墨液腔室排空用的装置和方法

文档序号:2506251阅读:177来源:国知局
专利名称:墨液腔室排空用的装置和方法
本申请是经提及结合在本文中的1996年2月7日提出的题为“固态墨水喷射打印头和制造方法”、序列号是08/597,746的申请的部分继续申请。
本发明涉及喷墨打印。更具体地说,本发明涉及喷墨打印头所用墨液腔室的排空方法和装置。
喷墨打印所用的喷墨打印机包括一个喷墨打印头(笔),微小的墨滴在该打印头中形成,并且被喷向一种打印介质。上述的笔包含一个带有许多小孔的孔件或孔板的打印头,墨滴通过这些小孔被喷射。靠近这些孔的是墨液腔室,在通过小孔喷射之前墨液存留在腔室内。墨液通过与墨液供给源相连通的墨液通道被输送到墨液腔室中。墨液供给源可以包含在打印头的储存部分中或者在“离轴”墨液供给的情况下包含在一个与打印头隔开的单独的墨液容器中。
通过一个孔喷射出墨滴可以采用快速加热邻近的墨液腔室中所盛墨液的方法来实现。这一热过程使得腔室中的墨液过热而形成蒸气泡。蒸气泡的形成被称作“成核”。气泡的迅速膨胀迫使墨液通过喷射孔。这一过程有时被称作“发射”。腔室中的墨液一般使用位于腔室内的电阻加热元件来加热。
一当墨液被喷射,墨液腔室即由来自与墨液腔室相连的墨液通道的墨液补充。墨液通道的尺寸是按一定标准设计的,以便于快速重新灌注墨液腔室而达到最高打印速度的目的。对墨液通道和墨液腔室之间的墨液流进行缓冲控制,便可防止或最大限度减少因墨液腔室的灌注不足和灌注过量而分别造成的打印凹凸现象。
当蒸气泡在墨液腔室中膨胀时,膨胀的蒸气泡能扩展到墨液通道中。气泡进到墨液腔室中的膨胀被称作“回泄”。回泄会导致迫使墨液腔室中的墨液离开墨液腔室。气泡排出的墨液量是由喷嘴喷出的墨液加上被迫离开墨水室而下至墨液通道的墨液计算出来的。因此,回泄增加了用来从墨液腔室中喷射给定大小的墨滴所需的能量。用来喷射给定大小的墨滴所需的能量称作“阈值能量”(TOE)。阈值能量高的打印头效率较差,因而比低阈值能量的打印头要耗散较多的热量。假定耗热能力是一定的,那么热效率较高的打印头比热效率较低的打印头能有较高的打印速度或打印频率。
阈值能量是足以形成具有足够大尺寸的气泡以便从打印头的孔中喷射出预定量墨液的能量。然后蒸气泡坍缩而回到墨液腔室中。当气泡在“发射”间隙之间坍缩时,气泡坍缩部分附近的打印头中的组件易受到气蚀应力的影响。加热元件或电阻器尤其易于受气蚀影响而损坏。一般在电阻器上加一层薄的保护性钝化层以保护电阻器免受由气蚀引起的应力影响。使用钝化层来防止或限制气蚀造成损坏的一个问题是,这种钝化层会提高喷射给定大小的墨滴所需的阈值能量。
现在总需要具有高的热效率的打印头,而且能以高的打印频率进行打印。这些打印头应该是可靠的,而且能够持续打印而不损坏。另外,这些打印头应该能相对容易地制造,使得打印头的总成本相对低。
最后,这些打印刷头应该能在打印介质上形成高质量的图像。这些打印头应能在打印头中使用多种墨液的条件下形成具有相同或接近相同的液滴体积的墨滴。例如,打印头应该能提供所选定的液滴体积而不管墨液的表面张力或墨液的粘度如何。这样,可将同一个打印头用于各种不同的打印场合。另外,由打印头形成的墨滴不应该有尾部,尾部会引起溅散、浑浊和通常很差的图像质量。此外,这些打印头应只有最小的轨迹误差,在喷射过程中轨迹误差会造成墨滴不能良好地定型。
本发明涉及一种打印头,及其用来喷射墨滴的操作方法。打印头包含一个形成墨液腔室的腔室元件。该腔室元件有与之相关的腔室容积。腔室元件有一个孔和一个墨液入口,通过此入口墨液流进腔室中。打印头还包含一个用来加热腔室中的墨液的加热元件。随着加热元件的起动,墨液腔室即喷射出其体积等于腔室容积的墨液滴。
在一个优选的实施例中,加热元件是一种电阻加热元件,它的相关面积相对于墨液腔室的容积来说是大的。在这个优先实施例中,喷孔的开口尺寸相对于相关的墨液入口的开口尺寸来说是大的。


图1是按照本发明设计和操作的喷墨打印头的透视图,用来排空墨液腔室。
图2a,2b和2c是表示一个打印头的墨滴喷射次序的横截面图,依此在墨滴喷射以后气泡在墨液腔室中坍缩。
图3a,3b,3c和3d是本发明提出的打印头的墨滴喷射次序的横截面图,依此,蒸气泡被排出到大气中。
图4是图1所示打印头的一个优选实施例中多个墨液腔室之一的放大横截面图。
图5是图4所示优选实施例的顶视图。
图1描述一个包含打印头12的喷墨笔,打印头12是为了实现本发明而设计和设置的。笔10的优选实施例包括笔体14,笔体14有一个用来保存液体如墨液的供应的内部贮存容器。液体通过多个与笔体14中的液体供应源相连通的孔16,从打印头12中被喷出。另一种方案是,如在离轴墨液供应的情况下,那样,液体可以由一个与打印头12相隔离的液体供应源输供给打印头12。
在讨论本发明的打印头12之前,先讨论一下图2a,2b和2c中所示的以前使用的打印头12′及其操作方法是有帮助的。打印头12′未按比例绘制,也不是用来精确表示打印头12′的结构。图2a,2b和2c中按照一系列时间间隔表示出打印头12′的液滴喷射次序。
打印头12′包括一个基底18,带孔件20和液体通道22。带孔件20上有一个喷射液体的孔16。基底18,液体通道22和带孔件20共同构成一个液体腔室26。位于液体腔室26近旁的是加热元件28。
图2a描述具有用虚线表示的气泡前端30的蒸气泡的形成。在启动加热元件28以后,蒸气泡立即形成。在蒸气泡形成过程中,气泡前端30从加热元件28沿径向膨胀到液体腔室26中。当具有气泡前端30的蒸气泡膨胀到液体腔室26中时,腔室26中的液体即被排出,从而迫使液体穿过孔16而形成液滴32。
图2b描述在图2a中所示情况之后很短时间内气泡的喷射程序。在此图中,气泡前端30到达了它的最大尺寸或者说沿径向与加热元件28分离,开始缩回加热元件28。从孔16排出的液滴32被长的液柱34所连接。液柱34是由墨液的表面张力和粘度产生的。液柱34会弹性地把液滴连接到打印头12′上。
图2c描述在图2b中所示的图形之后不久打印头12′喷射液滴的程序。气泡前端30已几乎上破裂而回到加热元件28。气泡前端30的坍缩导致喷射孔出口平面附近区域产生一速度梯度,该速度梯度会使液柱34断裂,从而释放液滴32。液滴32有一个来自断裂的液柱34的尾部36。液柱34的剩余部分38被正在坍缩的气泡前端30拉回到孔16中。
图3a,3b3c和3d描述在一系列时间间隔中本发明的打印头12的简化的表示以说明本发明的液滴喷射方法。图3a-3d没有按比例绘制,这些图也不是用来表示实际的打印头12的,而仅仅是用来表示本发明形成液滴32的技术。
图3a描述本发明的打印头12,它包括基底18,孔件20和液体入口22。孔件有一个孔16。基底18,孔件20和墨液入口22共同构成墨液腔室26。加热元件28位于墨液腔室26的近旁。图中表示出了在刚启动加热元件28之后的打印头12。腔室中墨液的加热在加热元件28附近形成一个蒸气泡。该蒸气泡在气泡前端30,用虚线表示,气泡前端从加热元件28大致沿径向向外膨胀。膨胀着的气泡前端30开始排出腔室26中的墨液,迫使墨液通过孔16。当墨液被迫通过孔16时,液滴32开始从孔16处生成。
图3b表示带有气泡前端30的蒸气泡的进一步的发展。气泡前端30沿径向从加热元件28膨胀到墨液腔室26中。当气泡前端30发展到进入腔室26中时,腔室中的墨液被蒸气泡排出,导致液滴32从孔16处形成。蒸气泡30膨胀穿过孔16的平面,排出到打印头12周围的大气中。在图3a和3b中的气泡膨胀过程中,基本上所有或大部分排出的墨液均经由孔16喷射,如图3b所示。因此,液滴32的体积基本上等于墨液腔室26的容积。
腔室26中相对少量的墨液可以被迫进入墨液入口22。本发明的打印头12是选定的,使得孔16对墨液的阻力小于墨液入口22对墨液的阻力,因此腔室中大部分墨液被迫穿过孔16。影响对墨液阻力的一个因素是孔16和墨液入口22的墨液开口的大小。因为对于本发明的打印头12,孔16的大小比墨液入口22要大,所以大部分排出的墨液都通过孔16被喷射。影响墨液入口22和孔16的液体阻力的其它因素是墨液入口或大气所产生的反压力以及改变墨液流动方向的流动阻碍。
图3c描述紧接图3b所示表现之后的打印头12的液滴喷射程序。在气泡前端30通过孔16的平面之后,蒸气泡排出到大气中。蒸气泡的排出导致液滴32相对高的下落速度。由于喷出的液滴32有一个高的速度梯度,所以液滴32能克服液体的表面张力和粘度,防止图2b所示的液柱34的形成。液柱34以弹性方式把液滴32连接到打印头12上,从而能减小液滴的下落速度。因为没有形成液柱34,所以液滴继续以高的下落速度处于朝向打印介质的轨道上。由打印头12形成的液滴32是如图3c和3d所示的单一的呈球形的液滴32。一旦气泡被排出,来自墨液入口22的墨液即流进腔室26中,重新灌注腔室26,如图3c和3d所示。
图4和5描述本发明的打印头12的一个优选的实施例。按照图3a,3b,3c和3d所揭示的技术,打印头12是为了液滴喷射而设计的。图4是打印头和一个孔16的放大很多倍的横截面图。在图4中可以看出,孔16是在带孔部件或孔板20的外表面40上形成的。孔部件20连在基底18上。基底18包含一个硅基42和支持层44,下面将做更全面的介绍。
孔16是通过液体腔室16的孔板20的一个开口,它形成在孔板20上,孔16的直径可以是比如大约12到16μm。
图4中所示腔室26具有向上渐缩的侧壁46,从而构成一个大致呈截锥形的腔室,腔室的底主要由基底18的上表面48所构成。
预计多种液体腔室形状中的任一种都是能满足需要的,尽管腔室的体积总朝着孔16的方向逐渐减小。在图4的实施例中,孔板20可以采用延压的聚合物膜制成。这种聚合物膜可以在市场上购买到,它的商标是CYCLOTENT,是由Dow Chemical化工公司出口的。其厚度大约10到30μm。也可使用任何适合的聚合物薄膜,比如聚酰胺、聚甲基丙烯酸甲酯、聚碳酸酯,聚脂、聚酰胺、聚乙烯-对苯二酸盐或它们的混合物。另外,孔板可以使用以电镀技术制造的镀金镍板制成。
硅基42的上表面50涂有支持层44。支持层44是用二氧化硅,氮化硅,碳化硅,钼,多晶硅或其它功能上相当的具有不同于基底的硅基42的腐蚀敏感性的材料做成的。
在涂上支持层44以后,做成两个液体入口22,以延伸穿过该支持层。在一个优选的实施例中,在孔板20连接到基底18上之前,而且如下所述在通道52被蚀刻在硅基42中之前,支持层44的上表面48已定型和蚀刻以形成入口22。
薄膜电阻器28连接到基底18的上表面48上。在这个优选的实施例中,在入口22形成之后,但在孔板20连接到基底18之前,已安装电阻器。电阻器28可以是12μm长×12μm宽(参看图5)。非常薄(大约0.5μm)的。钝化层(未示出)可以加在电阻器上以保护它不被所用墨液损坏。如果墨液对电阻器没有损坏作用,钝化层可以更薄或者甚至可以省去。支持层、电阻器和钝化层的总厚度是大约3mm或更小。
电阻器28就安装在入口22近旁。当有选择地被施加到它上面的电压脉冲通电时,电阻器28即作为电阻加热器工作。因此,每个电阻器28在其相对边与导电痕迹54相连。痕迹54位于基底18上,并且被电连接到打印机微处理器上,用来传导电压脉冲。导电痕迹54出现在图5中。
优选的孔板20被安放在支持层44的上表面48上,位于基底18上方。在这方面,孔板20可以是层压的,当是液态时可采用离心旋压成形或者采用生长法或淀积法或涂敷法成形。孔板20粘贴到支持层44上。
电阻器28可以被微处理器有选择地加热或驱动,以便在充满液体的腔室26中发生具有气泡前端30的蒸气泡(图4中用虚划线表示)。由于膨胀的气泡前端30穿过孔16的中心轴56,出了孔16,把蒸气泡排出到大气中,因此腔室26中的液体被喷射,如图3a-3d所示。由于气泡前端30膨胀穿过腔室26,腔室26中的液体被迫从孔16中流出。
在基底18的硅基42上做成液体通道52,以便与入口22以液体连通。最好是,通道52用各向异性的蚀刻方法从硅基42的下侧向上蚀刻到支持层44的下侧58。
按照本发明,打印头(笔)的主体14的贮存器中的墨液借助毛细管力作用而流过每个通道52和入口22,以注入墨液腔室26中。在这点上,通道52有比墨液入口22大得多的容积。通道可以取向,把墨液供给多个腔室26。每个通道52可以延伸而与在基底42上刻出的更大的槽(未画出)相连接,并且与打印头的贮存器直接以液体连通。基底的硅基42连接到打印头主体表面上,该表面构成了通道52的边界。
所有进入腔室26的墨液被导引通过入口22。在这一点上,腔室26的下端60完全包围入口22和电阻器28。
在优选的实施例中,腔室26的容积与加热元件28的面积的比值是低的,使蒸气泡前端膨胀到足以延伸穿过孔16平面,把蒸气泡排出到大气中。对一种电阻加热元件来说,加热元件28提供的单位时间的能量或功率,与电阻器28的长度和电阻器28面积的比值有关。对于按相同长度制成的电阻器来说,则是电阻器消耗的功率与电阻器28的面积有关。因此,腔室26的容积与电阻器的面积的比值应该低,以确保蒸气泡前端面30通过孔16排出以迫使墨液腔室26的全部容量的墨液都通过孔16。
很重要的是,当蒸气泡前端30膨胀时,腔室26中的墨液被迫从孔16中排出,而不进入墨液入口22。孔的阻力与回流阻力的比值应该小,以确保腔室26中基本上全部液体被迫从孔16中排出,而不进入液体入口22中。优选的实施例中孔的阻力与孔的面积有关。优选的实施例中回流阻力与每个液体入口22的面积的总和有关。
表1示明,具有不同构造的几种不同的打印头的模拟结果。表1列出的打印头有以平方微米为单位给定的电阻器面积与以微升为单位给定的腔室容积。从表1中的数据可以看出,其腔室容积与电阻器面积的比值高达15.6的打印头适合于用来把腔室26中的全部容量的墨液都通过孔16喷射出去。
在优选的实施例中,孔16的阻力和回流阻力与它们各自的长度除以各自的面积成比例。由于这些长度是恒定的,所以孔16的阻力和回流阻力都能分别由孔16的面积和入口22的面积来表示。其孔面积与入口面积的比值高达到5的打印头12适合于把腔室中基本上全部容量的液体通过孔16喷射。表1中列出的模拟结果并非用来代表腔室排空发生的全范围,而仅仅是表示腔室排空发生的一些例子。
表1
在一个优选的实施例中,入口22紧靠电阻器28,入口的大小是这样设计的,使得一旦发射,膨胀的气泡前端30便封堵入口22以阻止腔室26中的液体回流到通道52中。借助封堵入口22,提高了有效的回流阻力,使得腔室26中更多的液体通过孔16被喷射出去。
具体地说,入口22与腔室26相邻接(不是明显隔开),入口22的位置是这样定好的,使得入口22和腔室26的邻接部位非常靠近电阻器28。在一个优选的实施例中,每个入口22以不大于电阻器长度25%的间距与电阻器28隔开。
此外,在入口和腔室28的连接处,入口的横截面积尺寸是足够小的,以确保膨胀的气泡前端30能覆盖亦即封堵入口面积。当气泡移进入口22中时,上述封堵便由气泡前端30所完成,从而消除了腔室26和通道52之间任何液态墨的通路。正如前面所提到的,上述通路的消除可以防止气泡膨胀时,腔室26中的墨液被回泄进通道52中。
当气泡前端30完全穿过入口22,并稍微膨胀到通道52的容积中时,便最佳地实现了墨液通路的消除,正如图4中虚线所示。在一个优选的实施例中,各入口的总面积应小于电阻器面积的大约120%。
对于那些其结构不同于刚才结合优选的实施例所描述的那种打印头的打印头,也可能有借助膨胀的蒸气泡来封堵入口的情况。在这方面,入口离电阻器或加热元件的距离,以及入口的横截面积都可以大于或小于上面所规定的,这取决于某些变量。这些变量包括墨液的粘度和相关的热动力学性能,电阻器单位面积的加热能,以及墨液和蒸气运动时所途径的材料的表面能。
在所优选的实施例中,电阻器的能量密度约为4nJ/m2,墨液的粘度约为3cp,沸点约为100℃。
由于入口22的这一取向(亦即流动路线62的取向)之故,一旦气泡前端突破孔平面,并排出到大气中,在重新灌注时,流进腔室26中的墨液便为提升气泡前端30提供流动动量,从而使墨液腔室充满墨液,如图3c和3d所示。
这里值得注意的是,尽管在刚才描述的图4和5所示的优选的实施例中揭示了一种特定的入口布置和电阻器设置,但是还有许多不同的布置可以使用。例如,图5中描述了4个入口22,应该理解到使用的入口是可多可少的,仍能满足所讨论的腔室容积大小,腔室容积与电阻器面积的比值、以及孔的阻力与回流阻力的比值的关系。此外,相对于腔室26来说入口22可以有许多不同的设置。
图1,3a,3b,3c,3d,4和5中所示的本发明的打印头12在操作上有n个优点。首先,本发明的打印头12的打印质量易于提高。由本发明的打印头12形成的墨液滴32是单一的小滴,基本上呈球形,它以很高的速度被喷射而不会形成液柱34。由于形成的墨滴没有液柱34,从而消除或大大减小了尾部。墨滴的尾部36能导致降低打印质量的轨迹误差或汇聚现象。提高墨滴速度也能减少轨迹误差。较高的墨滴速度导致减少墨滴32暴露在外力例如空气流中的时间,从而减少这些外力对墨滴32的影响。另外,液柱34和尾部36能导致生成几个更小的液滴,这些更小的滴液易于形成墨液的射流而不是单个液滴。这种墨液射流会导致很差的打印质量。相反地,单个的小液滴32的形成会导致在打印介质上形成良好的、没有浑浊和汇聚的墨迹,从而获得很好的打印质量。
第二,本发明的打印头12会有改善的热特性,使得打印头可用较低的阈值能量操作,而且可减少打印头12上的热聚集。在本发明的打印头12中,蒸气泡被排出到大气中。由于排出了蒸气泡,从而避免了蒸气泡坍缩而进入腔室26中。因为蒸气泡不在腔室中坍缩,所以用来保护加热元件28免受气蚀应力损坏的钝化层可减少厚度或省去,从而降低阈值能量,并提高打印头12的效率。另外,排出蒸气泡时将凝聚的潜热释放到大气中,即释放打印头12产生的热量,从而阻止打印头12中热量的聚集。打印头12中热量的聚集易于导致打印头12的过热,或者为了防止打印头12过热。不得不对打印速度加以某种限制。
最后,本发明的打印头12基本上能将腔室16中的全部墨液喷出去。因此,液滴的大小基本上取决于腔室26的尺寸,而不取决于对以前使用的打印头12′调制液滴大小的那些因素,如电阻器规格、墨液粘度及表面张力。因此,本发明的打印头12能保证恒定的液滴大小,与各种制造上的可变因素和墨液的成分无关,从而获得更好的打印质量。
权利要求
1.用来喷射液滴(32)的打印头(12),它包括具有一个有腔室容积的腔室(26)的腔室元件(18,20),该腔室元件(18,20)有一个孔(16)和一个墨液入口(22),墨液通过该入口流向腔室(26);用来加热腔室(26)中墨液的加热元件(28),随着加热元件(28)的启动,腔室(26)喷射出其体积基本上等于腔室容积的液滴(32)。
2.按照权利要求1中所述的打印头(12),其特征在于加热元件(28)是一种电阻加热元件,它的有关面积相对于腔室容积来说是大的。
3.按照权利要求1中所述打印头(12),其特征在于孔(16)具有的开口尺寸相对于有关墨液入口(22)的开口尺寸来说是大的。
4.按照权利要求1中所述的打印头(12),其特征在于腔室(26)的大小是适应加热元件(28)设计的,以便只形成单一的液滴(32)。
5.按照权利要求1中所述的打印头(12),其特征在于打印头(12)在尺寸设计和布置上,都能确保形成小于5微微升(皮可升)的液滴。
6.按照权利要求1中所述的打印头(12),其特征在于加热元件(28)是具有相关电阻器面积的电阻器,打印头(12)的腔室容积与电阻器面积之比小于50微微升/平方微米。
7.按照权利要求1中所述的打印头(12),其特征在于腔室(26)是这样设置的,借以喷射单一的液滴(32)而没有尾部(36)。
8.按照权利要求1中所述的打印头(12),其特征在于相对于腔室容积,加热元件(28)被供给足够的能量,使蒸气泡排通到大气中。
9.形成液滴(32)的方法,它包括用墨液灌满腔室(26),腔室(26)由腔室元件(18,20)构成,腔室元件有一个孔(16);用腔室(26)中的加热元件(28)加热腔室(26)中的墨液以形成一个膨胀的蒸气泡,该蒸气泡带有一个气泡前端(30),气泡前端(30)的最初位置靠近加热元件(28),最终位置靠近孔(16),蒸气泡由此被排到大气中,在从最初位置到最终位置的膨胀过程中,膨胀的蒸气泡排出的墨液体积等于腔室容积。
10.按照权利要求9中所述的形成液滴(32)的方法,还包括用墨液重复灌注腔室(26),以及以最大操作频率加热腔室(26)中的墨液,这一最大操作频率大于相关的不将蒸气泡排出到大气中的打印头(12)的最大操作频率。
全文摘要
本发明是用于喷射液滴(32)的打印头(12)。打印头(12)包含一个构成腔室(26)的腔室元件(18,20)。腔室元件(18,20)有一个与之相关的腔室容积。腔室元件(18,20)具有一个孔(16)和一个墨液入口(22),墨液经该入口流向腔室(26)。打印头(12)还包含用来加热腔室(26)中的墨液的加热元件(28)。随着加热元件(28)的启动,腔室(26)喷射出其体积等于腔室容积的液滴(32)。
文档编号B41J2/16GK1181313SQ97121
公开日1998年5月13日 申请日期1997年10月24日 优先权日1996年10月28日
发明者T·L·维伯 申请人:惠普公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1