具有结晶晶界相的自增强氮化硅陶瓷及制备方法

文档序号:1906659阅读:272来源:国知局
专利名称:具有结晶晶界相的自增强氮化硅陶瓷及制备方法
技术领域
本发明涉及氮仳硅(Si3N4)陶瓷体,以及制备该陶瓷体的工艺。
众所周知氮化硅陶瓷具有极好的机械和物理性能,包括良好的抗磨损性,低热膨胀系数,良好的抗热震性,高抗蠕变性以及高电阻率。另外,氮化硅陶瓷能抗化学侵蚀,特别是抗氧化。由于这些特性,氮化硅在各种磨损和高温场合下非常有用,例如用作切削刀具和泵及发动机的部件。
氮化硅陶瓷的缺点一般与其脆性和裂纹有关。于是本发明的目标在于制备一种具有高断裂韧性(KIC)和强度的氮化硅陶瓷。断裂强度和断裂韧性成正比,与裂纹尺寸的平方根成反比。于是非常希望有高的断裂韧性和小的裂纹尺寸。然而,单相氮化硅具有较低的断裂韧性,为大约5MPa(m)1/2。
为了获得充分致密的氮化硅陶瓷,象氧化镁这样一种致密助剂,几乎总是必需的。在烧结时,致密助剂通常形成振动态晶界相,它作为基质,结晶氮化硅的晶粒夹嵌在其中。不利的是,玻璃相使得陶瓷在高温下强度降低且抗蠕变性差,玻璃相也使得在高温下抗氧化性变差。
如果晶界相是结晶相而不是玻璃相的话,所报导的氮化硅陶瓷的高温材料性能可以改善。例如,A.Tsuge,K.Nishida和M.Komatsu的文章,见Journalof Americam Ceramic Society(《美国陶瓷协会学报》),58,(1975)323-326,一种含有结晶晶界相的热压氮化硅陶瓷,结晶晶界相为Si3N4·Y2O3,是通过预烧然后热压以氮化硅和氧化钇为主的粉末制备而成的。与具有氧化钇的玻璃态晶界相的氮化硅陶瓷相比,所公开的陶瓷具有改善的高温强度。不利的是,预烧并热压的陶瓷不具有足够的强度和韧性,以满足目前的商业标准。
US 4,920,085公开了一种氮化硅烧结体,它包括β-Si3N4,进一步包括结晶晶界相,其含量占总的晶界相的量小于90%(重量),其余的为玻璃态组成。结晶相含有一种或多种化学计量组成M4Si2O7N2,M10Si2O23N4或MSiO2N,其中M是Sc,Tb,Er,Ho,或Dy。不利的是,这种烧结体具有相当量的玻璃界相,它降低了强度和抗蠕变性。
US4,883,776公开了一种制备氮化硅的工艺,该氮化硅体的断裂韧性大于6MPa(m)1/2,并且含有平均纵横比为至少2.5的β-氮化硅晶须。该工艺包括热压一种粉末混合物以形成坯体。该混合物包括氮化硅,氧化镁作为致密助剂,氧化钇作为转化助剂,以及氧化钙作为促进形成β-氮化硅晶须的化合物。
US 4,919,689公开了由US 4,883,776的工艺所制备的氮化硅体。
本发明的一个方面是一种制备自增强氮化硅陶瓷体的工艺,该陶瓷体含有以具有高平均纵横比(长度与直径之比)的β-氮化硅晶须为主的相,并且进一步含有具有一种氮氧化合物磷灰石结构的结晶晶界相。就本发明的目标,“高”的平均纵横比指是平均纵横比为至少2.5。该工艺包括使下列粉末的混合物(a)氮化硅的量足以提供一种陶瓷体;
(b)一种致密助剂包括一种Sr源,以及任选地,选自Ba,Ca,Li,Na或其混合物的元素源,所说的源的量足以促进粉末的致密化;
(c)一种转化助剂,包括选自Y,La,Ca,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Th或其混合物的元素源,所说的源的量足以促进起始氮化硅向主要是β-氮化硅的转化。
(d)至少一种晶须生长加强化合物,其量足以促进形成β-氮化硅晶须,所说的化合物是选自Ca,Li,Na,Sc,Ti,Al,或其混合物的元素的氧化物或非氧化物衍生物,但以该元素不同于致密助剂(b)的任选组分的元素为条件;并且(e)氧化硅的量足以提供一种氮氧化合物磷灰石结晶晶界相;
温度或压力的条件足以造成致密化,并就地形成具有高平均纵横比的β-氮化硅晶须,并且然后使致密化组成退火足够长的时间,使得形成具有一种氮氧化合物磷灰石结构(如X射线结晶学确定)的结晶晶界相。所得到的自增强氮化硅陶瓷体的Palmqvist韧性大于37kg/mm。可以使用任何方法加压加温,只要能造成充分致密化以及就地形成晶须。类似地,可以采用任何退火的方法,只要能够形成结晶的晶界性。
在一个相关的方面,粉末混合物进一步包括至少一种Palmqvist韧性增加量的预制增强材料。预制增强材料选自碳化硅,碳化钛,碳化硼,二硼化钛或氧化锆,这些材料选自晶须,纤维,颗粒或者片晶形。
本方法的第二个方面是具有Palmqvist韧性大于37kg/mm的氮化硅陶瓷体,它包括(a)β-氮化硅的结晶相,其体积含量为至少20%,该数据是用扫描电镜观察氮化硅陶瓷体的一外平面而测得的,晶须的形式是具有平均纵横地为至少2.5。
(b)用X射线结晶学所确定的氮氧化合物磷灰石结构的结晶晶界相,其含量大于总重量的35%(重量),所说的结构用能式AxB10-x[Si(O,N)4]6(O,N)y来代表,这里A是Sr,任选地与Ca,Ba,Li。Na,Sc,Ti,Al或其混合物相结合;B是Y,La,Ce,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Th或其混合物;X是大于0的正数,但是小于或等于4;y是大于0的正数,但是小于或等于2。
在一个相关方面,氮化硅陶瓷体进一步包括至少一种Palmqvist韧性增加量的预制增加材料。该材料选自β-氮化硅纤维或晶须,或者碳化硅,碳化钛,碳化硼,二硼化钛或氧化锆的晶须,纤维,颗粒或片晶中的至少一种。
本发明的第三个方面是由上述氮化硅陶瓷体所组成的切削刀具。
本发明的氮化硅陶瓷体和现有技术中的单相和晶须增强的氮化硅陶瓷相比,有着明显更高的断裂韧性。而且,如果本发明的氮化硅陶瓷体的断裂韧性对密度归一。则归一化的断裂韧性和断裂强度是所有已知陶瓷材料中最高的。有利的是,本发明的氮化硅陶瓷是自增强的。更有利的是,本发明的氮化硅陶瓷的室温断裂强度在高温,如1200℃或更高温度下依然保持。于是,该陶瓷体适合于高温应用。
制备本发明的陶瓷体中所用的氮化硅起始材料可以是任何氮化硅粉末,包括α-氮化硅和β-氮化硅的结晶形成,或者非结晶不定形氮化硅,或其混合物。优选地,氮化硅粉末以α结晶形式或无定形形式,或其混合物为主。更优选的是,起始氮化硅以α结晶形式为主。如果优选的是起始粉末具有高α/β重量比,则也是有利的。希望起始粉末含有不大于20%(重量)的β-氮化硅。优选的是β-氮化硅含量不大于10%(重量),更优选的是β-氮化硅含量不大于6%(重量)。
通常,起始氮化硅粉末的纯度越高,则最终陶瓷体的性能越好。但是,和来源有关,氮化硅粉末会含有非金属杂质。在粉末中某些杂质是可容许的,尽管优选的是尽可能减少这些杂质。例如,很可能在热压或烧结中形成碳化硅,少量碳是可容许的。通常元素硅存在的量可多至0.5%(重量)。该含量的元素硅是无害的,可被容许。氧(某种程度上以SiO2的形式存在)通常位于氮化硅颗粒的表层。二氧化硅的量随着起始氮化硅粉末的纯度及其制造方法而有所变化。为了达到所要求的总的二氧化硅含量,可以通过沥滤来降低,或者通过加入游离二氧化硅来增加二氧化硅的含量,细节将在下面作进一步描述。
如果本发明的陶瓷用热压方法获得,则氮化硅起始粉末可以是任何尺寸或表面积。尺寸的描述见US 4,883,776,第4栏,33-50行,这样的尺寸提供了令人满意的结果。
合适的氮化硅的含量占粉末混合物总重量的65-99.75%(重量)。优选的范围是占粉末混合物总重量的80-97%(重量)。当存在增强材料时,氮化硅的含量减少,结果氮化硅加上增强材料的总重量仍落于该范围中。
在本发明的工艺中,氮化硅粉末与其它金属氧化物或非氧化物组成混合,加压下加热该粉末混合物以得到致密的陶瓷组成。在加热中,金属氧化物和非氧化物组成玻璃态晶界相。该相作为基质,β-氮化硅颗粒夹嵌在其中。在进一步的加热或退火中,玻璃相转变为结晶态晶界相,于是构成了本发明的陶瓷组成。下面所得到的任何玻璃相指的是上述有在退火之前的致密化过程中所形成的玻璃相。
如果不存在致密助剂,则原始氮化硅粉末不能致密成为高密度。于是,粉末混合物中必须含有至少一种致密化助剂。致密助剂形成液相,α-氮化硅溶解在其中。液相在某个温度或温度范围下形成,这与致密助剂有关。α-氮化硅在相中传质速率通常相当快。于是,氮化硅密度增加,直至达到临界质量,并且发生沉淀。
就本发明的目的,致密助剂包括Sr源,并且任选地,包括Ba,Ca,Li,Na或其混合物源。Sr源和任选元素源适合的是相应的氧化物。用非氧化物衍生物,例如相应的乙酸盐或碳酸盐或获得可接受的结果,优选的源是氧化物。致密助剂最好是单独的氧化锶或者氧化锶加上氧化钙,优选氧化锶加氧化钙。
任何量的致密助剂,只要能如所描述地促进致密化并且产生本发明的韧性氮化硅陶瓷体,则都是可接受的。合适的致密化助剂的总量范围占粉末混合物总重量的0.04-10,0%(重量)。该范围最好是为0.5-9.8%(重量),该范围希望的是为0.9-4.7%(重量)。如果用了不止一种致密助剂,则Sr源为占粉末混合物总重量的至少0.04%(重量),优选的是至少0.8%(重量)。
粉末混合物也必须含有转化助剂,转化助剂形成玻璃态晶界相,一般通过该玻璃态晶界相的传质和在致密助剂中相比相当慢。于是,加热时α-氮化硅溶解在转化助剂中,但不易致密。但是,有利的是,转化助剂促进了α-氮化硅向β-氮化硅占优势的迅速转化。最希望发生这种转化,因为β-氮化硅(以拉长形式)单晶晶须或晶粒决定了本发明的氮化硅陶瓷体的高断裂韧性和高断裂强度。在此之后所有涉及氮化硅晶须,单晶晶须和单晶氮化硅晶晶须都是同义的,可以互换使用。
在起始粉末中可以采用任何量的转化助剂,只要其量足以造成起始氮化硅向β氮化硅占优势的转化,并且产生本发明的韧性氮化硅陶瓷体。转化助剂的量最好是占粉末混合物总重量的0.2%(重量)-29.5%(重量)。该范围希望的是1.0%(重量)-10.0(重量),该范围优选的是1.7%(重量)-8.5%(重量)。
合适的转化助剂是一种元素源或衍生物,该元素选自Y,La,Ce,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Th或其混合物。虽然合适的源是一种氧化物,但是由非氧化物衍生物获得的结果也是可以接受的,例如相应的碳酸盐或乙酸盐。转化助剂希望是Y源,Dy源,Yb源,转化助剂优选的是Y源,最优选的是氧化钇。
令人惊奇的是,如果粉末混合物中也存在晶须生长加强化合物的话,转化助剂与致密助剂的重量比,据发现可以影响最终陶瓷的断裂韧性。转化助剂与致密助剂的任何重量比都是可以接受的,只要断裂韧性与非增强的单相的氮化硅的断裂韧性值5MPa(m)1/2相比,有所提高。该重量比合适的是在0.25-8的范围。该范围最好是0.5-5,希望的是1-3,优选的是1-1.8。当不存在晶须生长加强化合物时,转化助剂对致密助剂的重量比,对断裂韧性没有显著的影响。
粉末混合物必须进一步含有一种晶须生长加强化合物。该化合物帮助使得陶瓷体有更优的断裂韧性和更高的强度。起始粉末中任何量的该化合物都是可接受的,只要它促进形成β-氮化硅晶须,并产生本发明的韧性氮化硅陶瓷体。该量最好的是占粉末混合物总重量的0.01%-5%(重量)。该范围希望的是0.1%-1.0%(重量),该范围优选的是0.2%-0.5%(重量)。
晶须加强化合物希望是Li,Na,Ca,Sc,Ti,Al或其混合物的一种氧化物或非氧化物衍生物。合适的非氧化物衍生物是相应的乙酸盐或碳酸盐。晶须加强化合物希望是氧化钙,氧化钠或氧化铝,优选的是氧化钙。
希望的晶须生长加强化合物,致密助剂如转化助剂的是纯净的粉末形式,并且尺寸足够地小。指明可用作晶须生长加强化合物,致密助剂和转化助剂的市售材料,特别是氧化物粉末中,通常各类杂质的含量小于20ppm。这些杂质的浓度是可容许的。杂质浓度为0.5%(重量)或更高则是不许可的,因为它们会导致最终陶瓷组成和性能的变化。小粉末颗粒比大粉末颗粒更易分散。这里所用的氧化物粉末希望具有平均颗粒直径不大于5μm。
在一个给定的粉末混合物中,某些元素,例如Na和Li,即可用作致密助剂,也可用作晶须生长加强化合物。但是,在某个粉末混合物中,任何元素均不能使用作为致密助剂起作用的足够量或作为转化助剂起作用的足够量。
本发明的粉末混合物中也需要二氧化硅。二氧化硅提供阴离子硅酸盐以平衡结晶晶界相中存在的正价金属离子。至少部分的二氧化硅是得自氮化硅表面上的二氧化硅。但是,通常需要外加的二氧化硅源。合适的二氧化硅源包括石英,发烟(fume)二氧化硅,和溶胶-凝胶二氧化硅。可促进形成氮氧化合物结晶晶界相的任何量的外加二氧化硅均是可接受的。实际的量取决于所存在的致密助剂,转化助剂和晶须生长剂的量,也取决于氮化硅表面上存在的二氧化硅的量。二氧化硅的总量(包括氮化硅表面上存在的二氧化硅的量)希望的是占粉末混合物总重量的2.3-6.0%(重量)的范围内,优选的范围是3.0-5.0%(重量)。
将至少一种Palmqvist韧性增加量的预制增加材料掺入粉末混合物中可改善所得到的氮化硅体的性能。改进的性能有室温韧性和高温强度和刚性。该材料选自β-氮化硅纤维或晶须,或者碳化硅,碳化钛,碳化硼,二硼化钛,或氧化锆的晶须,纤维,颗粒或片晶中的至少一种。
增强材料必须与玻璃相和结晶相和它们的组分在化学上相容。化学上相容的材料选自碳化硼,碳化硅,碳化钛,氧化锆或二硼化钛。为了使通常与玻璃相及其组成在化学上不相容的材料变得有相容性,可用一种化学上有相容性的材料涂敷在不相容的材料上,通常不相容材料包括氮化铝,氧化镁和莫来石。碳化钛为这些不相容材料提供了令人满意的涂层。
增强材料存在的量必须是以增加所得的氮化硅体的Palmqvist韧性,而不显著地干扰,甚至消除,拉长的氮化硅晶粒的形成。当存在增强材料时,它们占据了氮化硅相的空间,如果不存在加强材料,则拉长的氮化硅晶粒在该空间中生长。增强材料的量根据增强材料片,颗粒,纤维或晶须的尺寸,以及增强材料所占据的体积而变化。多晶纤维作为一种标称的连续增强材料提供了可接受的结果。单晶晶须虽为一种标称的不连续增强材料,也提供了可接受的结果。
根据图解,给定体积百分比的大颗粒和等量体积百分比的小颗粒相比,通常较小地干扰拉长的氮化硅晶颗的形成。相应地,采用下述增强材料直径的体积百分比(占玻璃相的体积百分比)的组合,可获得食人满意的结果(a)直径小于0.2μm,高达10%(体积);(b)直径从0.2μm至小于0.5μm,高达15%(体积);(c)直径从0.5μm至小于1.5μm,高达25%(体积);(d)直径从1.5μm至小于2.5μm高达30%(体积);(e)直径从2.5μm至小于5.0μm,高达35%(体积);(f)直径从5.0μm至小于15.0μm,高达45%(体积);(g)直径从15.0μm至小于25.0μm,高达50%(体积);以及(h)直径从大于25.0μm,高达65%(体积),不论增强材料的直径如何,所用的增强材料的量最好大于5%(体积)。增强材料具有不同的密度。因此,不采用通用的重量百分比。如果给定了特定增强材料的密度,即可确定与前述的体积百分比相对应的重量百分比。
在本发明的工艺中,起始氮化硅粉末必须与致密助剂,转化助剂,晶须生长加强化合物和,任选的,二氧化硅和/或增强材料的混合物相混合。当存在增强材料时,最好当粉末混合物中的其余组分混合之后,将增强材料加入,以使增强材料的断裂和粉碎减少至最小。合适的致密助剂,转化助剂和晶须生长的加强组分已在上面公开。通常地,致密助剂,转化助剂和晶须生长加强化合物的总和不超过粉末混合物的总重量的35%(重量)。当使用增强材料时,35%(重量)的限度也是适宜的。但是,该总和取决于由粉末混合物所制得的烧结陶瓷的可能的终极使用场合。对某些应用场合,总和超过35%(重量)将会提供可接受的结果。但是,对于中等温度和/或最高断裂韧性应用,希望总量在5%-35%(重量)的范围内。“中等温度”指的是温度在900℃-1200℃的范围内。中等温度加极高断裂韧性应用的一个例子是切削刀具。对高温和/或中等断裂韧性应用,总量希望在0.25%-5%(重量)的范围内,“高温”指的是温度在1200℃-1400℃的范围内。“高温”和中等断裂韧性应用的一个例子是陶瓷发动机的部件。
含有氮化硅,致密助剂,转化助剂,晶须生长加强化合物,以及任选的二氧化硅的粉末混合物,合适地是用常规方法制备的。球磨粉末形式的组分是一种可接受的方法,制备粉末混合物的优选方法是使用含ZrO2球的磨机,在一种载体介质中制备粉末混合物组分的细分散悬浮体,干燥是悬浮体和磨球的混合物,最好在通过过滤或其它方法除去过量的载体介质的,分离出磨球以得到粉末混合物。
制备细分散的悬浮体时,组分的加入无需特定的次序。例如,除了氮化硅之外的粉末组分可以单独地或同时加入到一种载体介质中的氮化硅的胶态悬浮体中,或者反之亦可。另一种方法是,粉末混合物的所有组分可以在球磨之前同时加入到载体介质中。后一种方法是优选的,特别是采用有机载体介质例如甲苯或乙醇。通常制备在室温下(23℃),空气中,在一个大容器中进行,并且剧烈地搅拌。如果需要的话,一种超声波振荡器可用作补充手段,以打碎小的团聚体。
载体介质可以是任何在室温和大气压下是液体的无机或有机化合物。合适的载体介质的例子包括水;醇,例如甲醇,乙醇或异丙醇;酮,例如乙酮或甲乙酮;脂族烃,例如戊烷或己烷;芳族烃,例苯或甲苯,载体介质希望是一种有机液体,优选的是甲苯或一种醇,例如甲醇,载体介质的功能是使混合的固体粉末具有合适的粘度。可达到这一目的的任何量的载体介质都是足够的和可接受的。载体介质的量希望提供固体含量在20%-50%(体积)的范围内,该范围优选的是35%-45%(体积)。在20%(体积)之下,固体悬浮液的粘度太低,解聚集混合可能是无效的。在50%(体积)之上,该粘度太高。解聚集体混合可能是困难的。
为了帮助分散粉末混合物组分,可以向悬浮液中加入一种或多种表面活性剂或分散剂。表面活性剂或分散剂的选择有很大的余地,如本领域内所公知的那样。
如果载体介质是甲苯,一种偶合剂,例如商标为KEN-RE-ACT KA 322,从Kenrich Petrochemicals购得的铝酸盐偶合剂,可用于帮助形成浮液。当使用醇例如甲醇时,可使用一种分散剂,例如聚乙烯胺,以利于混合,也可使用一种絮凝剂,如油酸,以利于粉末混合物的回收。
只要能够改善粉末混合物组分的分散性,任何量的表面活性剂或分散剂都是可接受的。典型地,表面活性剂的量占粉末混合物重量的0.01%-1.0%(重量)。
采用常规技术,例如浇浆成型,将细分散的悬浮液变成未烧结坯体。另一种方法是,将悬浮液干燥或为粉末,并且磨细用于热压。用常规方法完成干燥,例如喷雾干燥成在吹N2下在炉中干燥。优选的是,在除去过量的载体介质之后,在吹N2下,在炉中干燥粉末混合物和磨球的混合物。干燥所用的温度取决于所用载体介质的沸点。通常干燥在大气压下,在略低于载体介质的沸点的温度下进行。优选的是载体介质是甲苯或一种醇,干燥温度是约50℃。干燥之后,所得到的粉末与磨球分离,过筛得到一种最大团聚体直径为约100μm的粉末,筛网尺寸通常小于60目(Tyler)(250μm);更优选的是小于80目(Tyler当量)(18μm)。过筛所得到的粉末是适于热压的粉末混合物。
当粉末混合物中包括增强材料时,根据增强材料的形式,可对前述步骤做些改动。如果增强材料不是长的或连续的纤维,则可将它加入到组分的细分散悬浮液中,并且混合或磨细一适合长的时间。磨细时间主要取决于增强材料的团聚程度及其脆性或易碎性综合因素。换言之,磨细时间要足够地长,以打碎大部分的(如果不是全部的)团聚体。磨细时间也应足够地短,以充分保持增强材料的完整性,以造成所要求挠度的加强。另外的磨细时间也将取决于增强材料。完成增强材料的分散所需要的典型时间从10min至45min。该时间最好从10min至20min。如果增强材料是纤维形式,也就是所谓的连续纤维,则不需要另外的磨细时间。纤维只是浸没在细分散悬浮液中,使得在它们的外表面上沉积上悬液的涂层。然后将纤维从悬浮液中移出,在进一步加工之前干燥之。如果需要的话,可以以这种方式作多层涂敷。干燥的,有涂层的纤维,不论是以单个纤维的形式,或者是以纤维栅或织物的形式,最好是在热压模具中被粉末混合物所围绕,然后热压,也可使用其它常规的加工纤维的方法。
加工粉末混合物的任何方法都是可接受的,包括热压(HP),热等静压(HIP),以及无压烧结。典型的方法是热压(HP)或热等静压(HIP),它是将粉末在压力下加热以获得致密的陶瓷体。任何常规的热压设备都是可接受的,例如装备有加热设备和水压的石墨模具。如果制造模具的材料在热压温度下基本上不与粉末混合物的组份发生反应,并且平均线性膨胀系统大于氮化硅,则可获得特别合适的结果。这样一种模具材料的使用有助于制备接近完美的形状,而不需致密加工操作。模具材料希望是碳化钛。R.Morrell,Handbook of Properties of Technical and Engimeering Ceramics,page82-83(1985),列出了氮化硅和碳化钛的平均线性膨胀系数分别是3.6×10-6K-1和8.2×10-6K-1。热压在惰性气氛例如N2中进行。以避免氮化硅在高温下的氧化和分解。加压方向是单轴的,并且垂直于模具盘的平面。
任何加工温度和压力将是满足需要的,只要能够获得这里及下面所描述的本发明的新型氮化硅陶瓷。但是,通常必须小心地控制温度,因为已发现拉长的β-氮化硅晶须只在狭窄的温度区间内形成。在加压下,希望将温度保持在1700℃-1870℃的区间内。优选的区间是1750℃-1850℃,更优选的是1800℃-1840℃。在1700℃以下,拉长的β-氮化硅的形成会减少。在1870℃以上,氮化硅会分解。需要特殊的压力设备以进行致密化。当不存在增强材料时,使用高压技术例如热等静压,可使温度的使用高达2000℃或甚至2100℃。高温的精确测量,例如1700℃至1200℃的精确测量,在技术上是困难的。也可观察到优选温度区间的某些变化,取决于温度测量中使用的方法。希望用W-Re热电偶来测量温度,该热电偶是从Omega公司购得并校准的。
尽管热压过程中的压力也很重要,但它不象温度那样是一个关键的系数。压力应该是足以使未烧结体致密化。希望压力在3000psig至0000psig(20.7mPa至41.4mPa)的范围内。优选的范围是4000psig至5500psig(27.6mPa至37.9mPa),更优选的是,4500psig至5200psig(31.0mPa至35.8mPa)。在3000psig(20.7psig)之下,粉末不会充分致密化。在6000psig(41.4mPa)之上,粉末会在较短时间和较低温度下致密。尽管希望在表面上不要太酷烈的工艺条件,但拉长的β-氮化硅晶体的形成,在较低的温度,较短的工艺时间或较高的压力下,会被阻止。
在压力下粉末混合物加热的时间,应足以使粉末基本上完全致密化。采用US 4,883,776第9栏,26-37行中所公开的时间,可获得令人满意的结果。
如这里和前面所指出的那样,前面所提到的加热和压力的应用会产生玻璃晶界相。在本发明的工艺中,致密后的陶瓷进一步加热。以使玻璃晶界相转化为结晶晶界相。本领域内的熟练技术人员公知这种促进转化的加热。称之为“退火”。退火,即结晶化,通常是将陶瓷放置在石墨容器中,然后在流动的N2气中,在氮化硅粉末床中加热至某个温度及足够的时间,以产生结晶晶界相。希望的温度区间是1000℃-1550℃,优选的区间是1250℃-1500℃,更优选的是1350℃-1450℃。退火时间是大约2hrs至大约100hrs,取决于样品大小和退火温度。按照需要,退火步骤可重复一次或更多次。
这里描述的致密化和退火方法可形成能用作切削刀具的氮化硅陶瓷制品。采用热压可制造各种各样的形状。一种普通的形状是平盘。这些盘的尺寸范围可以是长2英寸(5.1cm)×宽1.5英寸(3.8cm)×厚0.45英寸(1.1cm)至长16英寸(40.6cm)×宽16英寸(40.6cm)×厚1.0英寸(2.5cm)。也可制造更小和更大的盘,由热压板的尺寸所决定。通过切开和研磨这些盘成为各种各样的切削刀具形状,可制造切削刀具。
晶界相的结晶不会显著地改变室温物理和材料性能,例如陶瓷密度,重量,尺寸,硬度和韧性。由于晶界相的结晶,密度和重量的改变通常小于0.5%。这意味着体积或尺寸的变化也小于0.5%。具有结晶晶界相的材料的硬度和韧性和US 4,883,776中所描述的具有玻璃晶界相的类似的氮化硅相比,也大致等于或小于不超过5%。
本发明的工艺所生产的氮化硅陶瓷体是不具有明显孔隙的致密材料。希望该陶瓷体具有的密度大于理论值的95%,优选的密度是大于理论值的97%,更优选密度是大于理论值的99%。而且,如X射线衍射法确定的那样,氮化硅是以β结晶形式存在,并有较少量的α形式。希望α形式的量小于总的氮化硅量的大约30%(重量)。相当出于意料的是,β-氮化硅主要是以单晶-“针状”晶须或拉长的晶粒形式存在,这是由扫描电镜(SEM)和透射电镜(TEM)所确定的。六棱β-氮化硅晶粒的尺寸,通常长度在1μm-20μm的范围内,平均直径在0.2μm-1.5μm的范围内;优选的是长度为3μm-10μm,平均直径为0.3μm-1.0μm。
因为晶须是无规取向的,和等轴晶粒相反,很难精确地确定以晶须形式存在的氮化硅的百分比。测量是这样进行的在扫描电镜(SEM)上观察氮化硅陶瓷的一个平面,测量纵横比为2-16之间的晶须所占据的体积百分比。也观察到在整个陶瓷体中,晶须是均匀分布并且无规取向的。并且由晶须所占据的体积在各平面上近似相同。一般地,在一个平面上测量的纵横比在2至16之间的氮化硅晶须的百分比是至少20%(体积)。优选的是,在一个平面上测量的纵横比在2至16之间的氮化硅晶须的百分比是至少35%(体积)。出人意料的是,发现氮化硅晶须具有高的平均纵横比。一般地,氮化硅晶须的平均纵横比是至少2.5。优选的是至少5.5。需注意,由于在一个平面上测量纵横比,该平均纵横比是在低限。例如,垂直于平面的晶须可具有表观纵横比小于2,而真实的纵横比可比2大很多。
本发明的工艺中的额外的退火步骤的结果是,X射线衍射分析确定结晶晶界相具有氮氧化合物磷灰石结构。希望晶界相的结晶度是占晶界相总体积90%(体积)以上,优选的结晶度是占晶界总体积95%(体积)以上,更优选的结晶度是占晶界相总体积大于99%(体积)以上。
结晶晶界相可用下述通式表达AxB10-xSi(O,N)4]6(O,N)y这里A是Sr,任选地与Ca,Ba,Na,Sc,Li,Ti,Al或其混合物相结合;B是Y,La,Ce,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Th,或其混合物;X是大于0且小于或等于4的正数;y是大于0且小于或等于2的正数。如果“A”是Sr和Ca,Ba,Na,Sc,Li,Ti或Al,则每摩尔通式所存在的总当量是“X”。注意到通式“(O,N)4”和“(O,N)y”的部分,指的是氧化物和氮化物的结合,相应地,两者的结合总是等于4或y当量。优选地,结晶相是锶-钙-钇氮氧化硅,其中A是Sr或Ca,B是Y,X是从2至4的正数,y是从0.5至1.5的正数。更优选的是,结晶相是(Ca,Sr)3Y7[Si(O,N)4]6(O,N)。
陶瓷中存在的少量其它相的总量不超过10%(重量)。优选的总量是不超过0.4%(重量)。
采用标准测方法容易测出自增强氮化硅陶瓷体的机械性能。特别地是断裂韧性(KIC)的测量是根据这里和下面描述的Chevron切口和Palmqvist方法。断裂强度(断裂模量)的测量根据军用标准1942b测试。硬度的测量根据Vickers压痕测试。
断裂强度(断裂模量)测的是材料在稳定荷载下,抗断裂的能力。断裂强度定义为材料在断裂发生之前所发展的最大单位应力。测试棒的制备和测试的描述见US 4,883,776中的第10栏,61-68行,典型地,室温下的断裂强度为至少650MPa。优选地,室温下的断裂强度在825MP至1250MPa的范围内,更优选的是在900MPa至1100MPa的范围内。1000℃下的断裂强度通常为至少650MPa。1375℃下的断裂强度通常为至少350MPa。
韧性的定义和测量的描述见US 4,883,776中的第11栏,14-27行。典型地,本发明的氮化硅陶瓷体室温下的断裂韧性大于6MPa(m)1/2,希望室温断裂韧性大于7MPa(m)1/2,优选的是大于8MPa(m)1/2。
在评价切削刀具材料时,测量Palmqvist韧性和Vickers硬度是有用的。两种测量可在同一测试样品上同时完成。
Vickers硬度测量陶瓷材料抗压痕的能力。样品的制备和测试的描述见US 4,883,776中的第11栏,444-64行。本发明的氮化硅陶瓷的室温下的Vickers硬度值为至少1325kg/mm2。希望室温下的Vickers硬度值的范围从1400kg/mm2至1700kg/mm2,优选的是从1575kg/mm2至1675kg/mm2。
进行Palmqvist韧性测试的描述见US 4,883,776中的第12栏,3-13行。本发明的氮化硅陶瓷体在室温下展示的Palmqvist韧性最好为至少37kg/mm。希望室温下的Palmqvist韧性在37kg/mm-50kg/mm的范围内,优选的是在40kg/mm-45kg/mm的范围内。
下面的实例用于本发明的新型自增强氮化硅组合物及其制备方法。这些实例不用以限制本发明的范围,除非另外说明,所有的百分比均为重量百分比。
实例E-1(a-i)从Ube Industries,Ltd.购得的氮化硅粉末,商标为SN-E10,含有1.19%的0,小于100ppm的Cl,小于100ppm的Fe,小于50ppm的Ca和小于50ppm的Al。结晶度大于99.5%,B/(α+β)比小于5,比表面是11.2m2/g。Alfa Products供应SrO和SiO2。Moly Corp.供应Y2O3,以及Baker Incorporated供应CaO。
在一个磨机(Union Process间歇磨机(batch attritor)01HD型-容量为750CC,管子和搅拌器用聚四氟乙烯涂覆)中含有氧化锆球,搅拌速率为每分钟330转(rpm)加入225ml甲苯和25滴铝酸盐偶合剂(从Kenrich Petrochemicals购得,商标为KEN-REACT KA 332)的混合物,用作混合介质。向混合介质中加入氮化硅粉末221.3g,氧化锶粉末88g,氧化钇粉末16g,氧化钙粉末0.5g,以及氧化硅粉末3.5g,并且开始搅拌。混合大约30min后,另外加入100ml的甲苯,搅拌速率提供高至630rpm持续2min,使混合物稀释,然后将混合物和氧化锆磨球一起从磨机中移去。通过真空过滤除去过量的甲苯。然后在干燥的N2气流中干燥该混合物。干燥之后,用30目(U.S.系列)(600μm)的不锈钢筛将混合物与氧化锆磨球分开,并且依次通过40目(U.S.系列)(425μm)和60目(U.S.系列)(250μm)不锈钢筛,以得到干燥的粉末混合物,它的组成为88.5%(重量)的氮化硅,3.5%的氧化锶,6.4%的氧化钇,0.2%的氧化钙,以及1.4%的氧化硅。
热压80g的粉末混合物,采用的工艺见U.S.4,883,776中的第13栏,10-25行,有一点改动,即在1825℃和5000psig压力下的时间从45min增加至60min。
如上制备的陶瓷盘样品放在一个石墨坩埚中,然后将其置于氮化硅粉末浴中。这些样品在从1250℃至1550℃范围内的各种温度下退火,退火时间从2hr至100hr,如表Ⅰ所示。
Palmqvist韧性是在实验误差内,没有显著地下降。进一步可见,在1450℃或1550℃下退火50hrs的E-1(h-i)样品的硬度,和热压但末经退火的样品相比,大致相同。(样品E-1f在1250℃下退火50hrs,它的硬度低于热压但末经退火的样品,其原因尚不可知)。但是,有利的是,E-1(f-i)样品的Palmqvist韧性类似于热压的对照样品。
总的结果表明,本发明的具有结晶的氮氧化合物磷灰石晶界相的氮化硅陶瓷的室温下的Palmqvist韧性,比得上具有玻璃结晶界相的末经退火的热压样品的室温下的Palmqvist韧性,最有利的是,两个退火样品E-lh和E-li在1375℃下所测得的断裂强度和“仅热压的”样品的断裂强度相比,可见退火样品的断裂强度显著地高于“仅热压的”样品的断裂强度。
实例E-2(a-f)如实例1,制备粉末组合物并热压成盘。不同之处是,热压在1875℃下进行1hrs。盘在从1250℃至1450℃的各种温度下退火,时间从1hr至50hr,结果见表Ⅱ。
在退火之后,除了α-Si3N4和β-Si3N4之外,还存在着结晶第二相,它具有氮氧化合物磷灰石结构,特征为(Ca,Sr)3Y7[Si(O,N)4]6(O,N)。
用浸水法(描述见D.W.Riderson,所著的Modern Ceramic Engineering,Marcel Dekker,1982)测量如上制备的经退火和未经退火的氮化硅陶瓷体的密度。密度均为3.29g/cc或很接近3.29g/cc。换言之,该陶瓷体的密度接近100%的理论密度,并且基本上是无孔的。如X射线衍射所确定的那样,氮化硅主要以β-Si3N4形式存在,剩余的α-Si3N4小于30%。经退火的陶瓷的体化学组成,由SEM显微照片的立体(stereology)分析所确定,发现它含有约90%(体积)的氮化硅,和约10%(体积)的结晶晶界相。如上制备的氮化硅陶瓷的显微结构,用扫描电镜(SEM)来确定。在一个平面上的观察,约35%(体积)的氮化硅是以纵横比为2至16的拉长的晶须形式出现,平均纵横比是5.6。
上述的氮化硅陶瓷体的Palmqvist韧性的室温数据,见表Ⅰ,表Ⅰ中逐列出了在14kg荷载下测量的Vickers硬度的室温数据,以及在1375℃下用四点弯曲技术测量的断裂强度。“热压样品”,即末退火样品的Palmqvist韧性,Vickers硬度,和断裂强度也列在表Ⅰ中。
可见,和热压但末退火的样品相比,在1350℃下退火2-100hrs的样品E-1(a-e)的Vickers硬度有点下降。但是,有利的是,和热压但未退火的样品相比,退火长达50hrs的这些样品的

表Ⅱ中的数据表明,在1875℃的热压温度下,基本上所有的氮化硅均转仳为β结晶形式,没有留下α相。数据也表明,尽管不存在α-Si3N4,退火也形成了氮氧化合物磷灰石结晶相。于是,比较实例E-1(a-i)和E-2(a-f),可得出一结论氮氧化合物磷灰石相的结晶,不取决于α-Si3N4相的是否存在。而且,含有α-相的E-1样品的Palmqvist韧性值,类似于不含α相的相应的E-2样品,后者在相同的温度和时间下退火。这些数据使人想到,当α-Si3N4的浓度小于30%(重量)时,Palmqvist韧性不取决于α-Si3N4是否存在。
实例E-3(a-g)制备了7个粉末组合物,组成见表Ⅲ,热压工艺的描述见实例1。表Ⅲ中所述的这些样品的Vickers硬度和Palmqvist韧性是在室温下测定的,这些样品在1350℃下退火50hr。从X射线衍射测量观察到,经退火的样品E-3(a-g)具有很宽的组成,它有着相应于氮氧化合物磷灰石结构的结晶晶界相,退火样品的硬度和断裂韧性是在室温下测量的,结果见表Ⅲ。已观察到退火样品的Palmqvist韧性值接近于不经退火的相应的样品的Palmqvist值,但是,退火样品的硬度值有点、但不显著地低于末经退火的相应样品的硬度值。
可以得出一般的结论,在室温下测量的退火样品的物理性能,与末经退火的相应样品的物理性能相比,是有利的。
实例E-4(a-f)按照实例1的工艺制备了6个粉末混合物,其组成见表Ⅳ,不同之处在于,向每个组成中加入了碳化硅,作为预制的增强材料。
表Ⅳ的粉末组合物的热压和退火如实例1.所得到的氮化硅陶瓷用X射线衍射来分析,表明在每个组成下,获得了具有氮氧化合物磷灰石结构的结晶晶界相。并观察到碳化硅增强材料并不阻止结晶氮氧化合物磷灰石晶界的形成。
权利要求
1.一种制备氮化硅陶瓷体的工艺,该陶瓷体含有占优势的高平均纵横比β-氮化硅晶须,且进一步含有具有氮氧化合物磷灰石结构的结晶态晶界相,该工艺包括使一种如下组成的粉未混合物(a)氮化硅,量足以提供一种陶瓷体的量;(b)一种致密助剂包括一Sr源,以及任选地选自Li,Na,Ca,Ba,或其混合物的元素源,所说的源的量足以促进粉未的致密化;(c)一种转化助剂,包括选自Y,La,Ce,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Th或其混合物的元素源,所说的源的量足以促进起始氮化硅向主要是β-氮化硅的转化。(d)至少一种晶须生长加强化合物,其量足以促进形成β-氮化硅晶须,所说的化合物是选自Li,Na,Ca,Sc,Ti或Al,或其混合物的元素氧化物或非氧化物衍生物,但是,以该元素不同于致密助剂(b)的任选组成的元素为条件;(e)氧化硅,其量足以提供一种氮氧化物磷灰石结构的结晶态晶界相;在温度和压力足以造成致密化的条件下,就地形成具有平均纵横比至少为2.5的β-氮化硅晶须,并且然后使致密化组成退火足够长的时间,使得形成X-射线结晶学所确定的有氮氧化合物磷灰石结构结晶态晶界相。
2.按照权利要求1的工艺,所说的β-氮化硅晶须具有平均纵横比在2-16的范围内,所存在的量为至少20%(体积),用扫描电镜观察氮化硅陶瓷体的一个平面测得。
3.按照权利要求1或2的工艺,所说的起始氮化硅含有不超过10%(重量)的β-氮化硅。
4.按照上述权利要求中的任何一项权利要求的工艺,所说的致密助剂量在0.04%-10.0%(重量)的范围内,转化助剂的量在0.2%-29.5%(重量)的范围内,晶须生长加强化合物的量在0.01%-5.0%(重量)的范围内,所有的重量百分比都指的是占粉末混合物总重量的百分比。
5.按照上述权利要求中的任何一项权利要求的工艺,所说的致密助剂和转化助剂所存在的量,足成造成转化助剂对致密助剂的重量比从约1∶4至约8∶1。
6.按照权利要求5的工艺,所说的重量比从约1∶1至约1.8∶1。
7.按照上述权利要求中的任何一项权利要求的工艺,所说的致密助剂是氧化锶,转化助剂是氧化钇以及晶须生长加强化合物是氧化钙。
8.按照上述权利要求中的任何一项权利要求的工艺,所说的粉末混合物包括二氧化硅,其总量(包括氮化硅表面上所存在的二氧化硅的量)为粉末混合物的总重量的2.3%-6%(重量)。
9.按照上述权利要求中的任何一项权利要求的工艺,所说的退火步骤包括在1000℃-1550℃的范围内加热致密化组合物,时间为2hr致100hr。
10.按照上述权利要求中的任何一项权利要求的工艺,所说的粉末混合物进一步包括(a)至少一种预制工Palnqvist韧性增加量的增强材料的,该增强材料选自β-氮化硅晶成纤维,或者碳化硅,碳化钛,碳化硼,二硼化钛,或氧化锆的晶须,纤维,颗粒或片晶中的至少一种或(b)至少一种预制的,并经涂覆的Palmqvist韧性增加量的增强材料,被涂覆的材料是选自氧化镁,氮化铝或莫来石,作为涂层的材料选自碳化硅,碳化钛,碳化硼,二硼化钛,或氧化锆,所说的被涂覆的材料的物理形式选自晶须,纤维,颗粒或片晶,氮化硅的量加预制的增强材料的量为粉末混合物总重量的65%-99.75%(重量)的范围内。
11.按照上述权利要求中的任何一项权利要求的工艺,所说的致密化温度在1700°-1870℃的范围内,致密化压力在20.7MPa(3000Psig)-41.4MPa(6000psig)的范围内。
12.按照上述权利要求中的任何一项权利要求的工艺,所说的氮化硅陶瓷的密度为理论值的至少97%,晶界相的结晶度大于90%。
13.一种23℃下的Palmqvist断裂韧性大于37kg/mm的氮化硅陶瓷体,它包括(a)β-氮化硅的结晶相为至少20%(体积)。(用扫描电镜显微照相观察氮化硅陶瓷体的一个平面而测得),其形式为平均纵横比为至少2.5的晶须;以及(b)具有一种氮氧化合物磷灰石结构的结晶态晶界相,(用X射线结晶学而测得),其量不超过总重量的35%(重量),其通式为AxB10-x[si(O,N)4]6(O,N)y,这里A为Sr,任选地,还有Ca,Ba,Li,Na,Sc,Ti,Al或其混合物;B是Y,La,Ce,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Yb,Th,或其混合物;X是大于0但小于等于4的正数;y是大于0且小于或等于2的正数。
14.按照权利要求13的陶瓷体,进一步地还包括(a)至少一种Palmqvist韧性增加量的预制增强材料,该加强材料选自β-氮化硅晶须或纤维,或者碳化硅,碳化钛,碳化硼,二硼化钛,或氧化锆的晶须,纤维,颗粒或片晶或(b)至少一种预制的,并经涂覆的palmqvist韧性增加量的增强材料,被涂覆的材料选自氧化镁,氮化铝成莫来石,作为涂层的材料选自碳化硅,碳化钛,碳化硼,二硼化钛,或氧化锆,所说的被涂覆的材料的物理形式选自晶须,纤维,颗粒或片晶。
15.按照权利要求13或权利要求14的陶瓷体,所说的晶界相的结晶度大于90%(体积),室温下测得的Vickers硬度在1400kg/mm2-1700kg/mm2的范围内,室温下测得的Palmqvist韧性在37kg/mm-50kg/mm的范围内,1375℃下测得的断裂韧性至少为350Mpa。
16.按照权利要求13-15的任何一项权利要求的陶瓷体所制造的切削刀具。
全文摘要
说明书公开了一种高断裂韧性和高强度的充分致密的,自增强的氮化硅陶瓷体,该陶瓷体包括(a)平均纵横比为至少2.5的晶须形式的β-氮化硅,以及(b)一种氮氧化合物磷灰石结构的结晶态晶界相(用X射线结晶学测得)。一种制备上述的氮化硅陶瓷体的工艺,该工艺包括热压一种粉末混合物,该粉末混合物包括氮化硅,氧化硅,一种致密助剂,转化助剂及一种可加强β-氮化硅晶须生长的化合物,在这样的工艺条件下产生了致密化、高纵横比的β-氮化硅晶须,然后退火充分长的时间,以产生具有氮氧化合物磷灰石结构的结晶态晶界相。
文档编号C04B35/584GK1064261SQ92101118
公开日1992年9月9日 申请日期1992年2月18日 优先权日1991年2月19日
发明者C·J·黄, A·J·皮兹克 申请人:陶氏化学公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1