汇集多个2维的平均模板区域,来输出到对照处理部22。对照处理部22的基准模板区域生成部18通过将该多个2维的平均模板区域图案匹配到3维基准图像31,从而自动生成基准图像模板区域33。标号说明16. . . I次对照部;17. . . 2次对照部;18...基准模板区域生成部;21. . . 3维图像输入部;22...对照处理部;25...位置姿势变换部;26...治疗台控制参数计算部;29...图像对照装置;30...患者定位装置;31. . . 3维基准图像;33...基准图像模板区域;36. . . 3维当前图像;40、40a、40b、40c. · ·位置姿势变换模板区域;41. · ·剖面;42. · · I次提取当前图像区域;44...当前图像模板区域;45. . . 3维姿势变换基准图像;48...对照执行面;50...人体数据库输入部;51...平均模板区域生成部。
权利要求
1.一种图像对照装置,其特征在于,包括 3维图像输入部,该3维图像输入部分别读取在放射线治疗的治疗计划时所拍摄的3维基准图像和进行治疗时所拍摄的3维当前图像;以及 对照处理部,该对照处理部对所述3维基准图像和所述3维当前图像进行对照,计算出体位修正量以使所述3维当前图像中的患部的位置姿势与所述3维基准图像中的患部的位置姿势相一致, 所述对照处理部具有 I次对照部,该I次对照部从所述3维基准图像对所述3维当前图像进行I次图案匹配;以及 2次对照部,该2次对照部根据规定的模板区域对规定的检索对象区域进行2次图案匹配,其中所述规定的模板区域根据所述3维基准图像或所述3维当前图像中的一个并基于所述I次图案匹配的结果而生成,而所述规定的检索对象区域根据与所述规定的模板区域的生成基础不同的所述3维基准图像或所述3维当前图像中的另一个并基于所述I次图案匹配的结果而生成。
2.如权利要求I所述的图像对照装置,其特征在于, 所述对照处理部包括基准模板区域生成部,该基准模板区域生成部基于所述3维基准图像中所准备的患部信息,从所述3维基准图像生成3维区域的基准图像模板区域。
3.如权利要求I所述的图像对照装置,其特征在于,包括 人体数据库输入部,该人体数据库输入部从数据库装置获取人体数据库;以及 平均模板区域生成部,该平均模板区域生成部从与所述人体数据库中的患者的患部相对应的脏器部分生成平均模板区域, 所述对照处理部具有基准模板区域生成部,该基准模板区域生成部根据所述平均模板区域对所述3维基准图像进行图案匹配,并基于所述图案匹配的结果,从所述3维基准图像生成3维区域的基准图像模板区域。
4.如权利要求2或3所述的图像对照装置,其特征在于, 在所述I次图案匹配时,所述I次对照部根据所述基准图像模板区域对所述3维当前图像进行图案匹配。
5.如权利要求4所述的图像对照装置,其特征在于, 所述I次对照部从所述3维当前图像生成作为所述检索对象区域的I次提取当前图像区域以使其包含与所述基准图像模板区域的相关值最高的区域。
6.如权利要求5所述的图像对照装置,其特征在于, 所述对照处理部包括位置姿势变换部,该位置姿势变换部对3维图像的位置姿势进行变换, 所述位置姿势变换部生成将所述基准图像模板区域的位置姿势变换成规定的位置姿势后的位置姿势变换模板区域, 在所述2次图案匹配时,所述2次对照部根据作为所述规定的模板区域的所述位置姿势模板区域对所述I次提取当前图像区域进行图案匹配。
7.如权利要求6所述的图像对照装置,其特征在于, 所述2次对照部生成所述位置姿势变换模板区域的剖面,在所述I次提取当前图像区域与所述剖面之间进行图案匹配。
8.如权利要求2或3所述的图像对照装置,其特征在于, 所述对照处理部包括位置姿势变换部,该位置姿势变换部对3维图像的位置姿势进行变换, 所述位置姿势变换部生成将所述基准图像模板区域的位置姿势变换成为规定的位置姿势后的位置姿势变换模板区域, 在所述I次图案匹配时,所述I次对照部根据所述位置姿势变换模板区域对所述3维当前图像进行图案匹配。
9.如权利要求8所述的图像对照装置,其特征在于, 所述I次对照部生成所述位置姿势变换模板区域的剖面,在所述3维当前图像与所述剖面之间进行图案匹配,并执行如下操作从多个所述剖面中确定作为相关值最高的剖面的高相关剖面;对所述位置姿势变换模板区域中的姿势变化量进行运算;以及提取出与所述3维当前图像中的所述高相关剖面相对应的提取区域。
10.如权利要求9所述的图像对照装置,其特征在于, 所述I次对照部生成作为所述规定的模板区域的当前图像模板区域,以使其包含在所述I次图案匹配时提取出的所述提取区域, 所述位置姿势变换部生成3维姿势变换基准图像区域,该3维姿势变换基准图像区域是将所述3维基准图像的位置姿势变换与所述当前图像模板区域相对应的所述提取区域的姿势变化量的大小而形成的, 在所述2次图案匹配时,所述2次对照部根据所述当前图像模板区域对作为所述检索对象区域的3维姿势变换基准图像区域进行图案匹配。
11.如权利要求10所述的图像对照装置,其特征在于, 所述2次对照部生成作为所述位置姿势变换模板区域的剖面的对照执行面,在所述当前图像模板区域与所述对照执行面之间进行图案匹配。
12.一种患者定位装置,其特征在于,包括 如权利要求I至3、5至7、9至11的任一项所述的图像对照装置;以及 治疗台控制参数计算部,该治疗台控制参数计算部基于利用所述图像对照装置所计算的体位修正量,计算出对治疗台的各轴进行控制的参数。
13.一种图像对照方法,该图像对照方法对放射线治疗的治疗计划时所拍摄的3维基准图像和进行治疗时所拍摄的3维当前图像进行对照,该图像对照方法的特征在于,包含 I次图案匹配步骤,该I次图案匹配步骤根据所述3维基准图像对所述3维当前图像进行I次图案匹配;以及 2次图案匹配步骤,该2次图案匹配步骤根据规定的模板区域对规定的检索对象区域执行2次图案匹配,其中所述规定的模板区域根据所述3维基准图像或所述3维当前图像中的一个并基于所述I次图案匹配的结果而生成,而所述规定的检索对象区域根据与所述规定的模板区域的生成基础不同的所述3维基准图像或所述3维当前图像中的另一个并基于所述I次图案匹配的结果而生成。
14.如权利要求13所述的图像对照方法,其特征在于, 包含基准图像模板区域生成步骤,该基准图像模板区域生成步骤从所述3维基准图像生成3维区域的基准图像模板区域, 所述I次图案匹配步骤根据所基准图像模板区域对所述3维当前图像执行I次图案匹配。
15.一种患者定位装置,其特征在于,包括 如权利要求4所述的图像对照装置;以及 治疗台控制参数计算部,该治疗台控制参数计算部基于利用所述图像对照装置所计算的体位修正量,计算出对治疗台的各轴进行控制的参数。
16.一种患者定位装置,其特征在于,包括 如权利要求8所述的图像对照装置;以及 治疗台控制参数计算部,该治疗台控制参数计算部基于利用所述图像对照装置所计算的体位修正量,计算出对治疗台的各轴进行控制的参数。
全文摘要
本发明涉及图像对照装置、患者定位装置以及图像对照方法。包括对照处理部,该对照处理部对3维基准图像和3维当前图像进行对照,计算出体位修正量以使当前图像中的患部的位置姿势与基准图像中的患部的位置姿势相一致。对照处理部具有1次对照部,该1次对照部根据基准图像对当前图像进行1次对照;以及2次对照部,该2次对照部根据规定的模板区域对规定的检索对象区域进行2次对照,其中规定的模板区域根据基准图像或当前图像中的一个并基于1次对照结果而生成,而规定的检索对象区域根据与规定的模板区域的生成基础不同的基准图像或当前图像中的另一个并基于1次对照的结果而生成。
文档编号A61N5/10GK102814006SQ20121002214
公开日2012年12月12日 申请日期2012年1月13日 优先权日2011年6月10日
发明者平泽宏祐 申请人:三菱电机株式会社