金铜合金纳米晶体为有效成分的药物组合物及其在制药中的应用的制作方法
【专利摘要】本发明涉及金铜合金纳米晶体为有效成分的药物组合物及其在制药中的应用。特别是金铜合金纳米晶体在制备治疗肿瘤的药物中的应用。本发明中使用的金铜合金纳米晶体与其他光热材料相比易于大量合成,光热效果显著。本发明首次将贱金属铜掺杂的金属合金与光热疗法结合起来,实现降低光热材料的成本的同时,简单、高效、快速地治疗肿瘤。
【专利说明】金铜合金纳米晶体为有效成分的药物组合物及其在制药中 的应用
【技术领域】
[0001] 本发明属于贵金属纳米颗粒用于生物诊疗领域,特别涉及金铜合金纳米晶体为有 效成分组成的药物组合物,及其在制备治疗肿瘤的药物中的应用,以及其在光热治疗癌症 方面的应用。
【背景技术】
[0002] 近几年来,现有技术对不同结构的金属纳米材料(金纳米棒,金纳米六角棒,金纳 米笼,金纳米壳,钯纳米片等)用于光热治疗方面进行了大量的研究。例如,《先进功能材 料》(Adv. Funct. Mater. 19. 3901-3909, 2009)报道了金纳米壳在光热治疗学上的应用。《自 然一纳米技术》(Nat. nanotechnol6. 28-322011)报道了单分散钮纳米片光热杀死人肝癌细 胞上的应用。《美国化学会一纳米》(ACS Nano7. 2068-20772013)集中比较了金纳米棒,金纳 米六角棒,金纳米笼在光热治疗小鼠乳腺癌上的效果。目前,这些材料用于光热治疗领域已 经进入活体实验阶段,其技术趋于成熟。然而,目前用于光热治疗的金属材料无一避免需要 使用成本较高的Au,Pd等金属,如何降低光热材料的成本成为一个亟待解决的问题。因此, 将一个贱金属与贵金属制成合金并将其用于光热治疗领域是一项十分有意义的工作。但是 到现在为止,尚未有人将具有近红外光热性能的金铜合金纳米晶体用于光热治疗肿瘤。
【发明内容】
[0003] 本发明的目的在于提供一种金铜合金纳米晶体在制备治疗肿瘤的药物中的应用。 使用一种具有近红外吸收峰的金铜合金纳米晶体用作光热治疗肿瘤的材料,从而在保证光 热效果的同时降低光热材料的成本。
[0004] 为了实现本发明的上述目的,本发明提供了如下的技术方案:
[0005] 药物组合物,其含有金铜合金纳米晶体作为有效成分,以及药学上可接受的载体。
[0006] 金铜合金纳米晶体在制备治疗肿瘤的药物中的应用。
[0007] 金铜合金纳米晶体在制备治疗肿瘤的药物中的应用,通过所述的金铜合金纳米 晶体在近红外区域有较强的表面等离基元共振峰或者对此区域的光有较强的吸收值,在 700-900nm内具有较强的表面等离基元共振峰的特性使肿瘤部位缩小或消失。
[0008] 金铜合金纳米晶体在制备治疗肿瘤的药物中的应用,所述应用是由金铜合金纳米 晶体具有的光热效应通过近红外光照射肿瘤部位使其缩小或消失,所述的光热效应通过调 节金铜合金纳米晶体的浓度或近红外光的照射功率来控制,所述近红外光的波长与金铜合 金纳米晶体的700-900nm内的表面等离基元共振峰相对应。
[0009] 金铜合金纳米晶体在制备治疗肿瘤的药物中的应用,所述应用中,金铜合金纳米 晶体是被瘤位注射或者被静脉注射进动物体内,静脉注射时,该金铜合金纳米晶体被聚乙 二醇或以聚乙二醇为重复单元的聚合物包被。
[0010] 金铜合金纳米晶体在制备治疗肿瘤的药物中的应用,所述应用中,金铜合金纳米 晶体注射进动物体内,在动物的肿瘤部位聚集,对动物的重要器官不造成损害,通过使用 700-900nm激光照射肿瘤部位,在该纳米晶体作用下肿瘤部位产生局部高温,造成肿瘤坏 死。
[0011] 金铜合金纳米晶体在制备治疗肿瘤的药物中的应用,所述应用中,金铜合金纳米 晶体的施用方法采用肿瘤部位局部注射,或被聚乙二醇或以聚乙二醇为重复单元的聚合物 包被后静脉注射,或与本领域中已知的靶向脊椎动物肿瘤的靶向递送载体结合后局部注射 或经静脉注射。
[0012] 金铜合金纳米晶体在制备治疗的药物中的应用,所述的肿瘤为乳腺癌、肝癌。
[0013] 在本发明的一个实施方案中,将l-100mg/kg体重的金铜合金纳米晶体通过瘤位 注射或者聚乙二醇包被的金铜合金纳米晶体通过静脉注射进入动物体内。注射完成l_24h 后,使用808nm激光器照射肿瘤部位5-10分钟以达到温度稳定。在此后的每天,均进行上 述激光照射治疗,直至肿瘤消失。总共治疗周期为4-16天。
[0014] 本发明中所涉及的金铜合金纳米晶体,其表面等离基元共振光谱在700-900nm之 间有较强的吸收峰。其注射进入动物体内,不会对动物的重要器官造成损害,并且在动物的 肿瘤部位聚集。通过使用808nm激光照射肿瘤部位,在该纳米晶体的作用下肿瘤部位会产 生局部的高温,从而造成肿瘤坏死。
[0015] 在本发明的方法中,所述金铜合金纳米晶体产生的光热效应通过调节金铜合金纳 米晶体的浓度或近红外光的辐射功率来控制。本
【发明内容】
的动物应指人或其他脊椎动物。
[0016] 本发明中使用的金铜合金纳米晶体与其他光热材料相比易于大量合成,光热效果 显著。本发明首次将贱金属铜掺杂的金属合金与光热疗法结合起来,实现降低光热材料的 成本的同时,简单、高效、快速地治疗肿瘤。
【专利附图】
【附图说明】
[0017] 图1是本发明实施例2的五角星形金铜合金纳米晶体透射电子显微镜图;
[0018] 图2是本发明实施例2的五角星形金铜合金纳米晶体紫外可见近红外消光谱;
[0019] 图3是本发明实施例3的五角星形金铜合金纳米晶体体外光热曲线图;
[0020] 图4是本发明实施例3的小鼠在注射金铜合金纳米晶体前后的近红外成像图;
[0021] 图5是本发明实施例4的实验组小鼠第一,四,十六天的数码照片和肿瘤部位特写 照片;
[0022] 图6是本发明实施例4的对照组和实验组小鼠肿瘤体积随时间变化曲线(相对肿 瘤体积按原始体积为1〇〇 %算);
[0023] 图7是本发明实施例5的对照组和实验组小鼠第一天和第四天肿瘤部位组织切片 图(HE染色法,方框中的部分是松散的结构,可看出肿瘤坏死);
[0024] 图8是本发明实施例6中小鼠注射金铜合金纳米晶体前后的小鼠重要器官组织切 片图(HE染色法),第一幅图中的标尺也是其他图中的标尺,标尺大小是10微米;
[0025] 图9是本发明实施例7中以尾静脉注射修饰过的金铜合金纳米晶体的小鼠作为实 验组,对照组和实验组的小鼠肿瘤部位升温曲线。
[0026] 图10是本发明实施例8中使用的200纳米五角星形金铜合金纳米晶体的透射电 子显微镜图和紫外可见近红外消光谱;
[0027] 图11是本发明实施例8中利用200纳米五角星形金铜合金光热杀死肝癌细胞的 统计图以及死细胞的台盼蓝染色图。
【具体实施方式】
[0028] 下面结合附图,用本发明的实施例来进一步说明本发明的实质性内容,但并不以 此来限定本发明。
[0029] 实施例1
[0030] 本发明的【具体实施方式】可以概括如下:
[0031] 本发明提供了金铜合金纳米晶体作为有效成分的药物组合物,及其在制备治疗肿 瘤中的应用,以及在光热治疗肿瘤中的用途,其中所述金铜合金纳米晶体在700-900nm内 具有较强的表面等离子共振吸收峰。
[0032] 在本发明中,金铜合金纳米晶体的施用方法可以采用肿瘤部位局部注射,或者被 聚乙二醇或以聚乙二醇为重复单元的聚合物包被后静脉注射,或与本领域中已知的靶向脊 椎动物肿瘤的靶向递送载体结合后局部注射或经静脉注射。在此要说明的是,本发明所希 望保护的金铜合金纳米晶体并不仅限于不经修饰的材料以及本发明所提出的聚乙二醇包 被的金纳米棒,还包含其他稳定化的修饰方法。之所以选择聚乙二醇包被的金铜合金纳米 晶体,更多的考虑是在实现延长其在血液中的循环周期的基础上,保证其生物无毒性和安 全性,尤其是在人体中应用的安全性,而其他不同分子量和不同组分包被的金纳米棒也存 在同样的光热效应和实际应用潜力。
[0033] 本领域技术人员要理解的是,在本发明中,术语"近红外区"是指780-1100nm的近 红外短波区。尽管本发明提及的治疗方法是利用金铜合金纳米晶体在800nm处进行光热转 化,但只要在上述的近红外光区有很好的光吸收和光热转化的能力的金铜合金纳米晶体, 均可以实现本发明的目的和技术效果。因此,在本发明中,金铜合金纳米晶体的选择不受限 制,并不要求具体吸收峰位的范围,只要能够在780-1100nm的近红外短波区具有良好的光 吸收和光热转化能力即可。考虑到生物组织对近红外光的吸收,最优选在800-900nm处有 较强光吸收能力的金铜合金纳米晶体。
[0034] 术语"表面等离基元共振峰"是指在紫外可见光光谱中所测量到的表面等离子共 振峰。在本发明中,近红外光的"照射功率"和"照射时间",可以根据具体的近红外光发射 装置和金铜合金纳米晶体的应用浓度来适当调节。例如,当所使用的近红外光发射装置无 法改变照射功率或照射时间难以精确控制时,可以适度调整金铜合金纳米晶体的浓度来调 节所需的光热效果;而当金铜合金纳米晶体的浓度为最适浓度或不适于改变时,可以通过 调节近红外光的照射功率和照射时间来调节所需的光热效果。
[0035] 在本发明中,近红外光的照射部位可以选择脊椎动物的肿瘤部位,照射面积覆盖 肿瘤部位的表面积即可。
[0036] 在本发明的一个实施方案中,本发明选择的金铜合金纳米晶体为五角星形,其具 有5个分支,每个分支长度在30-40nm。这里需要指出,只要在近红外区有光热转化能力的 金铜合金纳米晶体,均可用于实际应用,不一定局限于五角星形的形貌和尺寸。本发明之所 以挑选平均大小在70nm的五角星形金铜合金,这是因为这种形貌的金铜合金在近红外区 光热转化能力比较强,而且挑选总尺寸小于l〇〇nm的金铜合金纳米晶体,有利于避免其被 脊椎动物的网状内皮系统所吸收。但是,如上所述,只要金铜合金纳米晶体在近红外区具有 较强的光热转化能力,均可以实现本发明。因此,本领域技术人员要理解的是尽管本发明优 选平均总尺寸在70nm的五角星形金铜合金纳米晶体,但其不是实现本发明的决定因素。
[0037] 本发明的金铜合金纳米晶体经注射,给药量因药物不同而各有不同,对成人来说, 每天l-1000mg比较合适。注射液、输液剂或栓剂等形式给药。制备上述制剂时,可使用常 规的制剂技术。
[0038] 本发明金铜合金纳米晶体制剂可以按常规加注射用水,精滤,灌封灭菌制成注射 液;或将其溶于无菌注射用水中,搅拌使溶,用无菌抽滤漏斗过滤,再无菌精滤,分装于2安 瓿中,低温冷冻干燥后无菌熔封得粉针剂。
[0039] 实施例2
[0040] 五角星形金铜合金纳米晶体的制备,表征以及表面等离基元共振性质。
[0041] 在常温下,依次向20ml的玻璃反应瓶中加入:浓度为100mM的CuCl2 · 2H20水溶 液0. 3mL,浓度为100mM的HAuC14 · 3H20水溶液0. 3mL,45mg的十六胺,浓度为1M的葡萄糖 水溶液0. 28mL,4mL去离子水以及一粒磁子。将瓶盖盖紧后,放在磁力搅拌器上常温搅拌过 夜。之后,将其转移至l〇〇°C的油浴中,加热并磁力搅拌反应4min,随即加入30mg的十六胺, 反应瓶仍至于油浴中加热反应,当其中溶液颜色由黄绿色变为深棕色,取出反应瓶,用冰水 冷却,待温度降为室温后,将瓶中反应液移至离心管中,10, OOOrpm下离心8min;在相同条 件下,用去离子水和乙醇分别洗涤3次和2次,以洗掉残留的反应物,包裹剂十六胺和还原 剂葡萄糖。最终可得干净的金铜合金纳米晶体,其中每个颗粒的分枝长度在30-40nm之间, 平均尺寸为70nm,Cu摩尔比例在10% -15%之间,其透射电子显微镜图见附图1。该五角 星形金铜合金纳米晶体在740nm处有一吸收峰,具体紫外可见近红外消光谱见附图2。
[0042] 实施例3
[0043] 所用实施例2中的金铜合金纳米晶体在体外和体内的光热转化能力。
[0044] 在一个96孔板的两个孔里,分别加入150 μ L的超纯水以及溶有浓度为10 μ g/mL 的实施例一中的金铜合金纳米晶体的超纯水溶液,使用lW/cm2的808nm的激光分别照射两 组溶液,溶液的温度随照射时间的变化见附图3。
[0045] 大约5 X 106的4T1乳腺癌细胞溶于60 μ L的磷酸盐缓冲液(PBS)中,然后将溶液 皮下注射进入正常的BALB/c小白鼠(体重约20g)的侧面,待肿瘤体积到达60-70mm 3时, 使用该小白鼠进行试验。(本段中提到的大约,均指误差在5%以内)。
[0046] 取一只小白鼠,用lW/cm2的808nm的激光照射其肿瘤部位,用温度成像分析软件 分析肿瘤部位的温度变化。然后向该小鼠肿瘤部位注射30 μ Llmg/mL的实施例一中的金铜 合金纳米晶体,再用lW/cm2的808nm的激光照射其肿瘤部位,用温度成像分析软件分析肿 瘤部位的温度变化。两次的温度变化见附图4。
[0047] 实施例4
[0048] 实施例2中的金铜合金纳米晶体用于小鼠肿瘤光热治疗。
[0049] 大约5 X 106的4T1乳腺癌细胞溶于60 μ L的磷酸盐缓冲液(PBS)中,然后将溶液 皮下注射进入正常的BALB/c小白鼠(体重约20g)的侧面,待肿瘤体积到达60-70mm 3时, 使用该小白鼠进行试验。(本段中提到的大约,均指误差在5%以内)。
[0050] 将12只小白鼠平均分成对照组和实验组两组。向实验组的6只小白鼠肿瘤部位注 射30uL, lmg/mL的实施例一中的金铜合金纳米晶体。之后,每天用lW/cm2的808nm的激光 器照射实验组小鼠肿瘤部位5分钟,然后将两组小白鼠正常培养。从实验组小白鼠中取一 只,拍摄其在第一,四,十六天照片以及对应的肿瘤区域特写照片,能明显看见肿瘤的消退, 见附图5。两组小白鼠平均肿瘤大小随时间变化图见附图6。
[0051] 实施例5
[0052] 实施例4中肿瘤区域的组织切片。
[0053] 为了得到肿瘤区域的组织,在实验进行至第四天时每组小白鼠中牺牲三只。获得 的肿瘤部位使用10%的中性福尔马林溶液进行固定,接着用石蜡进行常规性的处理,切 片5yL,使用苏木精-伊红进行染色,之后用光学显微镜进行观察,从致密核中松散的结 构和细胞中能看出肿瘤坏死,光学显微镜图片见附图7。
[0054] 实施例6
[0055] 小白鼠注射实施例2中的金铜合金纳米晶体后重要器官反应。
[0056] 大约5 X 106的4T1乳腺癌细胞溶于60 μ L的磷酸盐缓冲液(PBS)中,然后将溶液 皮下注射进入正常的BALB/c小白鼠(体重约20g)的侧面,待肿瘤体积到达60-70mm 3时, 使用该小白鼠进行试验。(本段中提到的大约,均指误差在5%以内)。
[0057] 牺牲一只小白鼠,采集其心脏、肝、肾、肺、脾、胃以及胰腺这几个重要器官。向另一 只小白鼠肿瘤部位注射30uL, lmg/mL的实施例一中的金铜合金纳米晶体,一天后,也采集 其心脏、肝、肾、肺、脾、胃以及胰腺这几个重要器官。获得的重要器官使用10%的中性福尔 马林溶液进行固定,接着用石蜡进行常规性的处理,切片5 μ L,使用苏木精-伊红进行染 色,之后用光学显微镜进行观察,从显微镜照片上可以看出这几个器官没有病变,光学显 微镜图片见附图8。
[0058] 实施例7
[0059] 小白鼠静脉注射修饰过的金铜合金纳米晶体后肿瘤区域光热效应。
[0060] 大约5 X 106的4Τ1乳腺癌细胞溶于60 μ L的磷酸盐缓冲液(PBS)中,然后将溶液 皮下注射进入正常的BALB/c小白鼠(体重约20g)的侧面,待肿瘤体积到达60-70mm 3时, 使用该小白鼠进行试验。(本段中提到的大约,均指误差在5%以内)。
[0061] 将之前实施例2中合成出的金铜合金纳米晶体加入等质量的聚乙二醇一硫醇,搅 拌过夜以实现表面修饰。
[0062] 将6只小白鼠平均分成对照组和实验组两组。向实验组的3只小白鼠尾静脉 中注射200uL,lmg/mL的上面提及的表面修饰过的金铜合金纳米晶体。一天后,用1W/ cm2的808nm的激光器照射两组小鼠肿瘤部位6分钟,用温度成像分析软件分析肿瘤区 域的局部温度随照射时间的变化,具体结果见附图9。在实现同等光热效果的前提下, 其金属使用量低于最近报道的使用金纳米棒做光热测试的金属使用量。此处的同等光 热效果指的是在相同的对照组升温幅度的光照条件下,实验组光照升温也相同。达到此 相同效果需要使用l〇mg/kg体重的聚乙二醇包裹的金铜合金纳米晶体,需要使用14mg/ kg体重的聚乙二醇包裹的金纳米棒。金纳米棒数据参考文献《美国化学会一纳米》.(ACS Nano7. 8089-8097, 2013)。
[0063] 实施例8 :
[0064] 利用200纳米的五角星形金铜合金纳米晶体光热杀死肝癌细胞的细胞实验。
[0065] 为了验证其他具有光热转化能力的金铜合金也可作此种药物的有效成分,并且此 药物对其他肿瘤细胞起作用,本发明使用200纳米五角星形金铜合金纳米晶体对肝癌细胞 进行光热实验。
[0066] 在常温下,依次向20ml的玻璃反应瓶中加入:浓度为lOOmM的CuCl2 ·2Η20水溶液 0. 3mL,浓度为100mM的HAuC14 ·3Η20水溶液0. 3mL,45mg的十六胺,浓度为1Μ的葡萄糖水溶 液0.28mL,4mL去离子水以及一粒磁子。将瓶盖盖紧后,放在磁力搅拌器上常温搅拌过夜。 之后,将其转移至l〇〇°C的油浴中,加热并磁力搅拌反应30min,在反应过程中,瓶中溶液颜 色由黄绿色变为深棕色,即得粗产物。取出反应瓶,待其冷却至室温后,将瓶中反应液移至 离心管中,10, OOOrpm下离心8min ;在相同条件下,用去离子水和乙醇分别洗涤3次和2次, 以洗掉残留的反应物、包裹剂十六胺和还原剂葡萄糖。最终可得干净的五角星形Au-Cu合 金纳米晶体,其中每个颗粒的分枝长度在75-150nm之间,平均尺寸为200nm,这种金铜合金 的透射电镜图,紫外可见近红外消光谱图见附图10。
[0067] 在96孔板中使用RPMI1640培养基培养人体肝癌细胞,细胞密度约为每孔内 1 X 105个细胞。在培养18个小时后,培养基换为含有10 μ g/mL的大小为200纳米的五角 星形金铜合金的培养基。之后,使用lW/cm2的激光照射3分钟和10分钟以实现杀癌效果。 为了辨别死细胞,我们使用台盼蓝对几个不同照射时间以及不照射的细胞进行染色,死细 胞会被染成蓝色,这样我们可以得到显微镜照片。为了得到细胞死亡率,我们对几个不同情 况的细胞又进行了标准MTT实验。以上实验所得到的显微镜照片和细胞死亡率统计图见附 图11。(本段中提到的大约,均指误差在5%以内)。
【权利要求】
1. 药物组合物,其含有金铜合金纳米晶体作为有效成分,以及药学上可接受的载体。
2. 金铜合金纳米晶体在制备治疗肿瘤的药物中的应用。
3. 金铜合金纳米晶体在制备治疗肿瘤的药物中的应用,其特征在于通过所述的金铜合 金纳米晶体在近红外区域有较强的表面等离基元共振峰或者对此区域的光有较强的吸收 值,在700-900nm内具有较强的表面等离基元共振峰的特性使肿瘤部位缩小或消失。
4. 金铜合金纳米晶体在制备治疗肿瘤的药物中的应用,其特征在于所述应用是由金铜 合金纳米晶体具有的光热效应通过近红外光照射肿瘤部位使其缩小或消失,所述的光热效 应通过调节金铜合金纳米晶体的浓度或近红外光的照射功率来控制,所述近红外光的波长 与金铜合金纳米晶体的7〇〇 -900nm内的表面等离基元共振峰相对应。
5. 金铜合金纳米晶体在制备治疗肿瘤的药物中的应用,其特征在于所述应用中,金铜 合金纳米晶体是被瘤位注射或者被静脉注射进动物体内,静脉注射时,该金铜合金纳米晶 体被聚乙二醇或以聚乙二醇为重复单元的聚合物包被。
6. 金铜合金纳米晶体在制备治疗肿瘤的药物中的应用,其特征在于所述应用中,金铜 合金纳米晶体注射进动物体内,在动物的肿瘤部位聚集,对动物的重要器官不造成损害,通 过使用700-900nm激光照射肿瘤部位,在该纳米晶体作用下肿瘤部位产生局部高温,造成 肿瘤坏死。
7. 金铜合金纳米晶体在制备治疗肿瘤的药物中的应用,其特征在于所述应用中,金铜 合金纳米晶体的施用方法采用肿瘤部位局部注射,或被聚乙二醇或以聚乙二醇为重复单元 的聚合物包被后静脉注射,或与本领域中已知的靶向脊椎动物肿瘤的靶向递送载体结合后 局部注射或经静脉注射。
8. 金铜合金纳米晶体在制备治疗的药物中的应用,其特征在于所述的肿瘤为乳腺癌、 肝癌。
【文档编号】A61P35/00GK104043124SQ201410318697
【公开日】2014年9月17日 申请日期:2014年7月3日 优先权日:2014年7月3日
【发明者】曾杰, 刘刚, 王骁勇, 何嵘, 张卓群, 王占通, 汪友程 申请人:中国科学技术大学