电外科装置的制作方法

文档序号:11673878阅读:196来源:国知局
电外科装置的制造方法

本文描述的本发明的实施方式涉及一种电外科装置,特别是涉及一种电外科钳装置,其中机械刀片提供组织切割动作,结合电外科电极提供组织凝固或密封效果。



背景技术:

电外科器械能提供优于传统外科器械的优点在于,电外科器械能用于凝固和组织密封的目的。从us2015/223870a1已知一种这样的现有技术器具,其描述了包括壳体和轴的内窥镜双极钳,所述轴在其远端处具有电外科末端执行器组件,所述电外科末端执行器组件包括用于在其间抓取组织的两个钳夹构件。每个钳夹构件均适于连接到电外科能量源,能够对保持在其间的组织实现组织密封。驱动组件被包括在所述壳体内以移动所述钳夹构件。还包括可移动手柄,使得所述手柄的运动会致动所述驱动组件以使所述钳夹构件相对于彼此移动。刀具通道被包括在所述末端执行器内,所述末端执行器被构造成允许刀片在所述刀具通道内往复,以允许切割组织。

其它现有技术器具包括us5,730,740、us5,104,397、us4,800,880、wo98/14124、us2012/0109186、us5,352,235、wo2014/074807、us7,846,161、wo2008/024911、us5,776,130、us6,039,733、us6,179,834、us7,131,971、us7,766,910、ep2628459、us2014/0221999、us7,083,618、us2009/0248020、us2015/0209103、us5,797,938和us7,101,373。



技术实现要素:

本发明的实施方式提供了一种外科器械,该外科器械具有手柄、从手柄突出的细长轴和位于轴的端部处的末端执行器。为了允许末端执行器旋转,朝向手柄的靠近用户的后端将轴连接到安装在手柄上的旋转轮。旋转轮采取拇指轮的形式,具有从远侧方向向近侧方向渐缩的人机工程学设计形状,渐缩角度匹配手柄的外表面的角度。拇指轮的渐缩外表面具有围绕拇指轮的外周布置并在使用中布置成接收用户拇指末端的多个成形切口或扇形部,以允许用户使拇指轮旋转以便设定末端执行器的旋转取向。这样的布置提供了一种舒适而容易使用的器械。

鉴于上文,根据一个方面,提供了一种外科器械,该外科器械包括:

手柄,所述手柄具有限定大致向前方向和向后方向的纵向轴线,所述手柄具有外部套管;

细长轴,所述细长轴从所述手柄的前端延伸;

末端执行器,所述末端执行器定位在所述细长轴的远端处;

可旋转的拇指轮,所述拇指轮位于所述手柄上,所述拇指轮的旋转导致所述细长轴的对应旋转,

其特征在于,所述拇指轮朝向所述手柄的后端定位,并且所述拇指轮具有大致渐缩的外部形状,使得所述拇指轮的外表面的至少一部分从所述拇指轮的后端处的相对较窄直径向朝着所述拇指轮的前端的相对较宽直径倾斜,所述拇指轮的所述外表面的倾斜部分的角度基本上等于所述外部套管在所述拇指轮的区域中的角度。利用这样的布置,获得了一种提供所述末端执行器的旋转的可以舒适而容易地利用的拇指轮布置。

在一个实施方式中,所述拇指轮的所述外表面设置有包括多个凹痕的扇形表面,所述多个凹痕适于接收操作所述拇指轮的用户的拇指和除了拇指以外的其它手指。所述多个凹痕可以是渐缩的,使得所述多个凹痕形成所述拇指轮的后端处的相对较窄直径和朝着所述拇指轮的前端的相对较宽直径。

关于所述凹痕的精确形状,所述多个凹痕的渐缩角度可介于5度到35度之间,或者替代地,所述多个凹痕的渐缩角度介于10度到25度之间。这样的渐缩角度提供了舒适的人机工程学设计。

关于凹痕的数量,所述拇指轮可包括6个到10个凹痕,但在一个实施方式中,所述拇指轮包括8个凹痕。凹痕的数量可取决于所述拇指轮的大小来选择,所述凹痕的大小选择为允许适应不同用户的拇指大小。

在一些实施方式中,所述手柄的外表面在所述拇指轮的区域中的渐缩角度类似于所述拇指轮的所述外表面的渐缩角度。这还为用户提供了舒适的人机工程学布置。

在一些实施方式中,所述拇指轮突出穿过所述手柄的所述外部套管中的一个或多个孔。例如,在一个示例中,所述外部套管包括在所述手柄的每一侧上彼此相对的两个孔;而在另一示例中,所述一个或多个孔的形状可以是梯形,例如具有与所述手柄的所述纵向轴线正交的平行侧边。特别是,在特定示例中,所述平行侧边中的一个侧边比另一个侧边长,长侧边位于所述孔的前端处,并且短侧边位于所述孔的后端处。这样的布置提供了所述拇指轮的人机工程学设计以允许使用起来容易。

所述外科器械可包括能在第一位置与第二位置之间移动的致动机构,所述致动机构从第一位置向第二位置的运动导致所述末端执行器从第一状态移向第二状态。在这方面,在一些实施方式中,所述末端执行器包括一对对置的第一钳夹构件和第二钳夹构件,所述致动机构从第一位置向第二位置的运动导致所述第一钳夹构件和第二钳夹构件中的至少一个钳夹构件相对于所述第一钳夹构件和第二钳夹构件中的另一个钳夹构件从第一打开位置移向第二闭合位置,在所述第一打开位置中,所述第一钳夹构件和第二钳夹构件相对于彼此以间隔开的关系配置;在所述第二闭合位置中,所述第一钳夹构件和第二钳夹构件协作以将组织抓取在所述第一钳夹构件和第二钳夹构件之间。

所述外科器械可以是电外科器械。在这样的情况下,所述末端执行器包括一个或多个电极,并且所述外科器械包括能够将所述外科器械连接到电外科发生器的电气连接件。

附图说明

现在,将仅通过示例的方式并且参照附图进一步描述本发明的实施方式,其中相同的附图标记表示相同的部件,并且其中:

图1是根据本发明的一个实施方式的电外科器械的侧视图;

图2是根据本发明的实施方式的电外科器械的手柄的侧视图;

图3是根据本发明的实施方式的电外科器械的分解图;

图4是图3的电外科器械的夹紧机构的剖视图,示出为处于打开构造中;

图5a是图3的电外科器械的夹紧机构的剖视图,示出为处于闭合构造中;

图5b是图3的电外科器械的夹紧机构的剖视图,示出为处于闭合构造中并且组织被夹紧在其间;

图6是图3的电外科器械的夹紧机构的一部分的剖视图;

图7是图3的电外科器械的夹紧机构的立体图;

图8a至图8f图示了图3的电外科器械的一部分的组件;

图9a至图9b是图3的电外科器械的一部分的剖视图;

图10a至图10c示出了图3的电外科器械的刀片引导部分;

图11示出了图3的电外科器械的闩锁部分;

图12示出了图3的电外科器械的刀片角度调整部分;

图13a至图13b是图3的电外科器械的刀片角度调整部分的剖视图;

图14a至图14b示出了图3的电外科器械的刀片角度控制轮部分;

图15a至图15b图示了图3的电外科器械的刀片角度控制轮的旋转运动;

图16a至图16d图示了图3的电外科器械的末端执行器的旋转运动;

图17是图示布线路径的图3的电外科器械的剖视图;

图18a至图18b示出了用在图3的电外科器械中的电布线路径的进一步细节;

图19示出了用在图3的电外科器械中的电布线路径的进一步细节;

图20a至图20b是图3的电外科器械的切割机构的一部分的侧视图;

图21是图3的电外科器械的切割机构的一部分的剖视图;

图22是图3的电外科器械的切割机构的另一部分的剖视图;

图23是图3的电外科器械的切割机构的一部分的部分透明立体图;

图24a至图24c图示了图3的电外科器械的切割机构的一个部分的组件;

图25a至图25c是图3的电外科器械的切割机构和夹紧机构的剖视图;

图26a至图26f是图示图3的电外科器械的闩锁机构的操作的剖视图;

图27是图示图3的电外科器械的切割机构的图形;

图28a至图28b是图示图3的电外科器械的切割机构的线图;

图29a至图29b示出了图3的电外科器械的刀片角度调整部分;

图30是图3的电外科器械的夹紧机构的一部分的立体图;

图31是图3的电外科器械的切割机构和夹紧机构的部分剖视图;

图32是图3的电外科器械的切割机构和夹紧机构的部分剖视图;

图33示出了图3的电外科器械的刀片角度控制轮部分和电极控制开关;

图34示出了图3的电外科器械的刀片角度控制轮部分;

图35a至图35b图示了由不同大小的手的用户保持的图中的电外科器械的手柄;

图36的(a)至(c)图示了图3的电外科器械的末端执行器的旋转运动;

图37图示了图3的电外科器械的刀片角度控制轮的旋转运动;

图38是示例末端执行器的示意性立体图;

图39是图38的末端执行器的一部分的放大立体图;

图40是图38的末端执行器的一部分的示意性剖视图;

图41是替代末端执行器的示意性立体图;

图42是图41的末端执行器的一部分的放大立体图;

图43是图41的末端执行器的一部分的示意性剖视图;

图44是另一替代末端执行器的一部分的示意性剖视图;

图45是根据本发明的实施方式包括发生器和器械的电外科系统的表示;

图46进一步图示了图3的电外科器械的闩锁部分;以及

图47a至图47e图示了用在图3的电外科器械中的切割刀片的远端。

具体实施方式

现在将描述本发明的一个实施方式。首先将给出整个实施方式的简要概述,随后是实施方式特定方面的详细描述。

1、器械的构造的概述

图1图示了根据本发明的一个示例的电外科器械1。器械1包括:近侧手柄部10;在远离近侧手柄部的远侧方向上延伸的外轴12;以及安装在外轴的远端上的远端末端执行器组件14。通过示例的方式,末端执行器组件14可以是一组对置的钳夹,该钳夹被布置成打开和闭合并且包括一个或多个电极,该电极布置在钳夹的对置的内表面上或者作为钳夹的对置的内表面并且在使用中具有连接以接收用于密封或凝固组织的电外科射频(rf)信号。钳夹进一步设置有位于对置的内表面内的槽缝或其它开口,当由用户激活时,机械切割刀片等可突出穿过所述槽缝或其它开口。在使用中,手柄10由用户采取第一方式激活以将组织夹紧在钳夹14之间,以及采取第二方式将rf电流供给到电极以便凝固组织。钳夹14可被弯曲,使得器械1的有源元件始终在视野中。这对容器密封装置是重要的,该容器密封装置用于在主体的在使用期间模糊了用户对装置的视觉的区域上操作。手柄10可由用户采取第三方式激活以导致刀片在钳夹14之间突出,由此切割夹紧在其间的组织。一旦需要的切割和密封已完成,用户就能将组织从钳夹14释放。

如图2所示的手柄10包括由两个蛤壳式模制件300、302形成的套管20,套管20容纳了操作和旋转钳夹14、凝固和切割组织所需的所有部件。一旦内部部件已被组装到内侧,组装好的装置中的蛤壳式模制件就被超声波焊接在一起。手柄10包括:夹紧手柄22,用于将组织夹紧在钳夹14之间;触发器24,用于切割组织;开关26,用于激活和停用向钳夹14中的电极的rf供给,以便凝固组织;以及旋转轮28,用于使钳夹14旋转以便从不同的角度到达组织。如此,手柄10的构造使得器械1及其所有功能都能使用单手来操作,并且所有操作机构都是容易接近的。

图3示出了器械1的为执行其功能所需的所有特征,包括容纳在套管20的两个蛤壳式模制件300、302内的那些特征。为了将组织夹紧在钳夹14之间,使用夹紧手柄22来致动夹紧机构。夹紧手柄22进一步包括轴环304,轴环304包括铰链306,铰链306充当使夹紧手柄22旋转所围绕的支点。例如,铰链306可以是卡入与蛤壳式模制件300、302一体的对应模制件308中的两个面向外的销,由此提供使夹紧手柄22旋转所围绕的锚固点。如进一步由图4至图7图示的,夹紧机构进一步包括轴环模制件310、弹簧312和内模制件314(所有这些都沿着驱动轴316螺纹连接)。

轴环304包括将轴环模制件310安置在其中的锁眼孔318。孔318顶部的直径大于底部的直径,其中轴环模制件310被布置成安置在孔318的下部内,如图8a图示。在组装时,轴环模制件310容易地装配穿过孔318的较大部分,使得轴环304安置在两个凸缘800、802之间,如图8b至图8c所示。如图8d所示,轴环304然后被推向上以使锁眼孔318的较小部分与轴环模制件310接合。一旦铰链306连接到套管20内的铰链模制件308,轴环模制件310就被保持在孔318的下部内,在那里轴环模制件310能在孔318内自由地旋转移动。

如图6所示,轴环模制件310、弹簧312和内模制件314被保持在突出构件600、602之间,使得它们不能沿轴向行进而越过这些突出构件600、602。在这方面,位于驱动轴316的近端处的突出构件602是可压缩的,以允许驱动轴316穿过位于内模制件314的近端中的通道604。驱动轴316被推动穿过通道604,直到驱动轴316到达开口606,其中突出构件602不再被压缩,使得突出构件602齐平地放置在驱动轴316的壁上。相反,突出构件602散开并且推动着抵靠开口606的壁,使得突出构件602的跨度延伸超过通道604的直径。因而,驱动轴316不能被拉回穿过通道604,从而被锁定到位。

突出构件600、602之间的距离使得弹簧312被至少部分地压缩在轴环模制件310与内模制件314之间。该预压缩对于确保当夹紧机构被激活时施加正确的夹紧载荷是重要的,这将在下面更详细地描述。轴环模制件310和内模制件314两者均包括供弹簧312延伸到其中的空腔608、610。特别是,轴环模制件310的大部分长度容纳弹簧312。该布置允许更长的弹簧312,这对于确保弹簧312在使用期间不会到达其实体长度是重要的。

驱动轴316的主要主体放置在外轴12内,驱动轴316的远端联接到外轴12的远端和钳夹14两者。驱动轴316在外轴12内沿轴向移动,并且正是该轴向移动使钳夹14从打开位置移向闭合位置,这能从图4和图5a看到。例如,驱动轴316借助凸轮槽缝402中的驱动销400联接到钳夹14,由此驱动销400在凸轮槽缝402内的运动使钳夹14在打开位置与闭合位置之间移动。驱动轴316、外轴12和钳夹14之间的联接使得驱动轴316的旋转运动被传递到外轴12和钳夹14。

外轴12和驱动轴316借助轴模制件320联接到另一点处。轴模制件320安置在套管20的承窝322内,从而将外轴12联接到套管20。外轴12通过任何合适的手段(例如,与轴模制件320内的对应凹口902协作的卡扣配合翼片900,如图9b所示)附接至轴模制件320。驱动轴316经由匹配如图10a图示的驱动轴316的横截面“t”形的孔(未示出)以螺纹的方式穿过轴模制件320的主体。轴模制件320被布置成使之在承窝322内自由旋转。例如,轴模制件320可包括柱形凸缘特征904、906,柱形凸缘特征904、906在设置于蛤壳式模制件300、302内的同心配合面908、910内旋转。因此,轴模制件320与驱动轴316一起旋转,这又将该旋转运动转换至外轴12和钳夹4。轴模制件320从而用作驱动轴316的旋转和轴向引导件。

夹紧手柄22包括闩锁324,该闩锁324被布置成与安置在套管20的近端328内的闩锁模制件326协作。闩锁模制件326可通过任何合适的手段保持到位:例如,借助与蛤壳式模制件300、302之一成一体的模制销330(如图3所示),或者简单地借助与蛤壳式模制件300一体的模制壁1100(如图11所示)。当夹紧手柄22被驱动朝向套管20以闭合钳夹14时,闩锁324经由开口1102进入套管20并且与闩锁模制件326接合以将夹紧手柄22保持在该位置中。如图26a至图26f所示,闩锁模制件326包括双向弹簧1104和凸轮路径1106,闩锁324沿着凸轮路径1106横过。如图46所示,闩锁机构还可包括:超驰部件4600,如果闩锁324被卡住,则超驰部件4600允许用户手动释放闩锁324;以及锁定部件4602,锁定部件4602完全禁用闩锁机构。超驰部件4600和锁定部件4602可设置在闩锁模制件326上或者可与套管20的内侧成一体。

如上所述,手柄10进一步包括旋转轮28,其中旋转轮28被布置成包住内模制件314。在这方面,旋转轮28和内模制件314具有互锁构件1200、1202,如图12所示。这些互锁构件1200、1202联接到一起,使得旋转轮28和内模制件314一起旋转,同时仍允许内模制件314在旋转轮28内轴向地移动,这能从图13a至图13b看到。因此,旋转轮28的旋转导致内模制件314的旋转,随后使驱动轴316和轴环模制件310旋转。为了稳定性,旋转轮28包括柱形面1204,柱形面1204在与蛤壳式模制件300、302一体的内配合面(未示出)上旋转地滑动。

为了实现用户对钳夹14的旋转,套管20具有两个开口332、334,旋转轮28的扇形部336穿过这两个开口332、334而突出。两个开口332、334在手柄的每一侧彼此相对,并且是梯形形状。特别是,梯形孔具有与手柄的纵向轴线正交的平行两侧,并且平行两侧中的一侧可比另一侧长,长侧在孔的前端,并且短侧在后端。扇形部336方便地倾斜以舒适地适合用户的拇指或除了拇指以外的其它手指。在这方面,扇形部336以与旋转平面成一定角度切割,如图14a至图14b所示。特别是,扇形部的倾斜部分的角度应该基本上等于旋转轮28的区域中的外部套管的角度。

如图15a至图15b中图示的,旋转轮28还包括用于限制旋转程度的至少一个止动构件1500。止动构件1500与止动特征1502、1504相互作用,止动特征1502、1504与套管20成一体。随着旋转轮28的旋转,止动构件1500被止动特征1502、1504阻碍,由此防止进一步旋转。例如,止动特征1502、1504可将旋转轮限制到270°的旋转。类似地,轴模制件320还包括止动构件1600,止动构件1600与止动特征1602、1604相互作用,止动特征1602、1604与套管20成一体,如图16a至图16d所示。轴模制件320的止动构件1600及其相应的止动特征1602、1604与旋转轮28的止动构件1500及其相应的止动特征1502、1504径向对准,使得旋转被限制为相同的程度。也就是说,随着旋转轮28的转动,旋转轮28上的止动构件1500被阻碍的径向点将与轴模制件320上的止动构件1600将被阻碍的径向点相同。例如,在图15b和图16a中,钳夹14从(图16b中示出的)中立取向逆时针旋转90°。该旋转自由度意味着用户能从不同的角度抓取组织而不需要旋转整个器械1。

如上所述,开关按钮26被设置为经由一些适当的电路(例如,小型印刷电路板(pcb)338上的两个入口保护开关)激活和停用递送到钳夹14中的电极的rf信号。如图17所示,pcb338连接到连接线1700以接收来自发生器(未示出)的rf输出,并且连接到电气布线1702、1704以将rf电流供给到钳夹14中的电极,例如,一根线材用于有源电极,一根线材用于返回电极。如图17和图18a至图18b所示,在进入引导槽缝1800到达轴模制件320的内部空腔1802中并顺着外轴12下行之前,线材1702、1704缠绕在轴模制件320的下方和周围。以这种方式将线材1702、1704缠绕在轴模制件320周围会保持线材1702、1704的布置紧凑,以在允许驱动轴316旋转的同时实现容易的组装。在这方面,线材1702、1704随着驱动轴316的旋转而退绕和再卷绕。另外,蛤壳式模制件300之一还包括串联定位的两个模制袋1900、1902,以容纳将有源和返回线材1702、1704连接到入口保护开关338的布线1908、1910的线材触头1904、1906。相对的蛤壳式模制件302包括对应的肋特征(未示出),用于将触头1904、1906保持在袋1900、1902内。结果,两个线材触头1904、1906被纵向分离,使得仅一个触头能穿过每个袋1900、1902,由此在每个触头1904、1906与任何布线之间提供物理屏障。这防止了因触头1904、1906导致的对任何布线的隔离损坏的风险,同时还保护触头1904、1906自身免受可顺着外轴12并进入套管20的任何流体影响。

转向切割机构,用于切割夹紧在钳夹14之间的组织的刀片340设置在沿着驱动轴316的长度的中心轨道342内。用于沿着轨道342并在钳夹14之间致动刀片340的机构经由触发器24来操作。触发器24致动驱动组件,该驱动组件由触发器模制件344、刀片驱动模制件346、刀片轴环模制件348、拉伸弹簧350和刀片模制件352形成。驱动组件定位在轴模制件320与夹紧机构的手柄轴环304之间。如图20a至图20b所示,驱动组件充当偏移滑动器-曲柄机构,由此由用户施加在触发器24上的力被传递为刀片模制件352沿着驱动轴316的轴向运动,这又驱动附接的刀片340。

如图21、图22和图23所示,刀片模制件352被布置成安置在刀片轴环模制件348内。如图22所示,刀片轴环模制件348包括唇部2200,唇部2200与围绕刀片模制件352的圆周的凹槽2202互锁。如图23所示,刀片模制件352具有用于接收驱动轴316和刀片340的“t”形孔2300。刀片模制件352进一步包括用于刀片340的近端的内部切口2100(如图21所示),其中刀片2102的端部被成形为匹配刀片模制件352的内部切口2100以允许容易组装,如图24a至图24c所演示的。刀片模制件352与刀片轴环模制件348旋转地隔离,使得两个模制件能同心地旋转。因而,刀片模制件352能够与驱动轴316一起旋转。

如上所述,钳夹14可被弯曲。为了能够在维持足够的切割能力的同时围绕曲线推动刀片340,切割刀片340经过弯曲轨道的摩擦力必须最小化。摩擦力是刀片340在轨道342内的摩擦系数与由于弯曲而使刀片340施加在轨道342的壁上的力的乘积。例如,通过向刀片的侧面添加低摩擦涂层,以及/或者优先弱化刀片340使刀片远端的柔性渐变使之能够在保持切割力方向的刚性的同时沿着轨道342弯曲,该摩擦力可被减小。例如,通过将一个或多个孔354设置在远端中(如图3和图47a至图47c所示),或者通过使刀片340的厚度渐变(如图47d图示),可提供优先弱化。替代地,如图47e图示的,远端图案化的激光切割4712或化学蚀刻可能用于控制刀片长度上的弯曲刚度,由此这样的切割之间的间隔可以是恒定的或者从远侧向近端逐渐增加。

在使用中,血液和组织能在器械1的远端内积累。特别是,血液和组织能导致刀片340卡在驱动轴316内。因此,驱动轴316的远端可包括切口部1000、1002,以便减小血液和组织被卡住的驱动轴316的表面积,如图10b至图10c所示。例如,切口部可使得远端包括不具有基部支撑件的两个侧壁,或者远端包括具有分叉侧壁的基部支撑件。

2、器械的操作

已描述了装置的整体构造,现在将讨论电外科器械1在使用中的整体操作。此后,将进行装置的特定方面的构造和操作的进一步详细描述。

如上文讨论的,电外科器械的手柄10被布置成:i)将组织夹紧在一组钳夹14之间;ii)将钳夹闩锁到位(如果用户期望);iii)将rf信号递送到钳夹14中的电极,以凝固夹紧在其间的组织;以及iv)在钳夹14之间启动刀片340以切割夹紧在其间的组织。手柄10还能使钳夹14旋转以允许用户以不同的角度夹紧组织,而不需要旋转整个手柄10。结果是,钳夹之间的组织能在由同一电外科器械切割之前或与之同时进行密封。而且,这些效果能利用该器械经由外科医生的单手操作来实现。

2.1夹紧机构

为了将组织夹紧在钳夹14之间,用户朝向套管20的近端328挤压夹紧手柄22,直到闩锁324与套管20内的闩锁模制件326接合。该运动使驱动手柄22绕其铰链306枢转(如图8e至图8f所示),并且推动轴环304的边缘使之抵靠凸缘800以在近侧方向上沿着驱动轴316驱动轴环模制件310、弹簧和内模制件314,如图4和图5a图示。如上所述,内模制件314经由突出构件602附接至驱动轴316。因此,在内模制件314被沿轴向推回时,驱动轴316也沿轴向移动,这驱动钳夹14的凸轮槽缝402中的销400,由此闭合钳夹14。如此,经由轴环模制件310的弹簧机构、弹簧312和内模制件314将来自驱动手柄22的载荷传递到驱动轴316。

一旦组织被夹紧在钳夹14之间,如图5b所示,弹簧312就起作用以限制加载到组织上的力。一旦轴环模制件310、弹簧312和内模制件314已停止轴向移动,并且在轴环304继续驱动抵靠凸缘800时,最终到达弹簧312上的阈值压缩力,使得弹簧312开始在轴环模制件310与内模制件314之间压缩。随着弹簧312的进一步压缩,驱动手柄22能一直被驱动到闩锁位置而不会将任何更多的力施加在被夹紧组织上。也就是说,驱动手柄22的载荷不再被传递到驱动轴316,但被弹簧312有效地吸收。如此,弹簧312确保将正确的载荷量传递到钳夹14上。在没有弹簧312的情况下,致动驱动手柄22将继续增加传递到驱动轴316且随后传递到钳夹14和组织的载荷。这在用户继续挤压驱动手柄22以便接合闩锁324时可能致使组织的机械损坏。

如上文讨论的,轴环模制件310和内模制件314中的空腔608、610一起作用,以允许更大的弹簧312。这允许更大的弹簧行程,使得弹簧312在使用期间不会完全压缩至其实体长度。如果弹簧312到达其实体长度,则弹簧将不再吸收由驱动手柄22施加的载荷,并且力将再次传递到钳夹14。

2.2闩锁机构

一旦组织已被夹紧在钳夹14之间,钳夹14就能通过将驱动手柄上的闩锁324与套管20内侧的闩锁模制件326接合(如图26a至图26f所示)而被锁定到闭合位置中。在闩锁324经由开口1102进入套管20时,闩锁324接合闩锁模制件326,顺着套管20内推动模制件326,由此使弹簧1104伸展。如图26b至图26c所示,闩锁324沿着凸轮路径1106的侧面上行,直到到达其最大位置。在这一点,驱动手柄22不能再被进一步压缩,并且弹簧1104将闩锁模制件326拉回到套管20的内侧,使得闩锁324插入凸轮路径1106的“v”形袋,以将驱动手柄22保持在压缩位置中并且将钳夹14保持在闭合位置中,如图26d所示。

在该闩锁位置中,用户的手自由操作器械1的其它功能,这将在下面讨论。

为了将闩锁324从套管20释放并且打开钳夹14,用户必须朝向套管20挤压驱动手柄22,以将闩锁324从凸轮路径1106的袋释放,如图26e所示。弹簧1104的力将闩锁模制件326进一步上拉到套管20中,使得闩锁324顺着凸轮路径1106的侧面沿相反的方向行进(如图26e至图26f所示),并且返回到开口1102。然后,闩锁模制件326将返回到它在套管20内的初始位置。

2.3切割机构

当钳夹14处于闭合位置中时,用户可能需要切割夹紧在其间的组织。为了切割组织,在钳夹14之间通过致动驱动组件而驱动刀片340。

驱动组件是用作滑动器-曲柄机构的三枢转器具。在用户朝向套管20拉回触发器24时,如图25b至图25c所示,例如借助连接到与图3中示出的蛤壳式模制件300、302一体的对应模制件356的面向外的销358而将触发器模制件344围绕锚固到套管20的枢转点a抬起。这会推进将触发器模制件344和驱动模制件346相连的枢转点b经过其中心位置,由此以刀片340能够切割被夹紧组织的足够高的力沿着驱动轴316驱动刀片轴环348、刀片模制件352和刀片340。在这方面,经由触发器模制件344和驱动模制件346将施加在触发器24上的载荷传递到刀片轴环348和刀片模制件352。在枢转点b经过中心移动到其伸长位置中时,刀片轴环348和刀片模制件352沿着驱动轴316的驱动速度加速,从而增加刀片340的力。如此,刀片340切入组织的力增加,用户无需在触发器24上施加任何额外的力。

轴模制件320用作刀片轴环348和刀片模制件352的停止点。因而,枢转点b始终相对于驱动轴316保持在另两个枢转点a、c之上。

在致动触发器24期间,施加在触发器24上的力大到足以克服拉伸弹簧350的压缩力,使得拉伸弹簧350沿着与驱动轴316相同的平面伸展以允许刀片轴环348和刀片模制件352的轴向运动。在释放触发器24时,拉伸弹簧350重新压缩以将驱动组件缩回到其初始位置。在这方面,拉伸弹簧350的张力强到足以在不需要用户干预的情况下使刀片340缩回穿过厚的组织。

2.4轴旋转

在使用期间,用户可能需要从不同的角度到达组织而不需要移动整个器械1。因此,钳夹14有利地能借助旋转轮28相对于手柄10旋转。这在钳夹14位于诸如图16a至图16d所示的弯曲轨道上时是特别有益的。如上所述,旋转轮28经由互锁构件1200、1202联接到内模制件314,使得内模制件314与旋转轮28一起旋转。在驱动轴316的端部连接到内模制件314时,驱动轴316也旋转,随后在其相对端部处使钳夹14旋转。

为了便于这种旋转运动而不干涉夹紧机构的操作,轴环模制件310被旋转地隔离在手柄轴环304内,使得轴环模制件310也与驱动轴316一起旋转。同样,为了允许驱动轴316旋转而不干涉切割机构的操作,刀片模制件352被旋转地隔离在刀片轴环348内。

为了将旋转运动传递到外轴12,轴模制件320被旋转地隔离在其承窝322内。如上所述,轴模制件320用作旋转引导件以控制相对于轴316沿着器械1的整个长度的旋转运动。另外,有源和返回线材1702、1704被布置在套管20内以防止因旋转部件而损坏这些线材1702、1704。如上所述,线材1702、1704围绕轴模制件320缠绕以允许驱动轴316的旋转程度。因而,线材1702、1704在它旋转时围绕轴模制件320退绕和再卷绕。

2.5电极激活

当钳夹14处于闭合位置中时,用户可能希望凝固并密封夹紧在其间的组织。为此,用户使用套管20顶部上的开关按钮26来启动电极激活,开关按钮26被方便地定位,使得用户在单手使用装置时能容易地够到按钮26。在这样做时,适当的rf信号被递送到钳夹14中的电极以凝固并密封组织。取决于期望的效果,rf信号可以是纯的或混合的波形。

已整体地给出装置的构造和操作的概述,现在将给出其特定方面的构造和操作的进一步详细描述。

3、夹紧机构的组装和操作

如上所述,电外科器械1的近侧手柄部10包括第一机构,用于致动远端末端执行器组件14的一个方面,使得末端执行器组件14在第一状态和第二状态之间移动。例如,末端执行器组件14可以是布置成打开和闭合的一组对置的钳夹14。用于触发这些钳夹14的运动的机构是所谓的夹紧机构,该夹紧机构包括驱动手柄22和两个筒形模制件310、314(具有压缩在其间的弹簧312),全都沿着在钳夹14与手柄10之间延伸的细长杆316螺纹连接,如图4和图5a至图5b所示。

如图8a所示,驱动手柄22包括轴环304,轴环模制件310安置在轴环304中。轴环304包括形状像锁眼或八字形的孔318。如此,孔318由两个连续的孔804、806形成,其中顶部孔804具有比底部孔806大的横跨直径。

轴环模制件310是具有纵向间隔开的两个凸缘部800、802的柱形或筒形部件。近侧凸缘800的直径大于上孔804和下孔806两者。远侧凸缘802的直径小于上孔804并且大于下孔806。

在组装期间,轴环模制件310首先插入穿过上孔804,如图8b至图8c所示。因为远侧凸缘802小于上孔804,所以远侧凸缘802容易从中穿过,而近侧凸缘800可大到足以防止轴环模制件310在整个路程上行进穿过上孔804。如图8d所示,轴环304然后被向上推动以将下孔806与轴环模制件310接合。

一旦组装好,轴环模制件310保持在轴环304的下孔806内并且定位成使得轴环模制件310的两个凸缘800、802放置在轴环304的任一侧,如图8e所示。因为下孔806的直径小于凸缘800、802两者,所以轴环模制件310不能通过简单地推动轴环模制件310穿过下孔806而被移除。相反,轴环模制件310在两个凸缘800、802之间的主体的直径略小于下孔806的直径。因此,轴环模制件310足够宽松地安置在下孔808内,从而允许旋转运动。

如能从图8e看到的,两个凸缘800、802之间的纵向距离仅略大于轴环304的厚度,使得轴环304紧贴地安置在凸缘800、802之间。这确保驱动手柄22的运动被直接传递到轴环模制件310,并且随后被传递到夹紧机构的其它部件。这对于确保钳夹14响应于驱动手柄22的运动以及驱动手柄22的致动与钳夹14的运动之间没有延迟响应是特别重要的。

一旦轴环模制件310和驱动手柄22已组装好,就能组装其余部件。

驱动轴316是具有位于其近端处的一个或多个突出构件602的细长杆,如图6所示。突出构件602是从驱动轴316的表面散开的柔性翼片。也就是说,突出构件602是可变形的,使之可被挤压而齐平地抵靠驱动轴316的表面,但将在释放任何阻力时返回至其初始位置。这允许驱动轴316在组装期间容易地螺纹连接穿过夹紧机构的所有部件(现在将描述之)。

轴环模制件310具有分为两个部分的内部空腔。第一部分是用于接收驱动轴316的窄通道或槽缝607,其中轴环模制件310的远端包括开口311,如图3所示,开口311匹配驱动轴316的横截面“t”形。通道607的直径仅略宽于驱动轴316的直径,以出于稳定性而提供紧贴配合。在插入驱动轴316时,突出构件602被压平以允许驱动轴被一直推动着穿过。

第二部分是大到足以容纳弹簧312的一端的腔室608。腔室608能在轴环模制件310的任何合适比例的长度上延伸。例如,腔室608的长度可约为轴环模制件310的长度的25%,或者多达轴环模制件310的长度的75%。

腔室608基本上大于轴环模制件通道607,使得在驱动轴316被推动穿过轴环模制件310时,突出构件602跨回到其在到达腔室608时的初始构造。

轴环模制件310和驱动手柄22的组件沿着驱动轴316螺纹连接,直到轴环模制件310到达第二组突出构件600。这些突出构件600的跨度宽于轴环模制件310上的开口311,以提供阻碍物来防止轴环模制件310沿着驱动轴316进一步行进。如此,突出构件600必须足够刚性,使得轴环模制件310不能通过施加一些力或向内挤压突出构件600而推过突出构件600。

然后,驱动轴316螺纹连接穿过弹簧312的中心。优选地,弹簧312的直径仅略大于驱动轴312的直径,以提供弹簧312与驱动轴316之间的紧密配合。然后,沿着驱动轴316推动弹簧312,直到弹簧312的端部填充轴环模制件腔室608。

内模制件314是具有分为两个节段的内部空腔的柱形或筒形部件。第一节段是腔室610,弹簧312的一端被容纳在腔室610中,使得弹簧312被轴环模制件310和内模制件314部分地包住。第二节段是用于接收驱动轴316的近端的窄通道或槽缝603。通道603被分为两个部分604、606。通道604的第一部分被成形为允许驱动轴316穿过,柔性翼片602为此被压平。如此,第一通道部分604的直径仅略微宽于驱动轴316的直径,以提供紧贴配合。驱动轴316在轴环模制件通道607和内模制件通道603两者内的紧贴配合意味着驱动轴316被牢固地保持到位。这增添了驱动轴316在套管20内的稳定性,这对确保末端执行器14的最大控制是特别重要的。

通道606的第二部分提供了肩部605,突出构件602能延伸到肩部605中。因而,在驱动轴316穿过通道604并进入第二通道部分606时,扁平的突出构件602散开到其初始的解压缩位置。一旦突出构件602已与第二通道部分606的肩部605接合,驱动轴316就不能被拉回穿过第一通道部分604,从而被保持在内模制件314中。如此,第二通道部分606的直径必须足够宽,使得突出构件602能够膨胀超过第一通道部分604的直径。为了实现这种卡扣配合连接,突出构件602仅需要位于驱动轴316的一侧上。

这种卡扣配合连接使得内模制件314的任何轴向运动都将被传递到驱动轴316。类似地,内模制件314(例如,借助围绕内模制件314形成的旋转轮28)的任何旋转运动也被传递到驱动轴316。

因此,为了完成夹紧机构的组装,驱动轴316简单地螺纹连接穿过轴环模制件310、弹簧312并最终穿过内模制件314,直到突出构件602卡扣到第二通道部分606中。

一旦沿着驱动轴316进行组装,轴环模制件310、弹簧312和内模制件314就被布置成使得弹簧312被轴环模制件310和内模制件314部分地包住。通过提供能容纳弹簧312的主要部分的轴环模制件腔室608和内模制件腔室610,能使用更长的弹簧312而不会消耗手柄10内的任何额外空间。如此,轴环模制件腔室608和内模制件腔室610越大,弹簧312越长。此外,突出构件600、602之间的距离意味着弹簧312的端部分别被轴环模制件腔室608和内模制件腔室610的端壁612、614压缩,使得弹簧312在装设时经历初始预压缩。这对确保当手柄22被致动以激活夹紧机构时将正确的载荷施加到钳夹14是重要的。

另外,内模制件314可包含在另一筒形模制件(诸如图13a至图13b中示出的旋转轮28)内。在此,内模制件314与旋转轮28一起旋转,但在旋转轮28的内部空腔1300内沿轴向自由移动,在如图13a所示的第一位置与如图13b所示的第二位置之间移动。因而,轮28的旋转会使内模制件314旋转,这又使驱动轴316和钳夹14旋转。

一旦所有部件都已被组装好,驱动手柄22就能被装设在套管20的内侧。在这方面,驱动手柄22在其铰链306处连接到套管。例如,铰链306可以是配合与蛤壳式模制件300、302一体的对应铰链模制件308的两个向外延伸的销。这提供了供驱动手柄22围绕其旋转的锚固点。

因此,上述布置提供了能容易而安全地组装并且不需要任何额外部件的用于致动末端执行器组件14的机构。

在使用中,用户朝向套管20的近端328挤压驱动手柄22,由此使驱动手柄22绕其铰链306旋转。在这样做时,轴环304推动近侧凸缘800,从而使轴环模制件310沿纵向移动。该纵向运动将弹簧312、内模制件314和驱动轴316往回朝向手柄部10的近端驱动,如图5a所示。因为驱动轴316例如借助销400和凸轮槽缝402的布置联接到钳夹14,所以钳夹14从打开位置移向闭合位置。如此,经由轴环模制件310的弹簧机构、弹簧312和内模制件314将来自驱动手柄22的载荷传递到驱动轴316。该弹簧机构对于在它起作用以限制加载到夹紧在钳夹14之间的任何组织上的力时是特别重要的。

在驱动手柄22被挤压时,轴环模制件310、弹簧312和内模制件314继续沿轴向移动,直到内模制件314到达其最远的近侧位置而使得钳夹14完全闭合(如图5a所示),或者直到钳夹14由于夹紧在其间的组织500而不能再进一步闭合(如图5b所示),在该情况下,驱动手柄22尚未完全致动使之由闩锁324保持到位。在用户继续挤压驱动手柄22并且轴环304继续驱动凸缘800时,最终达到弹簧312上的阈值压缩力,使得弹簧312开始在轴环模制件310与内模制件314之间压缩,这能在图5b中看到。

在弹簧312进一步压缩时,驱动手柄22能一直被驱动到闩锁位置中而不会将任何更多的力施加在被夹紧组织500上。也就是说,驱动手柄22的载荷不再被传递到驱动轴316,而是被弹簧312有效地吸收。如此,弹簧312确保将正确的载荷量传递到钳夹14上。在没有弹簧312的情况下,致动驱动手柄22将继续增加传递到驱动轴316且随后传递到钳夹14和组织500的载荷。这在用户继续挤压驱动手柄22以便接合闩锁324时可能致使组织500的机械损坏。

因此,弹簧312的预压缩对于确保一旦内模制件314到达其轴向限制弹簧312就承受手柄22的载荷是重要的。类似地,具有更长的弹簧312允许更大的弹簧行程,使得弹簧312在使用期间不会完全压缩至其实体长度。如果弹簧312到达其实体长度,则弹簧312将不再吸收由驱动手柄22施加的载荷,并且力将再次被传递到钳夹14。

为了将钳夹14保持在闭合位置中,驱动手柄22上的闩锁324必须与套管20的近端328内侧的闩锁模制件326接合,如图26a至图26f所示。

如图11所示,闩锁模制件326是包括主体部1108、弹簧元件1104和凸轮路径1106的单个一体模制的部件。套管20的近端328具有平行的壁1100,壁1100限定将主体部1108安置在其中的通道1110。通道1110的宽度使得主体部1108被保持在通道1110内但仍能在使用期间沿通道1110上下滑动,这将在下面描述。在这方面,闩锁模制件326优选地由例如聚四氟乙烯(ptfe)的低摩擦材料制成,以允许主体部1108在通道1110内容易地滑动而不会卡住。为了通道1112内的进一步稳定性,模制销330可设置在套管20中,与设置在主体部1108上的凸轮槽缝331(如图46所示)接合。

弹簧1104位于主体部1108的端部处并被布置成使主体部1108沿通道1110向上朝向套管20的远端偏置。弹簧1104可具有任何合适的构造,例如,弹簧1104可以是诸如图11中示出的弓形或环形。凸轮路径1106是形成在主体部1108上的模制突起。凸轮路径1106包括第一凸轮表面1112、凹口1114和第二凸轮表面1116,以形成“v”形模制件。

闩锁324由从驱动手柄22的底部延伸的臂1118形成。臂1118具有位于其端部处且适合横过凸轮路径1106的销1120。

在使用中,闩锁324经由开口1102进入套管20。销1120接合闩锁模制件326,使得主体部1108被顺着通道1110向下拉动并且弹簧1104由此伸展。如图26b至图26c所示,销1120上延至第一凸轮表面1112的侧面直到它到达“v”的顶部。在这一点上,驱动手柄22不能被再进一步压缩,并且弹簧1104将主体部1108拉回到通道1110,使得销1110插入凹口1114,从而将驱动手柄22保持在压缩位置中并且将钳夹14保持在闭合位置中,如图26d所示。

因此,为了闩锁驱动手柄22,所有用户必须致动驱动手柄进入完全压缩位置,等待销1110卡入到凹口114中然后释放驱动手柄22。在该闩锁位置中,用户的手自由地操作器械1的其它功能,诸如使用触发器24操作切割机构、使用旋转轮28使钳夹14旋转或者使用开关26操作钳夹14中的电极。

为了将闩锁324从套管20释放并且打开钳夹14,用户必须再一次朝向套管20挤压驱动手柄22。这将销1120从凹口1114释放,如图26e所示。在销1120退出凹口1114时,伸展的弹簧1104的力将主体部1108拉回通道1110,使得销1120顺着第二凸轮表面1116的侧面行进,如图26e至图26f所示。在销1120到达第二凸轮表面1116的底部时,销1120将主体部1108进一步上推到通道1110,使得销1120能回撤离开开口1102。然后,主体部1108将返回至其在通道1110内的初始位置。

因此,为了释放驱动手柄22,所有用户必须朝向套管20的近端挤压驱动手柄22,然后允许驱动手柄22返回至其初始打开位置。

另外,闩锁模制件324可包括一体地形成在主体部1108上的超驰按钮4600,如图46所示,其中超驰按钮4600被接合为改变凸轮路径1106的位置,使得销1120与凹口1114自动脱离并且释放驱动手柄22。因而,如果闩锁机构出于任何原因失效,则用户将能够释放驱动手柄22以打开钳夹14。

主体部1108还可设置有一体的锁定杆4602以允许用户使闩锁机构完全脱离,其中锁定杆4602能在第一位置和第二位置之间移动以手动地使主体部1108在通道1110内滑动。当锁定杆4602处于第一位置中时,主体部1108处于其正常位置中,使得闩锁机构如上所述地操作。然后,用户可将锁定杆4602移动到其第二位置,由此主体部1108沿通道1110上移,使得销1120仅能沿着第二凸轮表面1116横过,从而防止与凹口1114接合。

将认识到,这样的闩锁机构还可适用于许多末端执行器组件。例如,这样的闩锁可设置在用于切割机构的触发器24上,以将切割刀片340保持在致动位置中。

在释放闩锁324时,驱动手柄22能移动回到其初始位置。在这样做时,轴环304释放施加在近侧凸缘800上的载荷并且推动着抵靠远侧凸缘802,从而将轴环模制件310拉回到其初始轴向位置。因而,弹簧312、内模制件314和驱动轴316也沿轴向拉回,这又使钳夹14移动回到打开构造。

4、切割机构组件和操作

现在将描述涉及切割机构的结构和操作的各种进一步特征及方面。如上所述,电外科器械1的近侧手柄部10包括第二机构,用于致动远端末端执行器组件14的另一方面。例如,末端执行器组件14可以是一组对置的钳夹14和刀片340,其中刀片340的远端被布置成在钳夹14之间滑动,以便切割夹紧在所述钳夹14之间的组织。用于触发配置在驱动轴316的中心轨道341内的刀片340的运动的机构是所谓的切割机构。切割机构包括驱动臂2000、刀片驱动模制件346、刀片轴环模制件348、刀片模制件352和拉伸弹簧350,它们都被联接到一起以形成三枢轴滑动器曲柄机构,如图20a至图20b以及图31和图32所示。

驱动臂2000由触发器24和触发器模制件344形成,其中触发器24是用于致动切割机构的除了拇指以外的其它手指抓握构件,并且触发器模制件344是具有“c”形侧轮廓和孔364的轴环,驱动轴316被螺纹连接穿过孔364。触发器24和触发器模制件344的汇合点提供了供驱动臂2000旋转所围绕的枢转点a。例如借助面向外的销358将该第一枢转点a锚固到套管20,销358连接与蛤壳式模制件300、302一体的对应模制件356。

驱动臂2000的远端(也就是说,触发器模制件344的端部)枢转地连接到刀片驱动模制件346以形成第二枢转点b。刀片驱动模制件346是具有两个平行臂及其间的支柱的“h”形框架。如此,刀片驱动模制件346的平行臂的一端例如借助面向外的销366和配合的连接器368枢转地连接到触发器模制件344。在相对的另一端,刀片驱动模制件346的平行臂也例如借助面向外的销372和配合的连接器370枢转地连接到刀片轴环模制件348以形成第三枢转点c。

如图21至图23所示,刀片轴环模制件348是具有腔室2104的柱形或筒形部件,刀片模制件352安置在腔室2104中,其中刀片模制件352是具有主体362的柱形或筒形部件,主体362装配在刀片轴环模制件348的腔室2104内。刀片模制件352进一步包括凸缘360,凸缘360的直径大于腔室2104的直径,使得凸缘360抵接刀片轴环模制件348的远侧唇部2200,如图22所示。因而,凸缘360确保刀片模制件352的正确端部对刀片轴环模制件348感兴趣。

主体362设置有围绕其圆周的小凹槽2202以提供肩部,远侧唇部2200用该肩部互锁,使得刀片模制件352和刀片轴环模制件348经由卡扣配合连接来联接。远侧唇部2200与凹槽2202配合以将刀片模制件352保持在刀片轴环模制件348内,同时允许刀片模制件352在腔室2104内自由旋转。如此,刀片模制件352和刀片轴环模制件348自由地同心旋转。

一旦刀片轴环模制件348和刀片模制件352已被组装在一起,刀片340就能如图24a至图24c图示地连接。在这方面,刀片模制件352包括延伸穿过其整个长度的“t”形孔2300,“t”形孔2300如此成形为接收刀片340和驱动轴316两者,如图23所示。

刀片340的近端包括翼片特征2102,翼片特征2102延伸越过刀片340的其余部分的总体轮廓,也就是说,不放置在相同的轴向平面中。如图24c所示,主体362进一步包括将翼片2100保持在其中的凹部2100。为了实现组装,刀片340的近端切掉与翼片2102相对的第一点以便提供斜切边缘2400,并且切掉与翼片2102相邻的第二点以提供凹部2402。如此,刀片340的近端具有“l”形轮廓。

为了将刀片340组装在刀片模制件352和刀片轴环模制件348的组件内,刀片340以与器械1的纵向轴线成一定角度呈现到“t”形孔2300,使得翼片2102和斜切边缘2400能插入到刀片模制件352的内部空腔2404,如图24a至图24b所示。然后,顺着纵向轴线拉动刀片340以将翼片2102推动到凹部2100中,如图24c所示。如此,翼片2102有效地钩到刀片模制件352的肩部2406,由此将刀片340的近端保持在内部空腔2404内。

然后,驱动轴316可螺纹连接穿过“t”形孔2300,刀片340被接收在中心轨道342中,如图22和图23图示。如此,刀片轴环模制件348和刀片模制件352的组件沿着驱动轴316的纵向运动沿着轨道342驱动刀片340。

为了完成刀片触发器组装,拉伸弹簧350例如借助钩2002、2004在刀片轴环模制件348与驱动臂2000之间伸展。

在使用中,用户往回朝向套管20拉动触发器24(如图25b至图25c所示),以使驱动臂2000围绕第一枢转点a枢转。在这样做时,第二枢转点b在远侧方向上向前推动,这导致驱动模制件346沿着驱动轴推动刀片轴环模制件348和刀片模制件352的组件。因此,施加在触发器24上的载荷经由触发器模制件344和驱动模制件346传递到刀片轴环模制件348和刀片模制件352。因为刀片340的近端被保持在刀片模制件352的内侧(如上所述),所以刀片340沿着中心轨道342与刀片轴环模制件348和刀片模制件352的组件一起滑动。因为刀片模制件352被旋转地隔离在刀片轴环模制件348内,驱动轴316也能旋转而不干涉切割机构的操作。

优化机构的功能性以在刀片340开始行进时(当用户的除了拇指以外的其它手指伸展且不那么强时),并且还在刀片340结束行进时(存在更多的力抵抗刀片340的行进,诸如弹簧350的力、轨道342内的摩擦以及穿刺厚的组织所需的力)提供良好的机械优点。如能从图27看到的,用户将恒定的力施加到触发器24。机构将该触发力转换为刀片340的较高的初始力,该初始力在沿着轨道342驱动刀片340时减小,并且在刀片340到达钳夹14时再次增加。因此,在枢转点b从其缩回位置移向其伸长位置(如图28a至图28b所示)时,使得β>90°,刀片轴环348和刀片模制件352沿着驱动轴316的驱动速度加速,从而增加刀片340的力。如此,机构能够用足够的力驱动刀片340以有效地切割夹紧在钳夹14之间的组织,用户无需将任何额外的力施加在触发器24上。

另外,切割机构可能需要围绕一组弯曲的钳夹14推动刀片340,增大抵抗刀片340行进的摩擦力。摩擦力是刀片340在轨道342内的摩擦系数与由于弯曲而使刀片340施加在轨道342的壁上的力的乘积。

为了减少该摩擦力,刀片远端的横向柔性可以是渐变的。这样的渐变柔性可例如通过优先弱化刀片340使之能够在保持切割力方向的刚性的同时沿着轨道342弯曲而实现。优先弱化可例如通过将一个或多个孔或槽缝354设置在远端中(如图47a所示)来提供。取决于所需要的柔性度,这样的孔可具有恒定或大小变化的形状。例如,在图47b中,设置了具有不同大小的两个连续的孔4702、4704,其中较大的孔4702提供比较小的孔4704更大的柔性度。作为另一示例,在图47c中,设置了大小和形状变化的三个孔4706、4708、4710,最大的孔4706位于最远侧以在该区域中提供更大柔性。优先弱化还可通过使刀片340的厚度渐变来实现,使得刀片340的远端是斜切的4700,如图47d所示。

替代地,远端中图案化的激光切割4702或化学蚀刻可用于控制刀片340的长度上的弯曲刚度,如图47e所示,由此这样的切割之间的间隔可以是恒定的或者从远端向近端逐渐增加。

优选地,刀片340被分为柔性变化的至少三个区域。例如,远侧区域、中间区域和近侧区域,其中远侧区域具有比中间区域更大的横向柔性,并且中间区域具有比近侧区域更大的柔性。例如,远侧区域可由给出最大柔性度的斜切端部4700形成,中间区域由提供相对较小量柔性的孔354形成,并且近侧区域由给出甚至更小柔性的实心杆形成,如图47a图示。在图47b所示的另一示例中,远侧区域包括给出最大柔性度的较大孔4702,中间区域包括提供减小柔性的较小孔4704,并且近侧区域再次是具有最低柔性度的实心杆。如此,远侧区域、中间区域和近侧区域可使用任何合适组合的上述优先弱化来实现。

减少由于弯曲轨道造成的摩擦力的另一种方式是将低摩擦涂层添加到刀片340的远端的至少一侧。例如,刀片可例如用低摩擦或不粘材料(诸如ptfe复合材料或其它低摩擦聚合物复合材料)使用物理气相沉积(pvd)或化学气相沉积(cvd)工艺进行涂覆。

5、排放孔

现在将描述涉及驱动轴316的结构的各种进一步特征及方面。如上所述,驱动轴316是具有“t”形横截面的细长杆,如图10a图示。驱动轴316包括沿着其长度适合容纳另一细长构件(诸如用在上述切割机构中的切割刀片340)的槽缝或轨道342。在使用中,导致切割刀片340沿着驱动轴316的长度滑动以在钳夹14之间驱动切割刀片340的远端,以便切割夹紧在其间的组织。

随着时间的推移,血液和组织开始在器械1的远端内积累,特别是顺着外轴12和驱动轴316的长度积累。血液和组织的这种积累能导致刀片340卡在驱动轴316内,从而减少器械1的功能性,特别是减少切割机构的功能性。为了克服这一点,驱动轴318的远端的部分被切除,以便减小驱动轴316与刀片340之间的接触面积,由此减小血液和组织能卡住的表面积。

这些切除部可以是诸如图10b至图10c中示出的细长窗口1000、1002之类的孔,使得驱动轴316的远端包括具有分叉侧壁的基部支撑件。切除部还可延伸到驱动轴316的基部,使得远端包括分叉侧壁和开放底部。为了最大化由这些孔1000、1002提供的排放量,孔优选地超过驱动轴316的深度的50%。

如此,这些孔1000、1002提供中心轨道342与驱动轴316的外部之间的排放通道。

6、旋转轮和开关

现在将描述涉及拇指轮(本文也被称为旋转轮)28的操作的各种进一步特征及方面。拇指轮28被设置为允许用户使安装有末端执行器组件14的外轴12旋转。然而,为了减少空间并因而生产出更紧凑的器械,还利用拇指轮28的内容积1300为内模制件314提供运动空间,以形成前述夹紧机构的一部分。利用这样的布置,能获得更紧凑的机构。

更详细地,旋转轮28(本文也被称为拇指轮)包括塑料嵌齿轮,该塑料嵌齿轮具有围绕其外径的多个扇形部336。如此,拇指轮28以人机工程学的方式采取嵌齿的外观,具有布置成接收用户拇指的扇形切除部。在这方面,如图13a、图13b特别是图14a更详细地示出的,扇形部在使用中倾斜于拇指轮的旋转平面,使得一般拇指轮或旋转轮28呈略微截头圆锥形状,在距用户的远端宽于朝向用户的近端。扇形部336各从拇指轮的远侧边缘延伸到近侧边缘,并且被弯曲或呈鞍状形状以在使用中时接收用户的拇指。如图14a详细地示出的,扇形部336为给出旋转轮28的截头圆锥形状的偏角大致匹配器械的主体的角度。在图14a中,点划线图示了扇形波纹336围绕轮28的边缘的偏角,这能看到在轮周围的点在远侧方向上与器械的外壁(特别是器械的紧靠轮前方的外壁)的角度相切。旋转轮的外缘的倾斜扇形波纹匹配器械的位于轮周围的壁的偏角的这种布置提供了舒适而符合人机工程学的设计,容易由外科医生操作。

就围绕轮28的外径的扇形部336的数目而言,如一个实施方式中示出的,八个扇形部围绕轮的外径均匀地分布。在其它实施方式中,可使用更少或更多数量的扇形部,例如少至六个或七个,或者多至九个或十个。如果采用较大的轮28,则可包括更大数量的扇形部336;而相反地,如果采用较小的轮,则各部分的数量可能较少。在这方面,每个扇形部336的实际大小通常应该保持相同,因为扇形部已采取人机工程学的方式进行选择以能够舒适地接收用户的拇指。

关于拇指轮28在器械内的定位,如图2所示,旋转或拇指轮28被定位成垂直地取向在开关26下方,并且在与例如由驱动轴316的纵向方向限定的纵向轴线正交的方向上与拇指轮间隔开。特别是,手动开关26直接放置在与这样的纵向轴线正交并且也穿过拇指轮28的轴线上。而且,如图14a和图14b所示,在拇指轮上方,开关26具有相对较大的大小,并且从器械的上表面的一侧延伸到另一侧。开关26本质上是弯曲的,总体匹配器械的外壁的弯曲上表面,并且在其外表面上具有凸起、凹槽或其它升高的突起,以帮助用户能够抓握开关以便能够用他或她的拇指挤压开关。开关26的表面积相对较大,超过3cm2或甚至5cm2。这提供较大的表面积,以允许用户采取人机工程学的方式激活它。开关26直接在拇指轮28上方的垂直取向还允许以人机工程学的方式激活。如别处解释的,使用中的开关26操作成导致rf凝固信号被馈送到末端执行器,以凝固位于其中的任何组织。

关于开关和拇指轮的人机工程学,图35a和图35b是具有不同大小的手的不同用户的两个相应图形。如演示的,具有相对较大表面积的开关26容易由具有不同大小的手的用户操作,同时操作夹紧手柄22(以及刀片触发器24,如果期望)。

返回图12,如前所述,拇指轮28具有内部空腔1300,在使用中将内模制件314接收在内部空腔1300内。如前所述,内模制件314包括内模制件腔室610并且在其中具有t形切割部1208,驱动轴316被接收穿过该t形切割部1208,并且紧固到其中,如前所述。内模制件314卡扣配合到轮28的内部空腔中,并且如图12以及图29a和图29b中示出的凸缘1206设置在拇指轮28的柱形内部空腔1300的外边缘周围,一旦内模制件314已插入其中就将内模制件314在空腔内保持到位。拇指轮28的内部空腔1300还设置有互锁构件1200,互锁构件1200与设置在内柱形模制件314的外周周围的对应互锁构件1202相互作用。相应互锁构件1200和1202包括相应升高的台阶部,当拇指轮28和内柱形模制件314相对于彼此正确地旋转对准时,该相应升高的台阶部围绕空腔1300的内表面周向地并排装配到一起。相应互锁构件1200和1202被设置为使得在使用中,内柱形模制件314可在轮28的内部空腔内从一侧滑动到另一侧,但不可在轮28内旋转。相反,相互作用的互锁构件1202和1200起作用,使得内模制件314在旋转时与旋转轮28一起旋转。以这种方式,由用户28施加到旋转轮28的任何旋转扭矩都被传递到内模制件314,然后传递到驱动轴316,以便使承载末端执行器的驱动轴旋转。图29a和图29b示出了插入到拇指轮28的内部空腔中的内模制件314,并且图示了内模制件314如何可在轮28的内空腔1300内轴向滑动。

图13a和图13b还更详细地示出了内模制件314如何能够在轮28的内空腔1300内移动。如上所述,驱动轴316穿过内模制件314中的t形孔1208,并且经由设置在驱动轴的端部上的卡扣配合的突出的捕获或闩锁构件602固定到其中。也就是说,闩锁或捕获构件602采取弹性金属翼片的形式,其能够穿过内模制件314内的t形孔1208,然后接收在内模制件的第二通道部分606中,形成允许弹簧翼片弹开的空腔,从而将驱动轴固定在内模制件内。然后,如上所述,内模制件314被推入拇指轮1208的内空腔中,并且由卡扣配合翼片1206保持到位。内模制件可在内空腔1300内轴向移动,以抵接轮28的远侧壁的内表面(如图13a所示),或者在相对的行进末端,以在轮的远侧边缘处抵接翼片1206。从而,内模制件314在拇指轮28的空腔内存在一定程度的轴向滑动运动,这是作为机构的一部分所需要的,用以控制由用户施加到包含在钳夹内的材料的力(如上所述)。

内模制件314在拇指轮28的内空腔内的卡扣配合性质极大地改进了装置的组装,并且使装置显著更容易,因而组装更便宜。同样,为了将拇指轮定位在套管内,如图33所示,拇指轮28的外远侧壁1310与内部支撑壁1320同心并对准,内部支撑壁1320被设置为从装置的套管突出的突起。这还允许容易而准确地将轮28组装并定位到套管内。

7、驱动轴的旋转控制

如上文解释的,在其上具有末端执行器14的轴12是可旋转的,以允许末端执行器移动到期望的旋转位置中切割并凝固组织。然而,为了与末端执行器的布线连接不会在过度的应变下距沿一个方向旋转的轴太远而使得布线被缠绕、扭曲或置于过度的应变下,需要用于控制轴12的旋转的机构,特别是用于限制旋转量,由此防止布线的过度应变。另外,提供轴12的旋转的正向控制会在使用中改善器械的人机工程学体验,并且增强用户对质量的感知。

为了提供一个实施方式中的轴的旋转控制,采用如图15a和图15b以及图16a至图16d所示的布置。参照图15,在此具有扇形部36的拇指轮28设置在其近侧表面(即,面对用户的后表面)上,具有从与轮28的轴线同心布置的近侧表面略微突出的环1506。环1506在使用中搁置于突出以与环1506的外周接触的引导止动特征1502和1504(这些引导止动特征是外套管的内表面上的突起)上。由于它们相对于环的轴线在套管上的定位,止动特征1502小于止动特征1504,但止动特征1502和1504两者分别具有倾斜的上引导面1510和1512(参见图15a),上引导面1510和1512与环1506的形成一部分拇指轮的外周表面接触,并且有助于在其旋转时支撑并引导拇指轮。

另外,为了提供引导功能,止动特征1502和1504还用作止动构件以防止拇指轮旋转越过止动特征的角位置。在这方面,环1506设置有从中沿径向延伸的矩形止动突起1500。随着拇指轮28的旋转,止动突起1500抵接止动特征1502和1504的相应止动面1514和1516。当止动位置成角度地定位以与止动面抵接时,使止动面倾斜而平行于矩形止动突起1500。

如上所述布置的止动特征1502和1504被定位,并且具有这样的长度以提供轮28从止动特征1500到止动特征1502的已知旋转量。在图15a和图15b所示的当前描述布置中,止动特征1502和1504定位在套管上,其间有间隔,以允许拇指轮在停止与停止之间旋转270°。旋转量能通过增加或减小止动特征之间的距离而略微变化,止动特征对应地适应引导面和止动面的长度和角度以便仍分别基本上正常地与轮和止动特征汇合。例如,止动特征可定位并成形为提供轮在250°到300°之间的角旋转。

上文描述了施加到拇指轮(然后经由拇指轮施加到轴)的旋转控制。图16a至图16d示出了使用轴模制件320在轴的相对端部处施加到轴的另一旋转控制机构。在此,轴模制件320设置有从中突出的矩形止动构件1600。外套管的内表面进一步设置有相应模制的止动特征1602和1604,其示出为采取台阶特征的形式,在轴模制件320的相应角位置处提供向矩形止动构件1600呈现相应平行止动表面的相应止动表面。在示出的示例中,模制的止动特征定位在套管上并且向止动构件1600呈现相应止动表面以允许承载末端执行器的轴12在停止与停止之间旋转270°。在其它实施方式中,模制的止动特征1602和1604可定位成在模制件320的其它旋转角位置处向止动构件1600呈现止动表面,以提供更大或更小的旋转量,例如从180°到360°,或者更优选地从250°到300°,或者最优选地是270°。

设置在拇指轮28和轴模制件320中的相应旋转控制机构可彼此独立地设置,即,不需要在任何特定实施方式中提供两者,而是仅可提供一者或另一者以提供对轴的旋转控制。然而,就装置的操作和质量感知而言有利的是,旋转控制机构两者均被设置在相同的装置中,并且被对准成使得旋转控制机构两者在任一旋转方向上在相同的相应点提供旋转停止。这样的布置意味着轴的旋转在手柄部10的两端处独立停止,并且用户非常难以迫使轴进一步不期望地旋转超过由止动表示的允许极限。

图36和图37示出了替代旋转控制机构。图36再次图示了轴模制件320,但在此模制件设置有环3220,环3220上安装有从中径向突出的主矩形止动构件3202,并且安装有优选地在正交位置处围绕环基本上等角度地定位的辅助位置标记构件3204、3206和3208。辅助位置标记构件3204、3206和3208构成不足以大到抵接止动面3212和3214的小的升高突起。

止动面3212和3214设置为与外套管一体的模制件,并且在此定位成允许轴模制件320旋转180°。在这方面,止动构件320在旋转范围的末端处抵接止动面3212和3214,以防止轴模制件进一步旋转。因而,如图36的(a)至(c)所示,承载轴12的轴模制件320可旋转180°,以允许末端执行器按照期望地旋转定位。

还设置了弹性突起3216,其包括大致三角形横截面的塑料突起,该塑料突起从形成止动面3214的模制件向上突出,使得该塑料突起的末端接触环3220的外周表面。在轴模制件320旋转时,采取小升高突起的形式的辅助位置标记挤压弹性突起的末端,导致弹性突起的末端移出其静止位置以允许相应突起移过末端。该操作的效果是提供一些用户反馈,即,用户必须施加更多的力以使机构旋转经过升高突起接触弹性突起的末端的旋转位置,因为必须提供足够的力以导致弹性突起的末端偏转,从而允许突起移过末端。其结果是,用户感觉到增加使轴旋转经过升高突起的旋转位置所需的力,因而直观地向用户提供轴以及因而提供末端执行器的旋转位置的指示。这样的触觉反馈机构从而允许用户友好而容易地操作装置。

图37图示了用于图36的机构的对应拇指轮28。在此,拇指轮还设置有围绕拇指轮以90°间隔正交布置的相应较小的止动件3222。可设置从套管突出的与弹性突起3216类似的机构,以提供与轴模制件320的情况类似的触觉反馈。在这样的布置中,从手柄的两端提供关于轴的旋转位置的触觉反馈,因而改善了用户对装置的感知。

8、布线

现在将描述涉及手柄2内的布线的各种进一步特征及方面。如上所述,开关按钮26被设置为经由一些适当的电路(例如,小印刷电路板(pcb)338上的两个入口保护开关)激活以及停用用于操作末端执行器组件14中的电极的rf信号。如图17所示,pcb338连接到连接线1700以接收来自发生器(未示出)的rf输出,并且连接到电气布线1702、1704以将rf电流供给到钳夹14中的电极,例如,一根线材用于有源电极,一个线材用于返回电极。

在组装中,如图17图示的,来自电极的布线1702、1704在驱动轴316旁边顺着外轴12馈送并且向上馈送到轴模制件320。如图9b所示,轴模制件320是在远端处具有开口912以接收外轴12的柱形或筒形部件。外轴12例如通过与轴模制件320内的对应凹口902协作的卡扣配合翼片900附接至轴模制件320。因而,如果轴模制件320旋转,则外轴12与之一起旋转。轴模制件320进一步包括位于近端处的另一孔914,孔914具有“t”形以接收驱动轴316,其中驱动轴316穿过轴模制件320的内部空腔1802并且顺着外轴12的长度延伸。如此,驱动轴316能够在轴模制件320和外轴12内滑动,但驱动轴316的任何旋转运动都被传递到轴模制件320并且随后传递到外轴12。

如图18a所示,电极线材1702、1704在缠绕于轴模制件320的主体1804上和周围之前经由轴模制件320的壁中的开口1800馈送出内部空腔1802。线材1702、1704以这种方式缠绕于轴模制件320周围会将线材1702、1704保持在紧凑的布置中以防止线材1702、1704在组装器械1的其余部分时阻碍路径。此外,线材1702、1704缠绕于轴模制件320意味着在轴模制件320与驱动轴316一起旋转时,线材1702、1704利用所述旋转退绕以及再卷绕,而不会拉动线材1702、1704并导致其变短。具体地,如参照图15a至图15b以及图16a至图16d描述的,以这种特定方式缠绕线材1702、1704允许高达270°的旋转。

然后,电气布线1702、1704沿着套管20的顶部延伸。在这方面,蛤壳式模制件300之一设置有串联的用于容纳线材触头1904、1906的两个袋1900、1902,线材触头1904、1906将有源和返回线材1702、1704连接到入口保护开关338的布线1908、1910。因而,所有电气线材1702、1704、1908、1910都被布局在袋1900、1902中和周围,使得仅一个触头1904、1906被容纳在每个袋1900、1902中。线材的布局可通过围绕袋1900、1902的外侧引导一组线材1702、1910的引导部1912、1914、1916来帮助。在每个袋内,相应有源线材1702与线材1908纵向对准,并且返回线材1704与线材1910纵向对准。

结果,两个线材触头1904、1906沿纵向分离,使得仅一个触头能经过每个袋1900、1902,由此提供每个触头1904、1906与任何布线之间的物理屏障。这能防止因触头1904、1906自身导致的对任何布线的隔离损坏的风险。

线材1702、1704、1908、1708都经由袋的壁中的小开口1918、1920、1922、1924而进入其相应的袋1900、1902。优选地,孔1918、1920、1922、1924的尺寸使得仅一根电线能装配穿过。相对的蛤壳式模制件302还包括对应的肋特征(未示出)以将触头1904、1906保持在袋1900、1902内,从而形成基本上密封的壳体。这对最小化袋1900、1902的渗透率是重要的,这样会保护触头1904、1906,防止任何流体可顺着外轴12流入套管20而导致触头1904、1906短路。

9、末端执行器组件

现在将描述可供设备使用的示例末端执行器组件。待描述的示例仅为了完整性而给出,并且应该理解的是,末端执行器的其它设计也可供器械使用,规定所述设计能够由驱动轴316驱动即可。也就是说,本发明的实施方式并不限于本文描述的具体末端执行器,而是可使用末端执行器的其它设计。

图38至图44示出了示例器械,其中导电的止动构件配置在密封电极中的一者或两者上。参照图38,一般示出为3801的末端执行器包括上钳夹3802,上钳夹3802绕枢轴3804可枢转地连接到下钳夹3803。凸缘3805存在于上钳夹3802的近端处,而凸缘3806存在于下钳夹3803的近端处。凸缘3805和3806各具有供驱动销8从中延伸穿过的槽缝3807,使得驱动销3808(借助驱动机构(未示出))的近侧和远侧运动导致钳夹3802和3803在打开位置与闭合位置之间枢转。

金属垫片3809存在于上钳夹3802的向内表面上,而金属垫片3810存在于下钳夹3803的向内表面上。当钳夹3802和3803枢转到它们的闭合位置中时,金属垫片3809和3810彼此紧靠,以便抓取其间的组织(未示出)。

除了沿其长度延伸的纵向凹槽(图38中不可见),上垫片3809具有大致平坦表面。下垫片3810具有对应凹槽3811,垫片3809和3810中的凹槽适应切割刀片(未示出)的纵向运动。下垫片3810还设置有沿着垫片的长度配置并且位于凹槽3811的任一侧的多个金属止动构件3812。现在将参照图39和图40更详细地描述止动构件3812。

每个金属止动构件3812由止动元件3813的上部拱顶构成,止动元件3813被包封在绝缘构件3814中,使之封装止动元件以将止动元件与垫片3810的其余部分隔离。每个绝缘构件3814和止动元件3813定位在存在于垫片3810内的对应孔3815中,使得绝缘构件的上部形成围绕每个止动构件3812的绝缘环3816。

当钳夹3802和3803移向其闭合位置时(如图40所示),止动构件3812接触上垫片3809,维持上垫片和下垫片之间分离20μm到约350μm(0.00079英寸到约0.014英寸)之间。在使用中,在垫片3809和3810之间供给凝固的电外科电压,并且垫片的分离确保抓取在钳夹构件3802和3803之间组织的有效密封。同时,防止垫片之间的电短路,因为止动构件3812被电气隔离使得它们不会承载与垫片3810的其余部分相同的电位。金属止动构件3812是刚性的,允许垫片表面的一致分离,同时可以监测止动元件3813的电位,以便检测何时接触上垫片3809以给出闭合钳夹的指示。

图41至图43示出了金属止动构件3812直接安装在下垫片3810上的替代布置,而不必提供围绕止动构件的绝缘构件。在该布置中,绝缘构件3817设置在上垫片3809上,与每个止动构件成对应的关系。以这种方式,当钳夹3802和3803闭合时,绝缘构件3817确保上垫片3809与下垫片3810之间没有电短路。金属止动构件3812确保在施加电外科能量以便密封抓取在钳夹之间的组织期间维持钳夹构件的适当分离。

最终,图44示出了另一替代例,其中金属止动构件3812再次直接安装在下垫片3810上。在该布置中,金属砧座3818与每个止动构件相对,每个金属砧座3818均由绝缘构件3819围绕,以便将金属砧座3818与上垫片3809的其余部分隔离。当钳夹闭合时,金属与金属的接触发生在止动构件3812与金属砧座3818之间,将砧座隔离可以确保再次避免垫片3809和3810之间的电短路。再次,每个金属砧座的电位能被监测,以便检测它们何时采取下垫片的电位,指示钳夹的闭合。

10、电外科系统

现在参照图45,器械1在使用中旨在连接到在其中具有可控射频(rf)源(未示出)的电外科发生器4500,其当经由器械1的末端执行器的电极施加到组织时在使用中产生凝固或密封组织的rf凝固信号。电外科发生器4500包括控制输入开关4504和4502,以分别允许发生器开启和关闭,并且允许控制馈送到器械1的rf凝固信号的功率。在这些方面,电外科发生器4500是常规的。

器械1在使用中由控制和电源线4506连接到发生器4500,控制和电源线4506包含分离的电线以允许经由前述内部布线将rf信号馈送到器械1的末端执行器,并且还允许从器械1的开关26接收控制信号,以命令电外科发生器将rf凝固信号输出到器械1。在使用中,外科医生经由开闭开关4504激活发生器,并且选择使用按钮4502由内部rf源生成的凝固或密封信号强度。在用器械进行外科手术期间,当末端执行器需要密封或凝固rf信号时,外科医生控制发生器通过挤压器械上的开关26来产生这样的信号,生成的rf信号然后经由电线4506传递到末端执行器。也就是说,在使用中挤压开关26会导致rf凝固或密封信号被供给到包含在末端执行器内的适当电极。

11、总结

因此,鉴于所有上文内容,本发明的实施方式提供了一种先进的电外科钳器械,其允许用户容易且以人机工程学的方式单手操作,提供末端执行器的旋转柔性,控制由末端执行器施加到被抓取组织的力以防止施加过度的力,并且允许方便地机械切割被抓取组织,同时提供对组织的电外科凝固或密封。而且,所述器械被进一步设计为简单而低成本地构建,同时通过有效地利用相应内部激活机构内的可用空间提供了紧凑型器械。

为了提供额外实施方式,上述实施方式的各种其它修改(无论是通过添加、删除或替换)对技术人员而言将是显而易见的,任何和所有的额外实施方式旨在由所附权利要求所涵盖。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1