本发明涉及医用金属材料表面抗菌,尤其是涉及在医用金属表面制备纳米银抗菌涂层的方法。
背景技术:
医用金属材料,如钛金属或钛合金拥有优良的生物相容性,已广泛应用于生物医用材料领域。但在植入手术过程中难以避免细菌的感染。细菌感染在表面形成细菌生物膜层,具有很强的耐药性,往往导致植入手术失败[1]。因此,对钛金属或钛合金表面进行化学修饰,抑制微生物细菌感染,成为医用材料领域迫切需要解决的问题。
纳米银具有广谱的杀菌特性,不存在耐药性的困扰,可作为高效的抗菌涂层应用于钛金属或钛合金表面。通过阳极氧化的方法,在钛金属或钛合金表面形成一层二氧化钛纳米管,可实现纳米银在钛金属表面的可控负载,还有助于提高细胞在钛金属或钛合金表面的增殖分化能力[2]。
通过自聚合的方式,多巴胺单体分子形成聚多巴胺膜层,然后可以在几乎所有类型的有机和无机材料基底表面沉积。通过简单的溶液氧化方法,多巴胺单体分子在碱性条件下可在二氧化钛纳米管表面自聚合形成纳米级的聚多巴胺膜层,膜层中富含的儿茶酚基团,可与硝酸银溶液发生还原反应得到纳米银颗粒,在纳米管表面形成载银聚多巴胺膜层[3]。这是一种天然的绿色化学还原反应,反应过程简单,不需要其他复杂的仪器或者苛刻的反应条件,更适合用来二氧化钛纳米管载银。
传统方法在纳米管表面形成聚多巴胺膜层是将样品浸泡在多巴胺溶液中静置过夜(12h以上),聚多巴胺膜层形成速度十分缓慢,而且膜层形成后与硝酸银反应的时间依然十分漫长,纳米银产物粒径分布不均,难以实现规模化的生产应用[4]。
参考文献
[1]campoccia,d.;montanaro,l.;arciola,c.r.areviewofthebiomaterialstechnologiesforinfection-resistantsurfaces.biomaterials2013,34,8533-8554.
[2]mei,s.;wang,h.;wang,w.;tong,l.;pan,h.;ruan,c.;ma,q.;liu,m.;yang,h.;zhang,l.;cheng,y.;zhang,y.;zhao,l.;chu,p.k.antibacterialeffectsandbiocompatibilityoftitaniumsurfaceswithgradedsilverincorporationintitaniananotubes.biomaterials2014.
[3]li,m.;liu,q.;jia,z.j.;xu,x.c.;shi,y.y.;cheng,y.;zheng,y.f.polydopamine-inducednanocompositeag/capcoatingsonthesurfaceoftitaniananotubesforantibacterialandosteointegrationfunctions.j.mater.chem.b2015,3,8796-8805.
[4]jia,z.;xiu,p.;li,m.;xu,x.;shi,y.;cheng,y.;wei,s.;zheng,y.;xi,t.;cai,h.;liu,z.bioinspiredanchoringagnpsontomicro-nanoporoustio2orthopediccoatings:trap-killingofbacteria,surface-regulatedosteoblastfunctionsandhostresponses.biomaterials2016,75,203-222.
技术实现要素:
本发明的目的是提供一种可同时大幅度提升聚多巴胺在医用金属材料表面成膜速度和纳米银还原沉积速度,这种方法操作简单易行,对环境友好的绿色化学方法,便于应用于工业化生产,获得的产物纳米银颗粒分布均一,既具有良好的抗菌性能,又能表现出优良的生物相容性的在医用金属表面制备纳米银抗菌涂层的方法。
本发明的具体步骤如下:
1)对钛依次使用丙酮、乙醇和去离子水进行超声处理;
2)配制含氟电解液,然后对钛表面进行阳极氧化处理得到一层二氧化钛纳米管;
3)配制多巴胺溶液以及含锌多巴胺溶液,将含有二氧化钛纳米管膜层的钛浸泡于含锌的多巴胺溶液中进行水浴反应,即在二氧化钛纳米管表面形成聚多巴胺-锌涂层;
4)将含有聚多巴胺-锌涂层的二氧化钛纳米管样品浸入配制硝酸银溶液,即可获得在医用金属表面制备纳米银抗菌涂层。
在步骤1)中,所述钛包括钛金属或钛合金等。
在步骤2)中,所述含氟电解液包含氢氟酸或氟化铵溶液,在氢氟酸或氟化铵溶液中可以添加乙二醇或丙三醇。氢氟酸的摩尔浓度可为0.01~1mol/l,氟化铵溶液的摩尔浓度可为0.01~5mol/l;所述在阳极氧化的过程中,钛作为阳极,铂电极作为阴极,氧化电压可为1~50v,氧化时间可为10~100min,反应温度可以为0~30℃。
在步骤3)中,所述将多巴胺分子溶解于tris缓冲液中可以得到多巴胺溶液,多巴胺溶液的摩尔浓度可为0.1~5mg/mol;所述tris缓冲液的ph值可以为7~10;所述含锌多巴胺溶液包含硝酸锌或硫酸锌等,含锌多巴胺溶液的摩尔浓度可为0.01~10mol/l;所述水浴加热的温度可为50~100℃。反应时间可为0.1~24h。
在步骤4)中,所述硝酸银溶液的摩尔浓度可为0.01~1mol/l;样品与硝酸银溶液反应10min即可结束,反应温度可为0~30℃。
本发明的突出优点在于:
1)传统方法形成聚多巴胺膜层是通过将钛金属或钛合金浸泡于多巴胺溶液中,长时间静置得到。整个反应时间大于12h。本发明制备的聚多巴胺-锌复合涂层,通过水浴加热的方法,可以在2h内形成聚多巴胺膜层,极大地提高了聚多巴胺膜层在医用金属材料表面形成的速度。
2)聚多巴胺膜层中的儿茶酚基团可以还原硝酸银溶液得到纳米银颗粒。传统的聚多巴胺膜层与硝酸银溶液反应速度十分缓慢,而且产物纳米银颗粒粒径不均。还原反应速度以及产物纳米银颗粒形貌与还原剂的强弱有直接关系。本发明通过将聚多巴胺膜层中的儿茶酚基团与锌离子进行鳌合,极大的增强了膜层的还原能力,大幅提高了其与硝酸银溶液的反应速度,反应时间从传统的数h缩短至10min,反应产物纳米银颗粒分布均一。
3)本发明制备的聚多巴胺-锌-纳米银复合膜层与普通聚多巴胺-纳米银膜层相比,既具有良好抗菌性能,又能对细胞保持优良的生物相容性。
附图说明
图1为本发明在二氧化钛纳米管表面形成聚多巴胺-锌复合膜层的sem图片。
图2为本发明在二氧化钛纳米管表面获得聚多巴胺-锌-纳米银复合抗菌膜层的sem图片。
图3为本发明聚多巴胺-锌-纳米银复合膜层和聚多巴胺-纳米银复合膜层的抑菌环大小比较。
图4为在二氧化钛纳米管表面聚多巴胺-锌-纳米银复合膜层的抗菌性能图。
图5为在二氧化钛纳米管表面聚多巴胺-纳米银复合膜层的抗菌性能图。
图6为本发明空白钛箔、含有聚多巴胺膜层二氧化钛纳米管、含有聚多巴胺-锌-纳米银复合膜层二氧化钛纳米管和含有聚多巴胺-纳米银复合膜层的生物相容性评价,采用wst-1试剂盒进行比较,细胞为小鼠胚胎成骨细胞前体细胞(mc3t3-e1)。
具体实施方式
下面结合附图与具体实施方式对本发明进行进一步的阐述。
实施例中使用的试剂如无特别说明均为市面出售产品,所采用的实验操作如无特别说明均为本领域常见操作。
首先,用丙酮、乙醇和去离子水依次超声清洗钛箔(1cm2×1cm2),室温下干燥。
然后配制0.5%wt氢氟酸溶液作为电解液,将钛箔作为阳极,铂电极为阴极,进行阳极氧化实验。采用稳压电源作为电源输出,电压保持20v,氧化过程持续20min,在钛箔表面形成一层二氧化钛纳米管。
然后将多巴胺分子分散于ph=8.5的tris缓冲液中,得到浓度为2mg/ml的多巴胺溶液。在多巴胺溶液中加入0.1m的硝酸锌溶液,得到多巴胺-硝酸锌混合溶液。将含有二氧化钛纳米管的钛箔加入多巴胺-硝酸锌混合溶液,进行水浴加热2h,温度保持90℃,得到含有聚多巴胺-锌复合膜层的二氧化钛纳米管样品。
最后将含有聚多巴胺-锌复合膜层的样品加入硝酸银溶液,室温下10min即可反应完全,得到聚多巴胺-纳米银复合抗菌膜层。
从图1可以看出,通过阳极氧化的方法,在钛箔表面形成一层二氧化钛纳米管膜层。再进一步修饰聚多巴胺-锌膜层后,从图2可以看出并不会对纳米管的形貌发生重大的影响。二氧化钛纳米管的管径依旧可以维持在70~80nm左右。
从图3可看出,含有聚多巴胺-锌膜层的二氧化钛纳米管与硝酸银溶液发生反应后,管内出现了均匀分布的纳米银颗粒。纳米银的粒径大小在10~30nm区间。
测试了二氧化钛纳米管表面聚多巴胺-锌-纳米银复合膜层和聚多巴胺-纳米银复合膜层的抗菌性能。选取大肠杆菌。通过抑菌圈实验,可以比较两者之间的抗菌能力。从图4和图5可看出,在二氧化钛纳米管表面聚多巴胺-锌-纳米银复合膜层和聚多巴胺-纳米银复合膜层的抗菌性能,两者均出现了明显的抑菌圈。
测试了这种新型聚多巴胺-锌-纳米银复合膜层对细胞的生物相容性。并同时测试了不含锌的聚多巴胺膜层与硝酸银溶液反应得到的聚多巴胺-纳米银复合膜层的抗菌性能和对细胞的生物相容性。细胞采用小鼠胚胎成骨细胞前体细胞(mc3t3-e1)。评价实验采用wst-1试剂,通过比较不同样品的吸光度可评价相应的细胞相容性。参照选取了空白钛箔以及二氧化钛纳米管表面聚多巴胺膜层。实验天数选取了第一天、第四天和第七天。从图6可看出,在第一天,含聚多巴胺二氧化钛纳米管、含聚多巴胺-锌-纳米银复合膜层的二氧化钛纳米管以及含聚多巴胺-纳米银复合膜层二氧化钛纳米管之间的吸光度相似。在第四天,差异性开始体现。到了第七天,可以清楚的看出,含聚多巴胺-锌-纳米银的二氧化钛纳米管的细胞相容性明显优于含聚多巴胺-纳米银的二氧化钛纳米管。说明二氧化钛纳米管表面组装聚多巴胺-锌-纳米银复合膜层不仅具有较强的抗菌特性,而且还保持优良的细胞相容性。