用于加速角膜矫正术的方法和装置的制作方法

文档序号:1077560阅读:390来源:国知局
专利名称:用于加速角膜矫正术的方法和装置的制作方法
技术领域
本发明的背景技术和概要本发明涉及角膜矫正术(orthokeratology),即对角膜进行整形以校正屈光误差,更具体地说,本发明是涉及一种整形角膜组织的快速方法,其中角膜被软化,利用模具整形角膜,并且之后角膜快速稳定,使之立即保持其新的形状。
全世界有成千上万人的眼睛有屈光误差,致使人们寻找矫正镜片和/或接触透镜。在这些屈光误差中,通常大部分是近视(不能看到远距离的物体)、远视(不能看到近距离的物体)以及散光(角膜不对称倾斜,致使在不同的平面上曲率不同)。上述每一种缺陷通常借助于矫正镜片或接触透镜进行矫正。通过利用一透镜在光线到达角膜之前改变光线的角度,矫正镜片可矫正屈光误差。接触透镜通过经计算所得的表示眼睛正视的曲率替换角膜的前弯畸形来矫正屈光误差。虽然矫正眼镜和接触透镜可暂时非常有效地矫正这些误差,即将镜片或接触透镜戴在适合位置,但是角膜的物理缺陷永远也不会得到矫正,从而需要终生配戴眼镜或接触透镜。因此,人们一直在寻找通过物理改变角膜的前弯而矫正屈光误差的有效方法,从而不再需要矫正透镜。
在许多针对眼睛屈光性的解决方法中,有一些是手术过程,即用手术方法改变角膜。这种方法虽然很有效,但现有的手术改进技术存在非常大的危险因素和缺点,包括人为误差、感染、治愈时间长以及在恢复期间要暂时失明等。更进一步地说,眼科手术的随意性引起患者心理上极度恐慌。在大多数情况下,对永久性损伤眼睛的冒险总是没有忍受戴眼镜或者接触透镜引起的不舒服更重要。鉴于这些很明显的原因,创伤性外科手术整形角膜不能作为一种纯粹自愿的治疗手段被完全接受。
已被接受的一种用于物理改变角膜前弯的无创伤技术是激光屈光角膜切除术,即采用激发物的激光有选择地剥去(切除)外层角膜,生成更接近球形的曲率。激光方法获得高度成功。但是,这种方法也有某些缺点,包括在治疗期间暂时降低了视敏度、视力恢复时间延长、疼痛、基质变得模糊、暂时远视、夜间眩光、发晕以及感染角膜炎。
人们对非外科技术的角膜矫正术知道的较少,该矫正术是本发明的基础,它涉及到一系列有序的接触透镜,这些镜将对角膜逐渐地进行整形,以产生更接近球形的前弯。该方法涉及3至6付接触透镜装置,一般需要大约3-6个月完成最佳整形。角膜矫正术基于的理论是角膜非常柔软,始终能够被物理整形。已知角膜的最厚层是基质,该基质由细小的胶原纤维交替层叠形成,该纤维形成柔软的组织基体。虽然胶原组织很柔软,但遗憾的是也能表现出形状记忆特点,因此除非天天戴着定形透镜以保持理想形状,否则角膜将快速退回至其原始形状。
角膜矫正术领域另外的研究发展是已研究出角膜矫正术的加速方法,其中使用了软化角膜的化学物质、酶和/或试剂。例如,Neefe的美国专利US3760807、US3776230和US3831604就共同描述了诸如丙美卡因盐酸盐、达克罗宁盐酸盐、氯等化学物质溶液的应用;通过被加热的模具向角膜提供热量;以超声能量的形式供应热量;以及应用蛋白水解酶软化角膜,以便整形。更进一步地说,Kelman和Devore的美国专利US4713446、US4851513、US4969912、US5201764以及US5492135也分别描述用于处理和/或软化眼科应用中的天然的和人工胶原材料的各种化学试剂。
在本发明主题的技术领域有各种可供应用的现有技术,Harris的美国专利US5270051和US5626865被认为是与所知道的本发明的技术主题最接近的现有技术。Harris的专利记载了一种加速角膜整形的方法,即把诸如hyalurodinase的酶释放到角膜中以暂时软化角膜,之后将精密的接触透镜装配到角膜上,该眼镜校正屈光误差的曲率。被软化的角膜随后把其曲率整形成与补偿正视眼的接触透镜的曲率一致。采用软化剂大大提高了整形过程的速度,整形时间从月减少到天。整形之后,定形透镜佩戴几天,同时使酶从角膜散失,角膜“硬化”,从而保持新的正视眼形状。
在研究中,虽然在角膜整形中能够使角膜组织的软化快速进行,但是在整形之后,把角膜组织快速稳定在新的形状下的成功方法非常少。在Harris的美国专利US5270051和US5626865中记载的方法只是使软化剂过段时间后散失,之后把透镜取下。在本申请文件中的“活性”角膜再稳定的现有技术仅有Neefe的美国专利US3760807,该专利记载了一种通过服用口服维他命C而在停止应用角膜软化剂之后快速硬化角膜的方法。但是,在本文中,快速硬化角膜意味着有可能把硬化的时间从周减少到天。
本发明提供了一种快速角膜矫正术的改进方法,该方法主要是在整形后把角膜组织快速重新稳定在其新的形状。该成功研制的重新稳定角膜组织的快速方法成为替代物理整形角膜的非外科治疗中的最终关键步骤。在本文所述的发明中,病人可以期望着作为门诊病人走进医生办公室,在几个小时内完成全部治疗,然后在角膜经彻底整形之后离开办公室,并且从此不再使用接触透镜或眼镜。
一般来说,本申请所述的改进方法包括三个步骤,即1)利用化学或酶软化剂软化或“去稳定”角膜;2)装配一模具,使角膜整形成具有理想的前弯;3)利用“稳定剂”快速稳定角膜组织,该稳定剂可有效地快速引发胶原基体的交联。本文所采用的术语“稳定剂”意图包括施加到角膜中的化学试剂以及外部能量,如光能。更具体地说,用于稳定角膜的设想的化学试剂包括化学交联剂、紫外线辐射、热辐射、可见光辐射以及微波辐射。目前稳定角膜的最佳方法包括在紫外光能下照射、与光敏剂和引发剂结合。本发明还包括应用于所述方法中的新型装置。
在优选方法中,一环形载物装置与角膜对齐,并用生物胶固定,以便将软化剂、模具和紫外光导引传输至角膜。载物装置最好包括一位于下缘的环形柔软衬垫,以防止引入载物装置的化学物质泄漏。诸如戊二酸酐的化学软化剂引入载物装置,软化角膜。已知戊二酸酐对胶原纤维间的交联起去稳定作用,并对角膜组织进行充分软化,从而能够利用最小外部压力进行整形。在用化学软化剂处理后,把特别设计的具有预定曲率和形状的模具插入载物装置。在一预定持续时间内(1--10分钟)对模具向下稍微施加压力,以对角膜整形。然后把模具保持在某一位置,同时把紫外光源设置在位于载物装置内部的模具的上方。模具最好由透明的且不吸收紫外光的材料制成,如透明丙烯酸。紫外光照射角膜一预定时间,紫外光使胶原纤维交联,并重新稳定角膜组织,使角膜快速保持其新的形状。该稳定步骤也可用于已做过长期角膜矫正术的患者,以便消除继续戴稳定器保持角膜形状的必要性。
因此,本发明的目的是提供一种角膜矫正术的快速方法,包括在整形后稳定角膜组织的手段;所提供的这种方法中,角膜用使角膜内的胶原纤维去隐定的软化剂进行软化;所提供的这种方法中,被软化的角膜随后利用具有预定曲率和形状的模具模制成形;所提供的这种方法中,通过提供紫外光来交联胶原纤维网络而稳定角膜;所提供的用于实现该方法的装置包括一载物装置,该装置用于限定角膜的治疗区域、防止用于处理的化学物质泄漏到特定区域之外;在所提供的这种载物装置中,载物装置引导模具的使用和照射到角膜的光能。
通过说明书并考虑到结合随同的说明性附图,本发明的其它目的、特征和优点将更加清晰。


附图表示目前所设想的用于实现本发明的最佳方式。
图1是按照本发明的教导,角膜处于治疗状态的纵向剖视图;图2是载物装置的透视图;图2A是沿图2中2A-2A线剖视的载物装置的纵向剖视图;图2B是其上包括衬垫的载物装置的第二实施例的纵向剖视图;图2C是载物装置的第三实施例纵向剖视图;图3是海绵组件的断面图;图4是本发明所述方法中使用的一模具的透视图;图5是图4中沿5-5线剖视的模具纵向剖视图;图6是在本发明所述的方法中使用的模具握持器的透视图;图6A是图6中沿6A-6A线剖视的纵向剖视图;图7是模具握持器和可连接到模具握持器上的手柄的透视图;图8A是一模具的另一构型的纵向剖视图;图8B是一底部示意图,表示各种圆周弯曲部的尺寸;图8C是仅具有单个中间圆周弯曲的类似模具的底部示意图;图8D是用于治疗远视和混合远视散光患者的纵向剖视图;图8E是另一模具构型的纵向剖视图;图9-14都是纵向剖视图,表示用于本发明所述的方法各个阶段;
图15是人眼角膜纵向剖视的显微照片;图16是表示基质的胶原层的放大的显微照片;图17是表示人眼角膜纵向剖视的概略图。
最佳实施例说明本发明提供一种用于加速角膜矫正术的改进方法。这种改进方法一般包括三个独立的步骤,即(1)软化角膜,使角膜从第一形状整形为第二正视眼的形状;(2)通过把一模具放置到角膜上对角膜进行再整形;以及(3)重新稳定角膜组织,使其保持一新的形状。
参照图15-17,角膜10由5层不同的组织构成,即上皮层、前弹性层、基质层、后弹性层、以及下皮层。在图15-17中可清晰地看出,角膜10最厚的一层是基质16。基质16由胶原组织交替叠层构成(总数大约为200-250),该叠层平面平行于角膜表面。参照图16,每一叠层由细小的胶原纤维和蛋白聚糖组成。交替叠层的胶原纤维相互之间形成一直角。每一叠层都穿过大约为2μm厚的整个角膜。在本文描述的方法中,软化、分解或者“去稳定”基质结构成分的化学试剂被局部引入角膜10。用语软化、分解和去稳定可因具体的目的而互换,它们都意图表示因角膜10变得更软、更柔顺而引起的角膜组织变化,从而使角膜可从其正常形状被很快地再整形为第二“正视眼”的形状。
化学和/或酶软化试剂为实现本发明的目的,很多种化学和/或酶软化试剂中的任何一种都可用于软化角膜组织。如前面背景技术部分所述,Neefe申请的美国专利US3760807、US3776230和US3831604共同描述了溶液中的诸如丙美卡因盐酸盐、达克罗宁盐酸盐、氯气等化学物质以及蛋白分解的酶的应用,它们都可以软化角膜,以便进行整形。同样如本文前面所述,Harris的美国专利描述了用于软化角膜组织的酶的应用,例如hyalurodinase。更进一步地,Kelman和Devore的美国专利US4713446、US4851513、US4969912、US5201764、US5354336和US5492135也分别描述各种用于处理和/或软化眼科用天然和人工胶原材料的化学试剂。这些专利文献有关化学去稳定剂的教导作为参考在此被引用。虽然被本文引用,但这些专利文献的教导并不意图限定去稳定剂类别的范围,而且也不限于本文引证的清单。
合适的但非限定的可能采用的酸酐实例包括适合的酐包括以下实施例,但并不局限于此二氯乙酸酐;二甘醇酸酐;氯代二氟乙酸酐;二氯乙酸酐;乙酸酐;二氯马来酸酐;马来酸酐;乙酸酐;三氯乙酸酐;氯乙酸酐;乙酸酐;琥珀-D4酸酐;氯乙酸酐;二甲基焦碳酸酯;(乙酸酐)-D6;碘乙酸酐;六氟戊二酸酐;三氟乙酸酐;琥珀酸酐;3-氯-戊二酸酐;溴代马来酸酐;琥珀酸酐;柠康酐;2,3-二甲基马来酸酐;二乙基焦碳酸酯;衣康酸酐;顺-1,2-环己二酸酐;3,4-吡啶二羧酸酐;戊二酸酐;S-乙酰基巯基琥珀酸酐;1-环戊烯-1,2-二羧酸酐;甲基琥珀酸酐;2-(乙酰基硫代)琥珀酸酐;1,3-环戊烷二羧酸酐;1,1-双-(2-羟乙基)-脲;2,2-二甲基琥珀酸酐;2,2-二甲基戊二酸酐;五氟丙酸酐;3-甲基戊二酸酐;3,3-二甲基戊二酸酐;(s)-(-)-2-(三氟乙酰氨基)琥珀酸酐;丙酸酐;四溴邻苯二甲酸酐;顺-乌头酸酐;丙酸酐;四氯邻苯二甲酸酐;6-氯羧氨基苯甲酸酐;羧氨基苯甲酸酐;七氟丁酸酐;5-硝基羧氨基苯甲酸酐;EXO-3,6-Eposy,1,2,3,6-四氢化邻苯二甲酸酐;4,5-二氯邻苯二甲酸酐;6-硝基羧氨基苯甲酸酐;顺-1,2,3,6-四氢化邻苯二甲酸酐;3,6-二氯邻苯二甲酸酐;邻苯二甲酸酐;3-环己烯-1,2-二羧酸酐;3-氯邻苯二甲酸酐;邻苯二甲酸酐;3,4,5,6-四氢化邻苯二甲酸酐;3-硝基邻苯二甲酸酐;3-羟基邻苯二甲酸酐;3,6-Endoxo六氢邻苯二甲酸酐;4-硝基邻苯二甲酸酐;1,2,3,4-环丁烷四羧酸二酐;(+)-二乙酰基-L-酒石酸酐;5-氯羧氨基苯甲酸酐;四氢呋喃-2,3,4,5-四羧酸二酐;顺-1,2-环己烷二羧酸酐;异丁酸酐;3-甲氧基邻苯二甲酸酐;巴豆酸酐;丁酸酐;2-溴-5-降冰片烯-2,3-二羧酸酐;(+/-)-反-1,2-环己烷二羧酸酐;1,4,5,6,7,7-六氯-5-降冰片烯-2,3-二羧酸酐;3-氨基-5-氯-N-甲基羧氨基苯甲酸酐;异丁烯酸酐;苯三酸酐氯化物;N-甲基羧氨基苯甲酸酐;(+/-)-异丁烯琥珀酸酐;1,2,4-苯三甲酸酐;顺-5-降冰片烯-Endo-2,3-二羧酸酐;1,2-环己烷二羧酸酐;1-甲基-6-硝基羧氨基苯甲酸酐;3,5-二乙酰基四氢吡喃-2,4,6-三酮;3-乙基-3-甲基戊二酸酐;高邻苯二甲酸酐;4-甲基-1,2,3,6-四氢邻苯二甲酸酐;丁酸酐;4-甲基邻苯二甲酸酐;5-甲基-3A,4,7,7A-四氢邻苯二甲酸酐;2-糠酸酐;3,6-二甲基-4-环己烯-1,2-二羧酸酐;降冰片烯-2,3-二羧酸酐;2-氰基乙酰基N-(4-氟苯基)氨基甲酸酯;Endo-3,6,二甲基-3,6-Endoxo六氢邻苯二甲酸酐;3,6-Encoso-3-甲基六氢邻苯二甲酸酐;2-氰基乙酰基N-苯基氨基甲酸酯;2-甲基-8-氧杂螺(4.5)癸烷-7,9-二酮;(+/-)-六氢-4-甲基邻苯二甲酸酐;3,6-二甲基邻苯二甲酸酐;8-甲基-2-氧杂螺(4.5)癸烷-1,3-二酮;3,3-四亚甲基戊二酸酐;二环(2.2.2)八-2,5-双烯-2,3-二羧酸酐;3-甲氧基-5-甲基六氢邻苯二甲酸酐;1,2,4,5-苯四甲酸二酐;Endo-双环(2.2.2)八-5-烯-2,3-二羧酸酐;三甲基乙酸酐;1,2,4,5-苯四甲酸二酐;甲基-5-降冰片烯-2,3-二羧酸酐;戊酸酐;2-氰基乙酰基N-(2,3-二氯苯基)氨基甲酸酯;乙二胺四乙酸二酐;(S)-(+)-2-甲基丁酸酐;2-苯基戊二酸酐;1,8-萘二甲酸酐;异戊酸酐;2-苄基琥珀酸酐;2,3-萘二甲酸酐;二叔丁基二碳酸酯;4,7-二氢-4,7A,7B-三甲基-4,7-环氧异苯并呋喃-1,3(7A,7B)-二酮;4-巯基-1,8-萘二甲酸酐;二叔丁基二碳酸酯;3-(叔丁基二甲基甲硅氧基)戊二酸;4-磺基-1,8-萘二甲酸酐;二叔丁基二碳酸酯;4-溴-1,8-萘二甲酸酐;4-氨基-1,8-萘二甲酸酐;2-氰基十六烷基N-(p-甲苯基)氨基甲酸酯;4-氯-1,8-萘二甲酸酐;2-苯二(甲)酰亚氨基琥珀酸酐;2-氰基乙酰基N-(4-甲氧基苯基)氨基甲酸酯;4-硝基-1,8-萘二甲酸酐;4-氨基-3,6-二磺基1,8-萘二甲酸酐;2-氰基十六烷基N-(3-甲氧基苯基)氨基甲酸酯;3-硝基-1,8-萘二甲酸酐;双环(2.2.2)辛-7-烯-2,3,5,6-四羧酸二酐;六氯六氢-1,4-亚甲基萘-6,7-二羧酸酐;联苯甲酸酐;2-(4-乙酰氧基苯基)琥珀酸酐;N-邻苯二甲酰-Dl-谷氨酸酐;4-甲基furo(3’,4’∶5,6)萘并(2,3-D)(1,3)间二氧杂环戊烯-1,3(1H,3H)-二酮;苯甲氧甲酰基-L-天冬氨酸酐;苯甲氧甲酰基-L-谷氨酸酐;5-溴-1,2,3,4-四氢-1,4-亚乙烯基萘-2,3-二羧酸酐;双环(4.2.2)十-7-烯-9,10-二羧酸酐;9-异丙基-3-氧杂螺(5.5)十一烷-2,4-二酮;5-硝基-1,2,3,4-四氢-1,4-亚乙烯基萘-2,3-二羧酸酐;3-((乙氧羰基)氧代羰基)-2,2,5,5-四甲基-3-吡咯啉-1-基氧,FR;1,4,5,8-萘四羧酸二酐;5-硝基-10-氧-1,2,3,4-四氢-1,4-桥亚乙基萘2,3二羧酸酐;2-(1-辛烯基)琥珀酸酐;双(2,6-二氯苯甲酸酐;苯甲酸酐;3-甲氧基-1,2,3,6-四氢-5-(三甲基甲硅氧基)邻苯二甲酸酐;4-溴苯甲酸酐;4-(2-羟乙基硫代)-1,8-萘二甲酸酐;己酸酐;3,5-苯甲酰基N-(2-氯苯基)氨基甲酸酯;和二乙三胺五乙酸二酐。
适合的酰氯包括以下实施例,但并不局限于此丙酰氯;异丁烯酰氯;烯丙酰氯;甲氧乙酰氯;异丁烯酰氯;甲基草酰氯;七氟丁酰氯;环丙烷碳酰氯;2,3二氯丙炔酰氯;4,4,4-三氟巴豆酰氯;3-溴丙炔酰氯;富马酰氯;乙酰氧基乙酰氯;(=/-)-2-溴丙炔酰氯;4,4,4-三氟丁酰氯;乙基草酰氯;2-氯丙炔酰氯;4-溴丁酰氯;3-氯丙炔酰氯;巴豆酰氯;4-氯丁酰氯;5-(氯羰基)尿嘧啶;乙基丙二酰氯;4-氯丁酰氯;2-噻吩羰酰氯;3-羰甲氧基丙炔酰氯;丁酰氯;2-糠酰氯;3,3-二氯新戊酰氯;异丁酰氯;衣康酰氯;2,2-双(氯甲基)丙炔酰氯;丁酰氯;丁酰二氯;5-溴戊酰氯;丁酰氯;3,3-二甲基丙烯酰氯;4-吗啉碳酰氯;环丁烷碳酰氯;5-氯戊酰氯;5-硝基-2-糠酰氯;乙基丙二酰氯;3-氯新戊酰氯;Trans-1,2-环丁烷二碳酰二氯;己酰氯;戊酰氯;己二酰氯;己酰氯;异戊酰氯;α,α-二甲基琥珀酰氯;叔丁基乙酰氯;三甲基乙酰氯;三甲基乙酰氯;环戊烷碳酰氯;2-乙基丁酰氯;3,4-二氯-2,5-噻吩二碳酰氯;乙基琥珀酰氯;苯甲酰-D5氯;烟酰氯盐酸化物;1-氯羰基-1-甲基乙基乙酸酯;五氟苯甲酰氯;异烟酰氯盐酸化物;甲基4-(氯甲酰)丁酸酯;五氯苯甲酰氯;2-噻吩乙酰氯;6-溴己酰氯;2,3,4,5-四氟苯甲酰氯;2,4-二氟苯甲酰氯;2,6-二氯苯甲酰氯;2,3,6-三氟苯甲酰氯;3,4-二氟苯甲酰氯;3,4-二氯苯甲酰氯;2,3,4-三氟苯甲酰氯;3,5-二氟苯甲酰氯;3-溴苯甲酰氯;3,4,5-Trido苯甲酰氯;2,3-二氟苯甲酰氯;2-溴苯甲酰氯;2,4-二氯-5-氟苯甲酰氯;3,5-二硝基苯甲酰氯;4-溴苯甲酰氯;2,4,6-三氯苯甲酰氯;2,6-吡啶二碳酰二氯;4-氟苯甲酰氯;2,6-二氟苯甲酰氯;2,4-二氯苯甲酰氯;2-氟苯甲酰氯;2,5-二氟苯甲酰氯;3,4-二氯苯甲酰氯;3-氟苯甲酰氯;2-硝基苯甲酰氯;苯甲酰氯;4-氟苯甲酰-碳酰-13C氯;2-氯苯甲酰氯;(s)-(-)-(三氟乙酰基)脯氨酰氯;01.M二氯甲烷溶液;3-(氟磺酰)苯甲酰氯;4-氯苯甲酰氯;3-(2-呋喃基)丙氨酰氯盐酸化物;4-(氟磺酰)苯甲酰氯;3-氯苯甲酰氯;二乙基丙二酰二氯;2-碘苯甲酰氯;苯甲酰氯;3-甲基己二酰氯;4-碘苯甲酰氯;苯甲酰氯;庚二酰氯;4-硝基苯甲酰氯;苯甲酰-碳酰-13C氯;环己烷碳酰氯;3-硝基苯甲酰氯;苯甲酰氯;4-甲基-4-硝基己酰氨;4-氰基苯甲酰氯;(+/-)-2-氯-2-苯基乙酰氯;庚酰氯;3-氰基苯甲酰氯;4-氯苯氧基乙酰氯;全氟辛酰氯;对苯二酰氯;对-甲苯酰氯;2,3,5,6-四氯对苯二酰氯;异邻苯二甲酰二氯;邻甲苯酰氯;五氟苯基乙酰氯;邻苯二甲酰二氯;间-甲苯酰氯;4-(三氟甲基)苯甲酰氯;1,4-亚苯基双(氯甲酸酯);苯基乙酰氯;2-(三氟甲基)苯甲酰氯;4-(三氯甲氧基)苯甲酰氯;苯氧基乙酰氯;3-(三氟甲基)苯甲酰氯;2-(2,4,5-三氯苯氧基)乙酰氯;和M-茴香酰氯。
适合的磺酰氯包括以下实施例,但并不局限于此;4-氯苯磺酰氯;4-氯-3-(氯磺酰基)-5-硝基苯甲酸;3-氟磺酰苯磺酰氯;4-氯苯磺酰氯;3-(氟磺酰)苯甲酰氯;4-氟磺酰苯磺酰氯;4-氨基-6-氯-1,3-苯二磺酰氯;4-(氟磺酰)苯甲酰氯;O-氟磺酰苯磺酰氯;3-氨基-4-氯苯磺酰氯;2-氯-5-(氟磺酰)-苯甲酸;对碘苯磺酰氯;苯磺酰氯;4-(氯磺酰)苯基异氰酸酯;4-硝基苯磺酰氯;苯磺酰氯;3,5-二硝基-p-甲苯磺酰氯;3-硝基苯磺酰氯;2-乙酰氨基-4-甲基-5-噻唑磺酰氯;4-(氯磺酰)苯甲酸;2-硝基苯磺酰氯;2-硝基-4-(三氟甲基)苯磺酰氯;3-(氯磺酰)-苯甲酸;甲基2-(氯磺酰)苯甲酸酯;8-喹啉磺酰氯;α-甲苯磺酰氯;3-(氯磺酰)-p-大茴香酸;4-(2,2-二氯环丙基)-苯磺酰氯;p-甲苯磺酰氯;N-乙酰基磺胺酰氯;2,4-三甲基苯二磺酰氯;O-甲苯磺酰氯;2,5-二甲氧基-4-硝基苯磺酰氯;2-三甲基苯磺酰氯;p-甲苯磺酰氯;4-二甲基氨基-3-硝基苯磺酰氯;6-偶氮-5,6-二氢-5-氧-1-萘磺酰氯;4-甲氧基苯磺酰氯;2,5-二甲基苯磺酰氯;2,6-萘二磺酰氯;3,5-二羧基苯磺酰氯;2,5-二甲氧基苯磺酰氯;2-萘磺酰氯;β-苯乙烯磺酰氯;5-甲基磺酰-邻-甲苯磺酰氯;1-萘磺酰氯;2,8-二苯并呋喃二磺酰氯;4-(二甲基氨基)偶氮苯-4-磺酰氯;4-叔丁基苯磺酰氯;4-(4-氯-5,7-二溴-2-喹啉基)-苯磺酰氟化物;4-仲丁基苯磺酰氯;4,4’-二苯基二磺酰氯;4-(4-氯-6-硝基-2-喹啉基)-苯磺酰氟化物;(+)-10-莰佛磺酰氯;4,4’-氧双(苯磺酰氯);4-氯-6-氟磺酰基-2-(4-硝基苯基)喹啉;(-)-10-莰佛磺酰氯;4-(苯基偶氮)苯磺酰氯;4-氯-2-苯基喹啉-4’,6-二磺酰氟化物;(+/-)-10-莰佛磺酰氯;丹酰氯;4-氯-2-苯基-6-喹啉磺酰氟化物;1-氯-4-氟磺酰基-2-萘酰氯;4,4’-亚甲基双(苯磺酰氯);2,4,6-三异丙基苯磺酰氯;五甲基苯磺酰氯;2-(氯磺酰)蒽醌;4-氯-2-M-甲苯基-6-喹啉磺酰氟化物;4-氯-6-氟磺酰基-2-(4-乙氧基-3-甲氧基苯基)喹啉;5-(氯磺酰)-2-(十六烷氧基)苯甲酸;4-氯-2-(-甲苯基)-6-喹啉磺酰氟化物;5,7,7-三甲基-2-(1,3,3-三甲基丁基)-1-辛烷磺酰氯;3-氯磺酰基-4-十六烷氧基苯甲酸;5-苯甲酸基-1-(3-氯磺酰苯基)-3-甲基吡唑;4-氯-2(4-(N,N-二乙基氨基磺酰基)-苯基)-6-喹啉磺酰氟化物;5-(氯磺酰基)-2-(十六烷基磺酰基)苯甲酸;1-十六烷磺酰氯;2-(4-苄氧基苯基)-4-氯-6-喹啉磺酰氟化物;甲基3-氯磺酰基-4-(十六烷氧基)苯甲酸酯;3-(4-氯苯基氨基甲酰基)-4-羟基-1-萘磺酰氟化物;4-(十六烷氧基)苯磺酰氯;3-硝基-4-(十八烷基氨基)苯磺酰氯;甲基4-(4-氯-6-氟磺酰基-2-喹啉基)苯甲酸酯;4-(2,5-二氯苯偶氮基)-4-氟磺酰基-1-羟基-2-苯甲酰苯胺;4-(4-氯-5,7-二甲基-2-喹啉基)-苯磺酰氟化物;5-氟磺酰基-2-(十六烷氧基)苯甲酰氯;乙基4-氯-2-(4-氟磺酰基苯基)-6-喹啉羧酸酯;5-氯磺酰基-2-(十六烷基磺酰基)苯甲酰氯;草酰氯;乙酰基-2-13C氯化物;氯羰基亚磺酰氯;三氯乙酰氯;乙酰基-1-13C氯化物;甲烷磺酰氯;二氯乙酰氯;乙酰基-13C2氯化物;乙酰基-D3氯化物;溴乙酰氯;乙酰氯;三氟乙酰氯;氯乙酰氯;三氯丙烯酰氯;草酰氯;氯磺酰基乙酰氯;五氯丙酰氯;草酰氯;乙酰氯;丙二酰氯;草酰氯;乙酰氯;和2,3-二溴丙酰氯。
适合的磺酸包括以下实施例,但并不局限于此4,6-二氨基-2-甲基硫代嘧啶-5-磺酸;4-吡啶基羟基甲烷磺酸;磺基乙酸,吡啶混合物;3,3-Oxetane双(甲烷磺酸)二钠盐;2,5-二甲基-3-噻吩磺酸钠;2-嘧啶磺酸钠;1-氟吡啶嗡Triflate;Mes一水合物;2-噻吩磺酸钠;3-磺基异烟酸钡盐;3-磺基苯甲酸;(+/-)-1-羟基-2,5-二氧-3-吡咯烷磺酸一钠盐;(1-甲基吡啶嗡3-磺酸盐);6-乙酰氨基-3-吡啶磺酸;5-甲酰-2-呋喃磺酸;5-甲基-3-吡啶磺酸;4-吡啶乙烷磺酸;3-吡啶磺酸;2-吡啶基羟基甲烷磺酸;2-吡啶乙烷磺酸;3-吡啶磺酸钠;3-吡啶基羟基甲烷磺酸;2-(磺基甲基)-酰肼异烟酸钙二水合物;Hepes;1-(2,5-二氯-4-磺基苯基)-5-吡唑啉酮-3-羧酸;Mops(4-吗啉丙烷磺酸);Hepes钠盐;5-氧-1-(4-磺基苯基)-2-吡唑啉-3-羧酸;Mops(4-吗啉丙烷磺酸)钠盐一水合物;Pipes(1,4-哌嗪双-(乙烷磺酸));5-氧-1-(4-磺基苯基)-2-吡唑啉-3-羧酸铅;Mopso,(β-羟基-4-吗啉-丙烷磺酸);Pipes,二钠盐一水合物;4-氯-3-(3-甲基-5-氧-2-吡唑啉-1-基)-苯磺酸;1-烯丙基吡啶嗡3-磺酸盐;N(4-氨基-S-三嗪-2-基)-磺胺酸;4-(3-甲基-5-氧-2-吡唑啉-1-基)苯磺酸;1-(3-磺基丙基)吡啶嗡氢氧化物;乙基2-磺基苯甲酸钠;3-(5-亚氨基-3-甲基-2-吡唑啉-1-基)苯磺酸;2-吡啶乙醛肟甲基甲烷-磺酸盐;2-甲基-1-(3-磺基丙基)吡啶嗡氢氧化物,内盐;吡啶嗡3-硝基苯磺酸盐;1-哌啶丙烷磺酸;Epps(4-(2-羟乙基)-1-哌嗪-丙烷磺酸);2-乙基-5-苯基异恶唑嗡3’-磺酸盐;1-乙基-2-甲基-3-(3-磺基丙基)苯并咪唑;酸性橙74;2-乙基-5-苯基异恶唑嗡4’-磺酸盐一水合物;4-(5-羟基-1-苯基-1,2,3-三唑-4-基ozo)苯磺酸钠;酒石黄;吡啶嗡p-甲苯磺酸盐;1,4-二甲基吡啶嗡p-甲苯磺酸盐;酸性黄34;甲烷磺酸(4-氨基苯基-磺基丙基Thizdiasol-2-In-5-基亚基)酰肼;4-羟基-2-苯基-6-喹啉磺酸;媒染红19;4,5-二羟基-3-(2-噻唑基偶氮)-2,7-萘二磺酸钠;3-甲氧基羰基-1-甲基吡啶嗡对-甲苯磺酸盐;1-苯基-3-(3-磺基苯甲酰氨基)-2-吡唑啉-5-酮钡盐;N-(4-氯亚苄基氨基)-磺胺酸吡啶嗡盐;3-(2-吡啶基)-5,6-双(5-磺基-2-呋喃基)-1,2,4-三嗪Dina盐/3H20;黄嗪染料L;2-氟-1-甲基吡啶嗡p-甲苯-磺酸盐;酸性红183;5-十三烷基-1,2-Oxathiolane-2,2-二氧化物;N-安替比林基-N-甲基氨基甲烷磺酸钠一水合物;酸性黄17;4-((4-氯亚苄基)-3-甲基-1-(4-磺基苯基)-2-吡唑啉-5-酮;Reatcie Blue 4;CibacronBrilliant Yellow 3GP;2-(3-磺基苯甲酰基)吡啶2-吡啶基腙二水合物;酸性黄40;2-5,6-Bix-4-磺基苯基-1,2,4-三嗪-3-基-4-磺基苯基吡啶/3NA/Ind.Grad.;4-(1-苄基-5-氧-2-吡唑啉-3-基氨基甲酰基)苯磺酸钡盐;(双)(氰基乙基)氨基亚苄基)-氧-磺基苯基-吡唑啉-羧酸,NA;1,1’亚乙基二吡啶嗡二-p-甲苯磺酸盐;2,6-二氨基-3-(4-(2-二乙基氨基乙氧基)-苯基偶氮)吡啶甲烷磺酸盐;酸性黄76;部花青540;宫殿坚牢黄Bln;酸性黄25;1-十六烷磺酸(氟苯基)(磺基丙基)噻二唑-2-基亚基)酰肼;3-(2-吡啶基)-5,6-二苯基-1,2,4-三嗪-p,p’-二磺酸,1-NA XH20;2-十六烷基硫代-5-磺基苯甲酸,吡啶盐;Reative Blue2;5-苯基-3-(4-苯基-2-吡啶基)-1,2,4-三嗪-p,p’二磺酸,2NA盐;反-4-(4-二丁基氨基)苯乙烯基)-1-(3-磺基丙基)焦Oh/内盐H20;1-十八烷基吡啶嗡p-甲苯磺酸盐;酸性黄29;4-(5-氧-3-十五烷基-2-吡唑啉-1-基)苯磺酸钠;直接橙31;交联葡聚糖-Sp-C-50,离子交换树脂;4-(4-(2-十六烷氧基苯基)-5-氧-2-吡唑啉-1-基)苯磺酸钠;酸性黄42;羧基-十六烷氧基苯磺酸甲基-磺基苯基-噻二唑啉基denehydraz;2,4-双(5,6(4-磺基苯基)-1,2,4-三嗪-3-基)吡啶4NA盐H20;酸性橙63;Reative Blue 15;交联葡聚糖-Sp-C-25,离子交换树脂;8-喹啉磺酸;8-乙氧基-5-喹啉磺酸钠水合物;2-巯基苯并噻唑-5-磺酸钠;8-羟基喹啉-5-磺酸一水合物;8-乙氧基-5-喹啉磺酸;苯并噻唑-2,5-二磺酸;N-(甲基磺酰氧基)-苯邻二甲酰亚胺;6-甲氧基-3-(3-磺基丙基)-3H-苯并噻唑啉-2-酮腙;2-苯并呋喃磺酸;1,3-二氧-2-异吲哚乙烷磺酸钾;4-磺基-1,8-萘二甲酸酐,钾盐,Tech.;2-甲硫基-5-苯并噻唑磺酸;吲哚-3-乙醛二亚硫酸钠加成化合物;8-溴-2-二苯并呋喃磺酸钠;2-甲硫基苯并咪唑磺酸;甲基3-甲基-2-甲硫基-6-硝基-5-磺基苯并噻唑嗡磺酸盐;8-(氯汞基)-2-二苯并呋喃磺酸钠;2-(3-甲基-2-苯并噻唑啉亚基)-1-肼磺酸;8=磺基-2,4-喹啉二羧酸;8-硝基-2-二苯并呋喃磺酸;8-羟基-7-碘-5-喹啉磺酸;6-Norharman磺酸;4-氨基-3,6-二磺基-1,8-萘二甲酸酐二钾盐;哈尔满-N-磺酸;靛蓝胭脂红,已检定;4-二苯并呋喃磺酸钠一水合物;4-(2-苯并咪唑基)-苯磺酸;靛蓝三磺酸钾;2-二苯并呋喃磺酸;Lucifer Yellow CH,二钾盐;靛蓝四磺酸钾;2-二苯并呋喃磺酸钠;Lucifer Yellow CH;7-苯胺基-1-萘酚-3-磺酸;2,8-二苯并呋喃二亚磺酸二钠盐;哈尔满-N-磺酸钠;2,3-二甲基-6-硝基苯并噻唑嗡对甲苯磺酸酯;4,6-二苯并呋喃二磺酸;3-(3-磺基氧代丙基)-2,5,6-三甲基苯并噻唑嗡氢氧化物,内盐;3-甲基-2-(甲硫基)苯并噻唑嗡p-甲苯磺酸盐;2,8,二苯并呋喃二磺酸二钠盐;1-乙基-2-甲基-3-(3-磺基氧代丙基)-苯并咪唑嗡氢氧化物,内盐;甲烷磺酸(1-甲基-2-苯基-6-磺基-4(1H)-喹啉亚基)酰肼;2-磺基噻蒽-5,5,10,10-四氧化物钠盐;4-(4-喹啉基偶氮)苯磺酸;和乙基2-(甲硫基)苯并噻唑p-甲苯磺酸酯。上述所有化学品都是购自Aldrich Chemical Company(Milwaukee,WI)。
在上述这些物质中,优选使用酐软化角膜方法,即戊二酸酐,琥珀酸酐或马来酸酐,因为这些酸酐可以水解成无害的化合物。
把化学试剂应用于角膜的装置由于理想的情况是限制化学物质仅作用在眼睛的角膜组织10上,因此,研制了一般用12表示的载物装置,以限制局部施加到角膜的液态治疗液的扩散。参照图2、2A和2B,载物装置12最好是具有上端14和下端16的圆柱形状,而且最好由塑料材料注模制成。但是,载物装置12也可由金属或者玻璃纤维或者其它任何适当的材料制成。载物装置12在上端14和下端16测量的厚度最好是1.5至2.0英寸,而下端16的外径在10至15毫米之间。
正如本技术领域的人员注意到的那样,下端的外径大致上与角膜10的缘区17的直径相对应,该外缘区17支撑使用中的载物装置12。载物装置12侧壁厚度优选为0.5至2.0毫米。理想的是将载物装置12直接放置在缘区上,以防止药液泄漏到角膜治疗表面之外(参见图9)。该载物装置最好还包括一容纳在载物装置12下端16圆周的环形弹性衬垫20(参见图2B)。弹性衬垫20可由多种无孔弹性材料制成,例如合成橡胶、天然橡胶、无孔泡沫、闭孔海绵等等。衬垫20向下的端面部22与角膜10的缘区17的表面接触,在定位后与角膜10的表面形成一环形的密封。可设想载物装置12下端16的下缘24向内稍微变细,以便更好地与角膜10的倾斜表面22相配合。同样地,衬垫20向内的表面22也可以向内变细,以便更好地适应角膜的表面。
载物装置12在整形期间用于把药物输送到角膜10,也可用于引导和定位模具。本方法所使用的药物和药液都被引入已放置在角膜10上载物装置12的内部,在衬垫20与角膜表面的接口部把从装置12内部泄漏的药液密封住。为了把载物装置12牢固地定位在角膜10上,并且为了防止在角膜上转动,可把生物密封剂或胶水涂在衬垫20向内的端面部22上,从而把衬垫20粘合到角膜10的缘区17。在本文中,可使用任何当前所公知的生物密封剂和胶水。一旦定位住载物装置12,衬垫20就形成一密封,并可防止引入载物装置中心的药液的泄漏。在这种方式中,只是把药液和药物施加在要被整形的角膜的中心部位。
尽管载物装置12的最佳实施例是圆柱形,也可以设计成一备选载物装置12A在上端14具有较大直径,该上端14的外径的范围为15至35毫米(参见图2C)。
载物装置12也可以设计成具有外部标记26(参见图2),从而可进行适当转动,根据肉眼校正载物装置12,也可以进行适当转动,校正载物装置内的模具,以便校正散光误差。
从载物装置中清除溶液由于载物装置12要有效地在其内部保存所有的药液,因此有必要在此过程中有选择地清除溶液。例如,有必要利用各种缓冲溶液清洗角膜,并在治疗过程中在不同的时间施加不同的药液。为了达到这一目的,本申请研制了一种简单的、一般表示为28的海绵吸收装置(参见图3),该装置包括一平面圆盘30,该圆盘具有从其上侧向外伸出的一手柄部分。该圆盘30的外径应使该圆盘插入载物装置12的内部。一吸收海绵材料34固定在圆盘30的下侧,使海绵材料34与角膜10的表面接触,从而吸收载物装置12内的任何溶液(参见图10)。
整形在角膜用化学软化剂处理之后,将一般表示为36的有一定弯曲和形状的模具插入载物装置12(参见图4-5,以及11-12)。参见图4-5,模具36最好呈圆柱形,该圆柱形具有一般表示为38的模制的表面和一相对的后表面40,其中模制表面接触到角膜10的前表面。模具36可由多种材料中的一种制成,包括金属、玻璃、塑料、石晶或者环氧材料。至于优选的制作材料,正如下面实例1描述的那样,由于在整形后对角膜10再定形的优选方法是暴露于紫外光下,因此模具36优选由可透过紫外光的塑料制成,比如聚甲基丙烯酸甲脂。这种塑料材料可首先被模制成一般的模具形,然后用车床把模制表面38切割成预定的形状。
模制表面38设置成一预定几何形状,在与角膜10的表面接触时,这种形状能意图把角膜整形成正视眼的形状。下面将要讨论模制表面38各部分的具体几何弯曲。模制表面38利用各种公知的用于制成光学透镜的方法中的一种制成,比如根据模具36的制作材料采用板条切割、模制或者碾磨的方法。
模具36的后表面49最好设有一键孔42,使模具36能够在角膜10的表面有取向地正确地转动。模具36的转动可通过一一般表示为44的握持器实现,在该工具44的端部设有一辅助的棘爪46(参见图6和6A)。更具体地说,握持器44设有一中空的圆柱本体部48,该圆柱本体将要插入载物装置,以便与位于其内的模具36接触。棘爪46位于本体部的尾端。在本体部48的近端设有一直径加大的手指抓持器50,该抓持器具有带有沟槽的外表面52,能够被外科医生很容易地握住转动。手指抓持器也是中空的,设有使握持器44通过的连续的开孔。参照图7,所示的握持器44与用于通过模具36提供光线的导光筒54端部相连。导光筒54一端设有一直径减小的部分56,该部分插入握持器44的手指抓持器50的端部开孔。导光筒54借助于一副螺钉58与握持器44保持组装联接,该螺钉58穿过手指抓持器50延伸,并与导光筒54减小的端部56接触。
模具36在载物装置12内定位后,给模具36施加一预定时间段(1至10分钟)的向下的压力,对软化的角膜10整形。最好通过向下压与模具36接触的握持器44施加压力(参见图12)。
模具的形状可采用各种类型的模具形状治疗眼睛的不同屈光误差。下文中,本申请将要讨论在发明主题过程中所采用的各种形状的模具。
A.残余散光(内部散光)内部散光是眼睛光学系统内部的散光,而不是在角膜表面测量的散光。患有内部散光的患者需要使用曲面的中心弯曲的模具。如果所给介质中,眼镜的折射散光等于角膜的散光,则内部散光为零。这就是说,所有的眼睛散光是由角膜的曲面产生的。利用本主题发明所述的模具使角膜成为球形,可产生零折射散光。
如果折射散光的程度不同,但是与角膜曲面的方向相同,该差别就是内部散光。这种情况有两种。一种情况是角膜散光大于折射散光,采用具有双曲面(bitoric)的模具,使其较陡的曲线与较陡的角膜经线对齐,该综合光学结果是得到具有曲面角膜的正视眼(角膜散光的光轴与在先公开(pre-post)的方法相同)。另一种情况是角膜的散光程度比沿同一经线的折射散光程度较低。治疗这种症状的模具有双曲面中心弯曲。散光模具的轴线从折射散光轴线校正90度(90)。模具的曲面曲率等于折射率与角膜散光率之差。该综合光学结果是得到具有曲面角膜的正视眼。
实例A--以90度角膜K’s 44/46(corneal k’s44/46 at 90)(角膜散光屈光度s)--眼镜折射-300=-100×180(折射散光屈光度1)--模具曲面-100×180
实例B--以90度角膜K’s 44/45(角膜散光屈光度1)--眼镜折射-300=-200×180(折射散光屈光度2)--模具曲面-100×90可视光学对本领域的技术人员来说是很基本的。由该公式定义的综合内部散光将要利用曲面模具校正,该模具具有带有残余近视散光轴线的近视校正轴线。
如果角膜散光轴线和眼镜折射轴线不在同一经线上,新的双曲面模具轴线和曲面曲率可通过应用本领域公知的可视光学公式进行判定。
所使用的球形模具在眼镜折射的程度上比角膜散光经线更平直。模具平直率等于角膜散光经线的平直率,并且沿该经线还具有一折射率。仅在不存在残余散光时使用该方法。
如果存在残余散光,就使用双曲面模具,该模具具有一与残余散光的轴线相同的负数圆柱轴线。双曲面弯曲的差别率与残余散光的程度相等。模具的球形部件由上述方法确定。
B.用于模具设计的球形基本曲线所安装的球形模具在沿平缓经线的眼镜散光度方面比平缓的角膜折射经线更平缓。模具的基本曲率等于平缓角膜散光经线的曲率减去沿该经线的折射率。该方法仅在不存在残余散光的的情况下适用。
(1)单纯近视a.-300sph眼镜折射b.44sph角膜曲率(corneal power)c.44-3=41屈光度=模具基本曲率(2)单纯散光a.pl=-100×180b.43/44 90度的角膜曲率(at 90 corneal power)c.44(平缓的角膜曲率)-平面(O)=44屈光度模具基本曲率。模具对齐平缓的角膜经线。
(3)混合近视散光a.-200=-100×180b.43/44 90度的角膜曲率
c.44-43=1屈光度=模具的基本曲率C、远视模具形状的基本曲率混合远视散光以及老花眼也利用相同的公式计算。
模具的基本曲率在沿平缓经线的眼镜散光度方面比平缓的角膜折射经线更陡。
基本弯曲可以是球形的或者非球形的或者双曲面的,光区的直径根据所需的矫正曲率而变化。中间圆周弯曲更平缓,优选非球形的,但是也可以是球形的,一般情况下随中心折射率/角膜曲率之比的增加而更平缓、更宽阔。也就是说,折射矫正的更远视、中心基本弯曲更陡、中间圆周弯曲更平缓。
模具的原理(对于所有屈光误差)是重新组合角膜的平方毫米表面积,该表面积是通过使光区(在近视眼中)平缓并把组织向外侧移进缓冲区袋囊内而不改变角膜总体平方毫米表面积而得到的。
模具的总体形状是一平缓的球形光区(除非残余散光需要双曲面弯曲),并具有逐渐变平成为自然球形角膜弯曲的渐平缓区。
模具的尺寸参照图5和8C,图中示出了将要用于本发明所述方法中的一般类型的模具形状36。该模具36特别适合用于治疗近视的角膜,其目的就是要使角膜10的中心部分变平。在这一方面,模具表面38包括一中心弯曲部60、一独立的中间圆周(平缓的)弯曲62以及一较大的基础弯曲64。中心弯曲60的宽度大约为4毫米,中间圆周(平缓)弯曲62的宽度在1毫米至1.5毫米之间,为球形或者非球形。下面对基础弯曲的形状进行一般的讨论。中间圆周弯曲62为2~15屈光度,比中心基础弯曲60较陡,以便进行近视校正。基础弯曲/k的比值(近视度增加)越大,中间圆周(平缓)弯曲越陡、越宽。而对于远视,也保持很准确的相同特性,其规律是弯曲/k的比值越大,中间圆周弯曲62越宽、越平。在远视模具中,中间圆周弯曲62与中心基础弯曲60相比平2~15屈光度。
角膜散光的类型和程度将影响到该模具甚至有可能是所有模具设计中的中间圆周(平缓)弯曲62的宽度和曲率。较大程度的混合远视散光(CHA)需要更平更宽的中间圆周弯曲,较大程度的CMA需要更陡更宽的平缓的中间圆周弯曲。所有角膜散光的程度很小以及很小的球形正视眼所需的中心基础弯曲和中间球形平缓弯曲之间的曲率差较小。球形中间弯曲最好利用逆向几何模具设计用于散光角膜。如果模具中应用外圆周弯曲,其宽度应大约为0.25mm--2.0mm。圆周弯曲的曲率在角膜准线附近。
参照图8A-8B,图中示出了设有多个中间圆周弯曲的模具36A。中心弯曲66的宽度大约在4-9mm之间。下面对中心基础弯曲的形状进行一般化地讨论。第一中间圆周平缓弯曲68(最靠内的弯曲)的直径为0.3mm至大约4.0mm。该弯曲为3-9屈光度,比中心光区66更陡。第二中间圆周平缓弯曲70宽度为0.3-1.5mm,比第一平缓弯曲68更平。如果使用外圆周弯曲72,其宽度大约在0.25mm至1.0mm之间。该圆周弯曲72比第一中间球形平缓弯曲更靠近角膜准线。圆周弯曲72的功能是阻断角膜从球形模具36A外部的结构性流动。
参照图8D,图中示出了用于治疗远视和混合远视散光的模具36B。模具35B首先被分成两个区,即中心光学区74以及一般表示为76的中间圆周区。中间圆周区分成三个独立曲率的区域,即一过渡区78、一中间圆周弯曲76的尖端以及一外弯曲部82。一般来说,中心光学区74比角膜弯曲(球形、非球形或者双曲面)更陡。过渡区78比光学区74更平,但是不象尖端区80那样平。中间圆周弯曲76的尖端80挤压角膜表面,并可以在弯曲区76上向外侧或者向中间移动。外部圆周82比尖端区弯曲80更陡,与角膜10的表面对得更齐。
参照图8E,图中示出了用于治疗近视或者混合近视散光的另一模具的形状36C。模具38的表面设有一中心视力弯曲区84以及一个一般表示为86的中间圆周平缓区。中心视力弯曲区84可以是球形的、非球形的或者双曲面的,其直径大约为6.0--10mm,优选直径大约为7mm。平缓区86最好分成三个区域,即一内部88、一尖端部90以及一外圆周部92。中间圆周平缓区86是一弯曲表面,其宽度大约为1.5--3.0mm,并在弯曲86内设有一可变尖端部分。中间圆周部平缓弯曲86的内部88最好比光学区84(球形或者非球形)更平。平缓弯曲86的尖端部90的宽度大约为0.3--0.4mm,其尖端可以向平缓弯曲86的中间或者外侧倾斜。平缓弯曲86的外圆周部的宽度大约为0.25--1.5mm,且可以比光学区84更陡,也比模具36在角膜弯曲部分更陡。中间圆周平缓区86每一部分的曲率半径与视线不对齐。模具36C的最佳实施例没有外圆周弯曲区92。
所有上述模具的信息都是适用于角膜矫正术接触透镜领域的一般公知的信息类型。所提供的信息作为解释在所述过程期间使用的各种模具的手段,由于许多不同的模具设计在工作时要利用模具的弯曲对角膜组织的整形产生相同的效果,以改变眼睛的折射率,因此上述信息并不意图对模具的任何特殊形式和设计公开的范围进行限制。
整形后角膜的稳定治疗过程中最终的、最重要的步骤包括在整形成新的“正视眼”形状后稳定角膜组织。为了公开本发明,本申请采用了术语“稳定剂”作为一种描述方式,“稳定剂”是指所有可能用于稳定眼睛胶原基质的试剂。所包括的稳定剂如下化学稳定剂、包括紫外光和可见光的光能、热辐射、微波能量以及无线电波。
利用紫外光交联人们知道,在交联胶原中紫外辐射和UVC是很有效的(参见Kelmam和Devore的美国专利US4969912;US5201764;US5219895;US5354336;和US5492135有关紫外线交联的胶原材料)。如果对准确的机理不很了解,可以设想UVC主要作用于胶原分子中的酪氨酸残余物。因此,通过用短波的紫外光(如254纳米)照射角膜可很容易地实现整形角膜组织的聚合和交联。但是,因为长时间用紫外光照射会引起角膜组织潜在的损伤,目前使用的聚合速度并不实用。通过在紫外光照射之前向角膜施加适当的氧化还原引发剂,可大大提高聚合速度。不使用这种引发剂,紫外聚合需要至少10分钟的照射。
适合的引发剂包括以下实施例,但并不局限于此过硫酸钠,硫代硫酸钠,氯化亚铁四水合物,二硫酸钠,和氧化酶如过氧化物酶或儿茶酚氧化酶。
在大约30秒至大约2分钟内,优选30秒至1分钟内,适当剂量的化学引发剂可充分促进角膜基质的聚合,但是对角膜组织也会足够地引起氧化破坏。
利用功率为4至12瓦、标准波长为254纳米的光源可在短波范围内实现紫外辐射聚合。一般在大约30秒至大约2分钟内发生聚合,优选不超过1分钟,照射距离在1.5--5厘米之间。由于过量的紫外照射会开始解聚胶原聚合物,并引起眼睛损伤,将紫外辐射限定成短时间是很重要的。在254纳米波长时,穿透深度要进行特别限定。
尽管公开了254纳米的短波紫外光,但可以理解,根据与特定波长相匹配的合适的光引发剂的应用情况,其它波长的紫外光也很合适。在后面描述的实验中,UV不经过滤光片直接照射,因此提供宽带UV辐射。滤光片可提供多种特定波长的光,这些光与适当的光化学或氧化还原引发剂相匹配。滤光片还可降低照射点温度的升高程度。在实例1中作为优选引发剂列出的过硫酸钠盐在254纳米波长时表现出最大的吸收能力,但在更长的波长下也表现的很有效。为了取得最大效率,最好使紫外光波长与特定的氧化还原或光化学引发剂匹配。
γ线辐射也可以使用0.5--2.5兆拉德间的γ线辐射实现聚合和交联。但是,过量的γ线照射也会解聚胶原聚合物。
化学交联有许多潜在的化学“稳定”剂可用于化学交联胶原基质。
原有的胶原蛋白交联技术使用戊二醛。戊二醛和其它醛,如乙二醛,丙烯醛,乙醛,丁醛,丙醛,以及甲醛在多肽链之间和胶原蛋白纤维之间构成侧桥接。其它适合的,但并不限于此的化学交联剂包括高碘酸盐,酰基叠氮,DenacolR醚,即山梨醇聚缩水甘油醚,聚甘油聚缩水甘油醚,季戊四醇聚缩水甘油醚,双甘油聚缩水甘油醚,三缩水甘油基Tris异氰脲酸盐和甘油聚缩水甘油醚,双官能的酰化剂,包括酐,酰基氯,以及磺酰氯,例如1,2,3,4-环丁烷四羧酸二酐,四氢呋喃-2,3,4,5-四羧酸二酐;1,2,4,5-苯四羧酸二酐,亚乙基二胺四乙酸二酐,双环(2,2,2)辛-7-烯-2,3,5,6-四羧酸二酐,戊二酰基二氯化物,己二酰氯,3-甲基己二酰氯,庚二酰氯,对苯二酰氯,间苯二酰二氯,邻苯二甲酰二氯,1,4-亚苯基双(氯甲酸盐),2,4-三甲基苯二磺酰氯,2,6萘二磺酰氯,丙二酰二氯,以及homobifunctional胺交叉反应性交联剂如homobifunctional亚氨酸酯和homobifunctional N-羟基琥珀酰亚胺也是合适的。
遗憾的是,这些试剂中的许多种会引起组织的逆向反应,因此使用它们时必须小心控制,并必须对准具体的部位。因为这一点,本文中不把化学交联作为最好的稳定方法进行讨论。但是,这种试剂在本方法中很有用,若具有合适的输送系统,将来会大有用途。
热辐射加热。是另一种交联,或者说是在整形之后“稳定”角膜组织的可能手段。通常人们知道这样一种应用,即加热会加速组织的新陈代谢,并且与不采用加热相比,有助于组织更快速地稳定。激光加热角膜成形术(LTK)(laser thermal keratoplasty)就是采用在角膜基质内的特定点上通过吸收激光、改进基质胶原的结构和机械特性产生的热量。一般来说,在LTK中,激光照射到眼睛的特定点上。由于该点吸收光束并加热至大约55-60摄氏度,因此胶原会收缩。点环用于绷紧组织,以使角膜前弯产生变化。作为本方法的最后一步,被整形的角膜将在激光下照射,其角膜组织被加热并被稳定成新的正视眼的形状。从研究观点看,治疗参数纯粹是推测出来的。
微波能量采用微波能量也是一种目前正在研究中的治疗近视的方法。这种治疗方法被称作微波加热角膜成形术(Thermokeratoplasty),下列文献已在先公开了该方法,即D.X.Pang,B.S.Trembly,L.R.Bartholomew,P.J.Hoopes以及D.G.Campbell的MicrowaveThermokeratoplasty,Ivestigational Ophthamology andVisual Science(36s988,1995);和D.X.Pang,B.S.Trembly,L.R.Bartholomew,P.J.Hoopes的MicrowaveThermokeratoplastyReshaping Corneal Contouer(CornealMicrowave,Accepted for Publication,Iternational JournalofHyperkeratoplasty(1998)。也可参见Trembly的美国专利US4881543,名称为Combined Microwave Heating and SurfaceCooling of the Corea(1989)以及Sand的美国专利US5618284,名称为Collagen Treatment Apparatus(1997)。交联的机理表现为在基质内的特定点产生热量。如上述有关热辐射的内容所述,通常人们知道这样一种应用,即加热会加速组织的新陈代谢,并且与不采用加热相比,有助于组织更快速地稳定。可以设想,微波能量可用于在基质产生热量,作为本方法的最后一步,被整形的角膜将暴露在微波能量中,角膜组织将在特定点或者整个角膜被加热,并被稳定成新的正视眼的形状。从研究观点看,治疗参数纯粹是推测出来的。
穿过模具的热量的应用另一种把热量提供到角膜的可能技术是直接与模具接触。在这一点上,模具上可设置一控制加热元件,把模具本体加热至一预定温度。可利用一电子元件或利用一穿过模具的被加热的流动流体实现这种加热方式。
无线电波还可以进一步设想用无线频率的能量在基质中产生能量,从而在如本发明所述的软化和模制后,稳定角膜组织。作为本方法的最后一步,被整形的角膜将暴露在无线频率(RF)能量中,其角膜组织将在特定点或者整个角膜被加热,并被稳定成新的正视眼的形状。从研究观点看,治疗参数纯粹是推测出来的。Gough等人的美国专利US5638384,名称为Multiple antenna ablationapparatus(1997)描述了RF能量在外科手术部分切除技术中的应用。
可见光利用可见光也有可能交联胶原。但是,这种方法需要一种光化学引发剂把光能量(photoenergy)传输到自由辐射的化学反应中。
适合的,但并不限于此的光化学染料引发剂包括酚臧花红,甲基红,溴酚蓝,臧花猩红,酚红,alcian blue,玫瑰红,亚甲蓝,天青A,甲苯胺蓝,曙红Y,Ezans blue,亚甲绿,Amythest violet,2,4-二氧四氢蝶啶,劳氏紫,黄蝶呤,2,3,5-三苯基-tetrazolium Cl.,丫啶红,丫啶橙,二氨基丫啶,Rosazurin,天青B,Bindschedler’s green,樱草灵,丫啶黄,中性红,赤藓红,荧光素,靛-(8-羟基喹啉),和孔雀绿。
在这些生色团中,最适合于角膜应用的是荧光素,曙红,靛-(8-羟基喹啉)和玫瑰红。需要注意的是这些生色团的曝光时间是过量的,因此这些化合物实际使用时不现实。然而,可以对应用的最佳性能时间进行测定。
据信氧化还原引发剂将会更快地起作用。合适的但并非限制性的氧化还原引发剂的例子包括但并不限于的苯胺,罂红A,2,2’-吡啶亚铁离子,和N-苯氨茴酸。
使用磺酸色基在去稳定之后稳定可见光用于整形角膜的另外一种技术包括用磺酸染料使角膜失去稳定,随后对角膜整形,再通过把角膜暴露在特定波长的可见光下稳定角膜,该可见光与附在软化过程发生反应的胺上的色基的最大吸收量相应。
适合的,但并不限于此的磺酸染料包括荧光素黄vs,直接黄8,2,2’-连氮基双(3-乙基苯并噻唑啉-6-磺酸),4,5-二羟基-3-(4-磺萘基偶氮)27萘二磺酸,2-二苯并呋喃磺酸,1-(2-羟乙基)喹啉嗡对甲苯磺酸盐,亮磺胺黄素,噻嗪红,焦倍酚红,罂粟碱磺酸,直接黄27,napthylazoxine a,1-乙基-2十一烷基-5-苯并咪唑磺酸,hoechst2495,8-羟基-7-(4-磺基-1-萘基偶氮)-5-喹啉磺酸,3-羟基-4(2-羟基-4-磺基-1-萘基-偶氮)-2-萘羧酸,1-十六烷磺酸(甲基-磺基-苯并噻唑啉亚基)酰肼,磺基溴酞钠水合物,prmulin,sulforhodamineg,8-羟基-5-(1-萘基偶氮)-2-亚萘基磺酸,2-甲硫基-3-苯基苯并噻唑嗡对甲苯磺酸酯,2-(m-氨基苯基)-1-十二烷基苯并咪唑-5-磺酸,2-(4-溴苄基)isothiothiouronium 8-(4-羟基-1-萘基偶氮)2萘磺酸酯,(十六烷基-甲基氨磺酰)苯磺基(me-磺基-bz-thiazolinyliden)酰肼,部花青540,坚牢嗍黑f,2-(3-氨基-3-甲基戊基)-1-十八烷基-5-苯并咪唑磺酸,sulforhodamine b,3,6-双-(4-磺基-1-萘基偶氮)-4,5-二-oh-2,7-萘二磺酸,酞菁-3,4’,4”,4111-四磺酸铜,1-十六烷磺酸,4-(十六烷基氨磺酰)苯磺酸,酞菁四磺酸镍,偶氮胭脂红g,sulforhodamine 101水合物,6,6’-(1,1’-二苯基44’二基双偶氮)双(4氨基5羟基3萘二磺酸钠),azocarmine b,羧基-十六烷氧基苯磺酸,1-十六烷磺酸,噻唑黄g,羧基十六烷基磺酰基苯磺酸,1-十六烷磺酸,氯唑天青,3-甲基-2-苯并噻唑啉酮连氮,甲基百里酚蓝,活性蓝15,乙酰氨基十六烷基磺酰基苯磺酸,owens blue,直接黄29,和吲哚花青绿。
实例1优选方法(1)把载物装置12放置在眼睛上(如图9);(2)用PH为8.5的0.2当量二钠磷酸盐缓冲溶液(94)对角膜(实线内所示的10)进行预处理1分钟(图9所示);(3)用海绵装置(28)清除多余的缓冲液(94)(参见图10);(4)在使用PH为8.5的、0.02当量的1毫升二钠磷酸盐之前,用含有5-50毫克戊二酸酐的快速溶解溶液处理角膜。戊而酸酐的最佳浓度是每毫升含有10-30毫克二钠磷酸盐。
(5)用海绵装置清除酸酐溶液;(6)把一整形模具(36)放入载物装置12,利用握持器工具44将模具转动到理想位置,施加适当的压力使角膜(10)得到合适的前弯(参见图12)(角膜的原始形状用虚线表示,新的形状用实线表示);(7)在模具36安放在适当位置时,在稍微呈碱性的缓冲溶液内用氧化还原引发剂处理角膜。对于过硫酸钠盐,优选在0.02当量的、PH值为8.0的磷酸盐缓冲溶液中使用0.1当量至0.5当量的过硫酸钠盐。硫酸钠盐的优选浓度为0.2当量至0.4当量;(8)仍然是在模具安放在适当位置时,把角膜的表面暴露在250-390微米范围内的紫外光辐射线下。优选采用EFOS Novacure装置,并设置成用3000mW/cm2照射10-120秒,优选30-60秒。EFOS导光筒96以距离角膜0.25--1.0英寸的长度设置在载物装置12内部,优选0.25--1.0英寸。曝光范围从2500mW×120秒至4500mW×45秒,优选2500mW×75秒至4500mW×30秒(参见图13)。
(9)在紫外光照射之后,用0.02当量的、PH值为7.2的磷酸盐溶液彻底冲洗角膜;(10)之后,从眼睛上取下模具36和载物装置12,利用裂隙灯和角膜局部解剖方法检查眼睛,测定曲率的变化程度,并测定是否需要再整形(参见图14)。角膜的原始曲率在图14中用虚线表示,而新的“正视眼”曲率用实线表示。
长期角膜矫正术的患者的稳定稳定过程的预期效果之一是它可用于稳定已经受了长期角膜矫正术的患者的角膜。稳定过程减少了需要连续戴定形透镜以保持角膜形状的时间。虽然对于这些患者来说,有可能简单地应用稳定步骤,但是可以预想,在重新稳定其新的形状之前,必须要对角膜去稳定。在这种方法中,要用上述方法去稳定。由于眼睛已预整形了,因此仅需要极少的整形操作把眼睛再整形成合适的形状。但是在稳定过程中要使用模具将角膜保持在合适的形状下。在模具安放在适当位置时,随后可以将眼睛暴露在光引发剂和紫外光下,把角膜稳定成新的形状。
实验1使用摘出的猪眼进行实验。可利用裂隙灯检查和读取K值的方法来对处理前和处理后的眼睛进行评价。在本实验的对照部分中,仅用接触透镜处理一些猪眼。对这些对照的眼睛不进行去稳定也不进行稳定操作。如预期的那样,就象由裂隙灯检查和K读数测量值确定的一样,角膜曲率没有变化。在该实验的第二部分,把接触透镜安放到没有去稳定的眼睛上,随后用硫酸钠盐(光化学引发剂)进行处理,并在使用由EFOS Williamsville,NY生产的一Ultracure 100ss加紫外光光源(Plus UV light source)的紫外光下曝光。光束的剂量在大约30秒内接近1500毫瓦(波长范围为25--390纳米)。两眼的预处理测量值为36.75/37.5。处理之后的测量值为43/41.5和40.5/44。一小时之后,眼睛变清澈了,并且可看见由接触透镜产生的脊纹。在本实验的第三部分,一只眼睛用PH值为8.76的磷酸盐缓冲溶液处理一分钟,随后放在10mg/ml的戊二酸酐磷酸盐缓冲溶液中下一分钟,以稳定角膜。安放接触透镜。之后,用PH值为7.2的磷酸盐缓冲溶液冲洗眼睛,除去残留的戊二酸,然后再用含有0.3当量的硫酸钠盐、PH值为8.0的磷酸盐溶液(0.02当量)浸泡。紫外光照射20分钟,取下透镜,再用PH值为7.2的磷酸盐缓冲溶液冲洗眼睛。眼睛的预处理测量值为36.75/37.5。用戊二酸酐处理和测量后,猪眼测量值为40.5/39.0。紫外光处理之后,测量值升降得太快,不能读数,失真得很厉害。快速进行后处理,并在处理一小时后可观察到由透镜产生的压痕和脊纹。结果显示曲率变化明确,由透镜生成的脊纹非常明显。
实验2第二组实验也使用摘出的猪眼。在处理前后,使用一EYESYS局部解剖系统测绘局部解剖图。另外,可使用EFOS Ultracure 100ss进行紫外光处理。在该实验的对照部分,使用裂隙灯和EYESYS系统检测眼睛。在使用紫外光照射之前,既不施加戊二酸酐也不施加硫酸钠盐,但是可施加缓冲溶液模拟全部处理过程。EYESYS测定值表明处理之后的表面特征由处理之前的相同。在实验的第二部分,用裂隙灯和EYESYS检测第二只猪眼。打印局部解剖剖面图。然后,把眼睛在PH值为8.5的磷酸盐缓冲溶液中浸泡2分钟。制备10mg/ml的戊二酸酐的酒精溶液,并快速施加到眼睛中。把接触透镜安放在眼睛上,并保持定位1分钟。随后把眼睛浸泡在硫酸钠盐溶液中(PH值为8.5、0.3当量的硫酸钠盐缓冲溶液),同时透镜仍处于原位置。
在硫酸钠盐溶液中几次浸泡1分钟之后,眼睛在紫外光下曝光大约30秒。取下透镜,用PH值为7.2的磷酸盐缓冲溶液清洗眼睛。然后采用裂隙灯和EYESYS检测眼睛。裂隙灯检测表明眼睛变得有些浑浊(可能是由于含有戊二酸酐的酒精溶液的影响)。EYESYS检测表明眼睛的局部解剖图已改变了。在实验的第三部分,第三只眼睛用如上所述方法进行处理,希望将戊二酸酐放入PH值为8.5的磷酸盐溶液中,试图采用酒精来防止可观察到的浑浊。裂隙灯检测表明角膜浑浊更少。EYESYS检测表明局部解剖图产生了变化,可与所佩戴的接触透镜的曲率匹配。该实验表明所述技术能够改变角膜前弯的形状。
实验3第三组实验使用活兔。EYESYS局部解剖系统和EFOS Ultracure100ss都可使用。用裂隙灯和EYESYS检测兔子的眼睛。打印局部解剖剖面图。不处理左边的对照眼睛。把实验的眼睛暴露在PH值为8.5、0.02当量的硫酸钠盐缓冲溶液中,并用PH值为8.5,20mg/ml的戊二酸酐的磷酸盐缓冲溶液进行处理,随后放上接触透镜。之后用PH值为8.5、0.02当量的硫酸钠盐缓冲溶液冲洗,清除残留的戊二酸,用含有0.3当量的硫酸钠盐的缓冲溶液浸泡,并在紫外光下曝光两个30秒脉冲,此时接触透镜处于适当的位置。用裂隙灯和EYESYS检测对照眼和处理眼。打印局部解剖剖面图。处理的眼睛表明局部解剖表面有明显变化。裂隙灯检测表明有些角膜薄雾,对该薄雾清洗大约1小时。使用活动物的实验表明,采用所述技术在活的受验者身上可以改变角膜前弯。
因此,可以看出,本发明提供一种利用无创伤外科技术快速修改角膜前弯的独特的有效方法。去稳定、整形、再稳定这三个步骤可使具有散光可视误差的潜在患者在大约几个小时内得到校正,没有恢复期间,不象目前采用的方法那样忍受长时间的经常性的疼痛过程。该稳定角膜的独特的方法极大地缩短了治疗时间,把稳定角膜在校正的正常眼形状将消除了对定形透镜,或者用于该目的的校正透镜的需要。如上所述,可以理解本方法的独特方面在于三个独特的步骤,即去稳定、整形和再稳定,还在于用于实现本方法的装置。现有技术没有提供简单的、非外科式的、无创伤式的、快速的治疗眼睛散光误差的方法,可以理解本发明已解决了现有技术所存在的这个难题。鉴于这个原因,可以理解本发明对本领域的技术作出了重大的贡献,具有相当大的商业价值。
虽然本文示出和描述了体现本发明的某些具体结构,很显然,对本领域的技术人员来说可对各部件进行各种改进和重新配置而不超出以本发明为基础的精神实质和保护范围。本发明的范围由所附的权利要求书的保护范围确定,而不限于本文所示出和描述的特定形式。
权利要求
1.一种矫正眼睛屈光误差的方法,包括如下步骤使眼睛角膜组织去稳定,这样角膜的前弯能从第一形状整形成第二理想形状;通过把一模具安放在一角膜上,并向其上施加压力,所述模具具有与角膜的前弯接触的预定的后弯和形状;以及再稳定角膜组织,同时把角膜的前弯定位在第二理想形状,从而把已软化的角膜从第一形状整形成所述第二理想形状。
2.如权利要求1所述的方法,其特征在于所述使角膜组织去稳定的步骤包括向角膜引入一软化剂,该软化剂可有效地使角膜基质胶原纤维之间的交联去稳定。
3.如权利要求2所述的方法,其特征在于所述软化剂是从下列一组试剂中选择的酐、酰氯、磺酰氯、磺酸及其混合物。
4.如权利要求1所述的方法,其特征在于所述使角膜组织去稳定的步骤包括把角膜组织暴露在光能下。
5.如权利要求1所述的方法,其特征在于所述使角膜组织去稳定的步骤包括加热角膜组织。
6.如权利要求1所述的方法,其特征在于角膜组织的加热包括利用激光加热角膜成形术进行加热。
7.如权利要求1所述的方法,其特征在于所述使角膜组织去稳定的步骤包括向角膜引入化学交联剂,该交联剂对角膜基质胶原纤维之间的交联很有效。
8.如权利要求1所述的方法,其特征在于所述使角膜组织去稳定的步骤包括把角膜组织暴露在微波能量下。
9.如权利要求4所述的方法,其特征在于所述使角膜组织去稳定的步骤包括把角膜组织暴露在可见光能量下。
10.如权利要求4所述的方法,其特征在于所述使角膜组织去稳定的步骤包括把角膜组织暴露在紫外光能量下。
11.如权利要求4所述的方法,其特征在于还包括如下步骤把一光引发剂化学物质施加到眼睛上,以加速引发胶原基质的交联。
12.如权利要求2所述的方法,其特征在于所述使角膜组织去稳定的步骤包括把角膜组织暴露在紫外光能量下。
13.如权利要求12所述的方法,其特征在于还包括如下步骤向眼睛引入一光化学引发剂,以加速引发胶原基质的交联。
14.如权利要求2所述的方法,其特征在于引入所述化学软化剂的所述步骤还包括如下步骤把一环形载物装置的下端安放在角膜的表面,使载物装置包围被治疗的角膜,并把化学软化剂引入载物装置的内部。
15.如权利要求14所述的方法,其特征在于整形角膜的步骤包括把模具放置在载物装置内,并在预定时间内施加向下的压力。
16.如权利要求15所述的方法,其特征在于所述模具由透明的、并能使紫外光穿透的材料制成,所述使角膜组织去稳定的步骤包括把紫外光源设置在位于模具顶部的载物装置的内部,激发光源一预定时间,使紫外光穿过模具射向角膜组织。
17.如权利要求14所述的方法,其特征在于所述使角膜组织去稳定的步骤包括把一紫外光源设置在载物装置内,激发(energize)光源一预定时间,使光束射向角膜组织。
18.如权利要求16所述的方法,其特征在于还包括如下步骤在把角膜暴露在所述剂量的紫外光下之前,把一光化学活化剂引入角膜。
19.如权利要求17所述的方法,其特征在于还包括如下步骤在把角膜暴露在所述剂量的紫外光下之前,把一光化学活化剂引入角膜。
20.一种矫正眼睛散光误差的方法,包括如下步骤把一环形载物装置的下缘设置在角膜表面,使载物装置包围要被治疗的角膜区域;把一化学软化剂引入载物装置的内部,所述化学软化剂在其内有效地使角膜基质胶原纤维之间的交联去稳定,使角膜的前弯能够从第一形状整形成第二理想形状;通过向角膜安放一模具,把被软化的角膜从第一形状整形成第二理想形状,所述模具具有与角膜的前弯接触的预定的后弯和形状,把所述模具放置在载物装置内,并随后向下施加一预定时间的压力,实现所述的整形;重新稳定角膜组织,同时通过把角膜组织暴露在一预定剂量的紫外光下,把角膜的前弯定形在所述第二理想形状。
21.如权利要求20所述的方法,其特征在于所述模具是由透明的、并能使紫外光穿透的材料制成,所述去除角膜组织稳定的步骤包括把紫外光源设置在位于模具顶部的载物装置的内部,激发光源一预定时间,使光束穿过模具射向角膜组织。
22.一种矫正眼睛屈光误差的方法,包括如下步骤通过顺序地提供一系列具有预定的、能够逐渐地使角膜变成正常眼的前弯和形状的矫正接触透镜,把角膜从第一形状整形成第二理想形状;重新稳定角膜组织,同时通过把角膜组织暴露在一预定剂量的紫外光下,把角膜的前弯定形在所述第二理想形状。
23.如权利要求22所述的方法,其特征在于所述稳定角膜组织的步骤包括把一环形载物装置的下缘安放在角膜表面,使载物装置包围要被治疗的角膜区域,把一紫外光源设置在载物装置内部,激发光源一预定时间,使光束照射到角膜组织上。
24.如权利要求22所述的方法,其特征在于进一步包括如下步骤在重新稳定角膜之前,用中度碱性的缓冲溶液冲洗角膜。
25.如权利要求24所述的方法,其特征在于所述碱性缓冲溶液含有化学光引发剂,以助于角膜组织的稳定。
26.一种用于治疗眼睛角膜组织的载物装置,包括一具有上、下缘部分的大致呈圆柱形的园管,所述下缘部具有一在大约10mm至大约15mm之间的外径,所述下缘部可被安放在眼睛上,从而包围被治疗的角膜区域。
27.如权利要求26所述的载物装置,其特征在于该下缘部以一预定角度向内逐渐变细,从而适合于眼睛的弯曲表面。
28.如权利要求26所述的载物装置,还包括一设于圆管下缘部的柔软衬垫,所述衬垫在圆管的下缘部和眼睛表面之间形成一柔软的、不漏水的密封,从而防止引入载物装置内的溶液在下缘部泄漏出来。
29.如权利要求26所述的载物装置,其特征在于圆管外表面包括一定位标记,以助于把载物装置安放在眼睛上的适当位置上。
全文摘要
一种加速角膜矫正术的方法,包括如下步骤:用软化剂软化角膜(10),安放一模具(36),以把角膜(10)整形成一理想的前弯,并快速地重新稳定或“固定”角膜组织,使角膜保持其新的形状。把一化学软化剂,如戊二酸酐,施加到角膜上,来软化角膜,之后,把一具有预定曲率和形状的、特殊设计的模具(36)安放在角膜上。向模具上施加压力以整形角膜。模具(36)保持定位,同时把一稳定剂,如紫外光源(96)设置在模具(36)之上。该稳定剂即紫外光照射到角膜(10)上,其中稳定剂快速稳定角膜组织,从而取下模具(36)后角膜保持其形状。
文档编号A61K31/185GK1295677SQ99804607
公开日2001年5月16日 申请日期1999年1月28日 优先权日1998年1月28日
发明者R·H·厄芬格, D·P·德沃雷 申请人:伊斯塔药品公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1