半导体器件的制作方法

文档序号:2576543阅读:265来源:国知局
专利名称:半导体器件的制作方法
技术领域
本发明涉及一种半导体器件的结构。具体地,本发明涉及一种具有制作在诸如玻璃或塑料的绝缘体上的薄膜晶体管(下文称为TFT)的有源矩阵半导体器件的结构。此外,本发明涉及使用这种类型的半导体器件作为显示部分的电子设备。
背景技术
近几年,诸如电致发光(EL)显示器件和FED(场致发射显示器)的自发光显示器件变得活跃起来。自发光显示器件的优点包括它们高的能见度、因为对于液晶显示器件(LCD)所必需的背光等不再需要而使它们制得更薄的能力,以及对它们视角几乎没有限制。
术语EL元件表示具有发光层的元件,其中可以获得通过提供电场产生的发光。在发光层中,存在从单重激发态回到基态时的光发射(荧光)和从三重激发态回到基态时的发光(磷光),本发明的半导体器件可使用上述光发射类型中的任何一种。
EL元件通常具有层状结构,其中发光层夹在一对电极(阳极和阴极之间)。由Eastman Kodak公司的Tang等人提出的具有“阳极,空穴输运层,发光层,电子输运层和阴极”的层状结构可作为典型的结构。这种结构具有非常高效率的光发射,并且目前研究的大多数EL元件采用这种结构。
此外,还存在在阳极和阴极之间具有依次层叠的下列层结构空穴注入层、空穴输运层、发光层和电子输运层;以及空穴注入层、空穴输运层、发光层、电子输运层和电子注入层。任一种上述结构可用作用在本发明的半导体器件中的EL元件结构。此外,荧光色素等也可被掺入发光层中。
在本说明书中,EL元件中在阳极和阴极之间形成的所有层一般被称为“EL层”。前述的空穴注入层、空穴输运层、发光层、电子输运层和电子注入层都包括在EL层的分类中,并且以阳极、EL层和阴极为结构的发光元件被称为EL元件。
图5中示出通常半导体器件中象素的结构。注意EL显示器件被用作一种典型的半导体器件的实例。图5所示的象素具有源信号线501、栅信号线502、开关TFT503、驱动TFT504、存储电容器505、EL元件506和电源507和508。
现在解释各部分之间的连接关系。TFT具有三个端子,栅、源和漏,但由于TFT结构在此明确难于区分源和漏。因此有关元件之间连接的解释以一个电极,源或漏,被称为第一电极,而另一个电极被称为第二电极的形式给出。但是当给出关于TFT的开通和关断状态、每个端子的电位等的解释时,使用源、漏等术语。
开关TFT503的栅极被连接到栅信号线502,而开关TFT503的第一电极被连接到源信号线501。开关TFT503的第二电极被连接到驱动TFT504的栅极。驱动TFT504的第一电极被连接到电源507,而驱动TFT504的第二电极被连接到EL元件506的一个电极。EL元件的另一个电极被连接到电源508。存储电容器505被连接在驱动TFT504的栅极和第一电极之间,并存储驱动TFT504的栅和源之间的电压。
如果栅信号线502的电位改变,并且开关TFT503接通,则输入到源信号线501的图像信号被输入到驱动TFT504的栅极。驱动TFT504的栅和源之间的电压以及在驱动TFT504的源和漏之间流动的电流量(下文称为漏极电流)根据输入图像信号的电位确定。该电流提供给发光的EL元件506。
由使用多晶硅(下文称为P-Si)形成的TFT比由使用非晶硅(下文称为A-Si)形成的TFT具有更高的电场迁移率和更大的接通电流,并因此适于作为用在半导体器件中的晶体管。
相反,由多晶硅形成的TFT具有的问题点在于,由于它们晶粒边界中的缺陷,易于出现它们电特性的分散。
如果当TFT结构象素如同图5所示结构时,在诸如TFT阈值和接通电流的电特性中存在每个象素的分散,则响应输入图像信号在TFT中的漏极电流量存在很大的差别,即使在输入相同的图像信号的情况下,并因此存在EL元件506的亮度的分散。
为了解决这种类型的问题,所希望的电流量可被提供给EL元件,而不依赖于TFT特性。因此,已提出各种类型的电流写入象素,它们可控制流入EL元件的电流的大小,而不受TFT特性的影响。
术语电流写入表示一种方法,其中使用源信号线输入象素的图像信号由与由模拟或数字电压信息的正常输入相反的电流输入。提供到EL元件的电流值由外侧上的信号电流设定,使与其等效的电流流入到象素中。其优点在于不存在由于TFT特性的分散产生的影响。
下面示出典型的电流写入象素的几个实例,并给出有关其结构,操作和特性的解释。
图6中示出第一结构的一个实例。图6的象素具有源信号线601、第一到第三栅信号线602-604、电流馈电线605、TFT606-609,存储电容器610、EL元件611和信号电流输入电流源612。
TFT606的栅极被连接到第一栅信号线602,TFT606的第一电极被连接到源信号线601,而TFT606的第二电极被连接到TFT607的第一电极、TFT608的第一电极和TFT609的第一电极。TFT607的栅极被连接到第二栅信号线603,而TFT607的第二电极被连接到TFT608的栅极。TFT608的第二电极被连接到电流馈电线605。TFT609的栅极被连接到第三栅信号线604,而609的第二电极被连接到EL元件611的阳极。存储电容器610被连接在TFT608的栅极和输入电极之间,并存储TFT608栅和源之间的电压。预定的电位被输入到电流馈电线605和EL元件611的阴极,并且该二者具有相互的电位差。
用图7A至7E解释从信号电流的写入到光发射的操作。附图中用于表示各个部分的参考数字基于图6所示数字。图7A至7C示意性示出电流流动。图7D示出在信号电流的写入期间在各个路径中流动的电流之间的关系,而图7E示出在信号电流的同一写入期间存储电容器610中积聚的电压,即TFT608的栅和源之间的电压。
首先,脉冲被输入到第一栅信号线602和第二栅信号线603,TFT606和607接通。在该点上在源信号线中流动的电流即信号电流被看作Idata。
电流Idata流入源信号线,因此如图7A所示象素内的电流路线被分为I1和I2。二者之间的关系如图7D所示。注意Idata=I1+I2。
在TFT606接通的时刻电荷尚未存储在存储电容器610中,因此TFT608关断。所以I2=0并且Idata=I1。即,在该周期期间,电流只因为电荷向存储电容器610中的积聚而流动。
随后电荷逐渐积聚在存储电容器610中,并且在两个电极之间的电位差开始变大(见图7E)。当两个电极之间的电位差达到Vth(图7E中点A)并且I2变大时,TFT608接通。如上讨论的Idata=I1+I2,由此I1逐渐减小。电流仍在流动,而且,电荷在存储电容器中积聚。
电荷继续积聚在存储电容器610中直到存储电容器610中两个电极之间的电位差即TFT608的栅和源之间的电压变为所希望的电压,即变为这样的电压(VGS),在该电压TFT608使电流Idata尽可能多地流动。当电荷的积聚完成时(图7E中点B),电流I2停止流动,而且在该点相应于VGS的电流流入TFT608,Idata=I2(见图7B)。于是信号写入操作完成。第一栅信号线602和第二栅信号线603的选择最终完成,并且TFT606和607关断。
下面讨论光发射。脉冲被输入到第三栅信号线604,并且TFT609接通。先前被写入VGS的被存储在存储电容器601中,并因此TFT608接通,并且电流Idata从电流馈电线605流动。由此,EL元件611发射光。如果在该点TFT608在饱和区工作,则Idata可继续流动而不改变,即使TFT608的源和漏之间的电压改变。
图17示出第二结构的实例。图17的象素具有源信号线1701、第一至第三栅信号线1702至1704、电流馈电线1705、TFT1706至1709、存储电容器1710和EL元件1711,以及用于输入信号电流的电流源1712。
TFT1706的栅极被连接到第一栅信号线1702,TFT1706的第一电极被连接到源信号线1701,TFT1706的第二电极被连接到TFT1708的第一电极和TFT1709的第一电极。TFT1708的栅极被连接到第二栅信号线1703,而TFT1708的第二电极被连接到电流馈电线1705。TFT1707的栅极被连接到第三栅信号线1704,TFT1707的第一电极被连接到TFT1709的栅极,而TFT1707的第二电极被连接到TFT1709的第二电极和EL元件1711的一个电极。存储电容器1710被连接在TFT1709的栅极和第一电极之间,并存储TFT1709栅和源之间的电压。预定的电位被输入到电流馈电线1705并输入到EL元件1711的另一电极,它于是具有相互的电位差。
用图184至18E解释从信号电流的写入到光发射的操作。附图中用于表示各个部分的参考数字基于图17所示数字。图18A至18C示意性示出电流流动。图18D示出在信号电流的写入期间在各个路径中流动的电流之间的关系,而图18E示出在信号电流的同一写入期间存储电容器1710中积聚的电压,即TFT1709的栅和源之间的电压。
首先,脉冲被输入到第一栅信号线1702和第三栅信号线1704,TFT1706和1707接通。此时在源信号线1701中流动的电流即信号电流被看作Idata。
电流Idata流入源信号线1701,因此如图18A所示象素内的电流路线被分为I1和I2。二者之间的关系如图18D所示。注意Idata=I1+I2。
在TFT1706接通的时刻电荷尚未存储在存储电容器1710中,因此TFT1709为关断。所以I2=0并且Idata=I1。即,在该周期期间,电流只因为电荷向存储电容器1710中的积聚而流动。
随后电荷逐渐积聚在存储电容器1710中,并且在两个电极之间的电位差开始变大(见图18E)。当两个电极之间的电位差达到Vth(图18E中点A)并且I2变大时,TFT1709接通。如上讨论的Idata=I1+I2,由此I1逐渐减小。电流仍在流动,而且,电荷在存储电容器中积聚。
电荷继续积聚在存储电容器1710中,直到存储电容器1710中两个电极之间的电位差,即TFT1709的栅和源之间的电压变为所希望的电压,即变为这样的电压(VGS),在该电压TFT1709使电流Idata尽可能多地流动。当电荷的积聚完成时(图18E中点B),电流I1停止流动,而且此时相应于VGS的电流流入TFT1709,Idata=I2(见图18B)。于是信号写入操作完成。第一栅信号线1702和第三栅信号线1704的选择最终完成,并且TFT1706和1707关断。
随后脉冲被输入到第二栅信号线1703,并且TFT1708接通。此时先前被写入VGS的被存储在存储电容器1701中,并因此TFT1709接通,并且电流Idata从电流馈电线1705流动。由此,EL元件1711发射光。如果在该点TFT1709在饱和区工作,则可使Idata流动而不改变,即使TFT1709的源和漏之间的电压中存在一些变化。
图19示出第三结构的实例。图19的象素具有源信号线1901、第一栅信号线1902、第二栅信号线1903、电流馈电线1904、TFT1905至1908、存储电容器1909和EL元件1910,以及用于输入信号电流的电流源1911。
TFT1905的栅极被连接到第一栅信号线1902,TFT1905的第一电极被连接到源信号线1901,TFT1906的第二电极被连接到TFT1906的第一电极和TFT1907的第一电极。TFT1906的栅极被连接到第二栅信号线1903,而TFT1906的第二电极被连接到TFT1907的栅极和TFT1908的栅极。TFT1907的第二电极和TFT1908的第一电极都被连接到电流馈电线1904,而TFT1908的第二电极被连接到EL元件1910的阳极。存储电容器1909被连接在TFT1907和1908的栅极,以及TFT1907的第二电极和TFT1908的第一电极之间。存储电容器1909存储TFT1907的栅和源之间的电压和TFT1908的栅和源之间的电压。预定的电位被输入到电流馈电线1904和EL元件1910的阴极,它于是具有相互的电位差。
用图20A至20E解释从信号电流的写入到光发射的操作。附图中用于表示各个部分的参考数字基于图19所示数字。图20A至20C示意性示出电流流动。图20D示出在信号电流的写入期间在各个路径中流动的电流之间的关系,而图20E示出在信号电流的同一写入期间存储电容器1909中积聚的电压,即TFT1907和1908的栅和源之间的电压。
首先,脉冲被输入到第一栅信号线1902和第二栅信号线1903,TFT1905和1906接通。在该点在源信号线1901中流动的电流即信号电流被看作Idata。
电流Idata流入源信号线1901,因此如图20A所示象素内的电流路线被分为I1和I2。二者之间的关系如图20D所示。注意Idata=I1+I2。
在TFT1905接通的时刻电荷尚未存储在存储电容器1909中,因此TFT1907和1908为关断。所以I2=0并且Idata=I1。即,在该周期期间,电流只因为电荷向存储电容器1909中的积聚而流动。
随后电荷逐渐积聚在存储电容器1909中,并且在两个电极之间的电位差开始变大(见图20E)。当两个电极之间的电位差达到Vth(图20E中点A)并且I2变大时,TFT1907接通。如上讨论的Idata=I1+I2,由此I1逐渐减小。电流仍在流动,而且,电荷在存储电容器中积聚。
在此TFT1907接通,并且TFT1908也接通,电流开始流动。但是,如图20A所示该电流流入独立路线中,因此Idata值没有改变,并对I1和I2没有影响。
电荷继续积聚在存储电容器1909中,直到存储电容器1909中两个电极之间的电位差,即TFT1907和1908的栅和源之间的电压变为所希望的电压,即变为这样的电压(VGS),在该电压TFT1907使电流Idata尽可能多地流动。当电荷的积聚完成时(图20E中点B),电流I1停止流动,而且在该点相应于VGS的电流流入TFT1907,Idata=I2(见图20B)。于是信号写入操作完成。第一栅信号线1902和第二栅信号线1903的选择最终完成,并且TFT1905和1906关断。
这里电荷被存储在存储电容器1909中,使得在TFT1907中的电流Idata的流动将尽可能多的电压分在栅和源之间。TFT1907和1908形成一电流反射镜,因此该电压也被分给TFT1908并且电流流入TFT1908。在图20A至20E中该电流由参考符号Idata表示。
假若TFT1907和TFT1908的栅长度和沟道宽度相等,则IEL=Idata。即,信号电流Idata和流入EL元件中的电流IEL之间的关系可由确定构造电流反射镜的TFT1907和TFT1908的大小的方法确定。
上述实例中示出的电流写入的优点在于使电流Idata流动所需的栅和源之间电压被存储在存储电容器610中,即使对于在TFT608等的特性中存在分散的情况。所希望的电流可因此被精确地提供给EL元件,因此控制由TFT特性中的分散引起的亮度的分散成为可能。
表1中示出各种结构的特性表1

首先,考虑信号电流Idata和流入EL元件的电流IEL之间的关系。灰度等级用模拟灰度等级方法由半导体器件中的电流值表示,因此大电流为高灰度等级,而小量的电流为低灰度等级。即,写入信号电流的大小因灰度等级而不同。在这种情况下,将低灰度等级写入象素比将高灰度等级写入象素所需的时间量长。此外,对于低灰度等级信号电流小,因此它们很容易受噪声影响。
接着,考虑电流-电压转换TFT和驱动TFT之间的关系。电流-电压转换TFT是用于将从源信号线输入的信号电流转换为电压信号的TFT,驱动TFT是用于使电流按照存储在存储电容器中的电压流动的TFT。各种结构的电流-电压转换TFT(表示为转换TFT)和驱动TFT的图号在表1中示出。
实际上转换TFT和驱动TFT为公用装置,公用TFT用于写入和光发射操作。因此由于TFT的分散影响小。另一方面,对于转换TFT和驱动TFT不同的情况,如第三结构所示,存在由于象素中特性的分散引起的影响。
接着考虑信号电流路径。在第一结构和第三结构中,信号电流从电流源流到电流馈电线,或从电流馈电线流到电流源。另一方面,当使用第二结构在信号电流被写入时,信号电流从电流源流经EL元件。对于在低灰度等级信号的写入后写入高灰度等级的信号的情况,以及对于执行相反操作的情况,EL元件本身变为具有这种类型的结构的负载,因此有必要加长写入时间。
此外,对于第一和第二结构,每象素行用三个栅信号线进行象素控制,因此与常规半导体器件相比,大大减小了孔径比。

发明内容
本发明的目的在于,提供一种能够解决上面讨论的各种问题点,而不增加信号线数目的半导体器件。
由常规电流写入类型引起的问题之一在于,在光发射期间用于信号写入的电流和EL元件中的电流大小相同。即,为解决问题,在光发射期间可使用于信号写入的电流总是大于EL元件中的电流。
为了在电流之间产生不同,对流入晶体管的电流的大小给出差别。在本实施例中,应注意栅长度L,在信号电流的写入期间其中流动电流的晶体管的栅长度L小于光发射期间其中流动提供给EL元件的电流的晶体管的栅长度。于是,通过具有比在常规EL元件中流动的电流大的电流进行写入。因此,可以解决在低灰度等级的情况下需要大量时间的问题,并且还能够防止噪声对信号的影响。
此外,与使用其中在写入和光发射期间使用不同的晶体管的结构相比,公用晶体管用于在写入和光发射期间的晶体管的一部分,使得晶体管特性的发散难于影响发光。
下面描述本发明的结构。
本发明的一种半导体器件的特征在于,它包括第一装置,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;第二装置,用于存储转换后的电压;第三装置,用于选择存储或释放第二装置中的电压;以及第四装置,用于在输入信号电流的周期内阻挡将电流从电源提供到负载,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载。
本发明的一种半导体器件的特征在于,它包括第一装置,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;第二装置,用于存储转换后的电压;第三装置,用于选择存储或释放第二装置中的电压;第四装置,用于在输入信号电流的周期内阻挡将电流从电源提供到负载,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载;以及第五装置,控制信号电流到第一装置的输入。
本发明的一种半导体器件的特征在于,它包括第一装置,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;第二装置,用于存储转换后的电压;第三装置,用于选择存储或释放第二装置中的电压;并联连接的多个第四装置,用于在输入信号电流的周期内阻挡将电流从电源提供到负载,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载;
第五装置,用于控制信号电流到第一装置的输入;以及多个第六装置,用于选择多个第四装置中的至少一个以形成从电源到负载的电流馈电路径。
本发明的一种半导体器件的特征在于,它包括多个并联连接的第一装置,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;第二装置,用于存储转换后的电压;第三装置,用于选择存储或释放第二装置中的电压;第四装置,用于在输入信号电流的周期内阻挡将电流从电源提供到负载,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载;第五装置,用于控制信号电流到多个第一装置的输入;以及多个第六装置,选择多个第一装置中的至少一个以形成从电源到负载的电流馈电路径。
本发明的一种半导体器件的特征在于,它包括转换和驱动晶体管,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;存储电容性装置,用于存储转换后的电压;存储电容性装置中的存储晶体管,用于选择是存储还是释放电压;以及驱动晶体管,用于在其间信号电流被输入的周期内阻挡电流从电源到负载的提供,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载。
本发明的一种半导体器件的特征在于,它包括转换和驱动晶体管,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;存储电容性装置,用于存储转换后的电压;存储电容性装置中的存储晶体管,用于选择是存储还是释放电压;驱动晶体管,用于在其间信号电流被输入的周期内阻挡电流从电源到负载的提供,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载;以及开关晶体管,用于控制信号电流到转换和驱动晶体管的输入。
本发明的一种半导体器件的特征在于,它包括转换和驱动晶体管,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;存储电容性装置,用于存储转换后的电压;存储电容性装置中的存储晶体管,用于选择是存储还是释放电压;并联连接的多个驱动晶体管,用于在其间信号电流被输入的周期内阻挡电流从电源到负载的提供,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载;开关晶体管,用于控制信号电流到转换和驱动晶体管的输入;多个电流选择晶体管,它们选择多个驱动晶体管中的至少一个,并实现从电源到负载的电流馈电路径。
本发明的一种半导体器件的特征在于,它包括并联连接的多个转换和驱动晶体管,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;存储电容性装置,用于存储转换后的电压;存储电容性装置中的存储晶体管,用于选择是存储还是释放电压;驱动晶体管,用于在其间信号电流被输入的周期内阻挡将电流从电源提供到负载,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载;开关晶体管,用于控制信号电流到多个转换和驱动晶体管的输入;以及多个电流选择晶体管,它们选择多个转换和驱动晶体管中的至少一个,并实现从电源到负载的电流馈电路径。
本发明的一种半导体器件的特征在于从电源到负载的多个电流馈电路径并联布置;和使用多个电流馈电路径中的至少一个将电流提供给负载。
本发明的一种半导体器件的特征在于沿路径出现到发光元件的电流馈电,这些路径按照借助在多个电流馈电路线之间按时间顺序开关的时间而不同。
本发明的一种半导体器件的特征在于存储电容性装置存储转换和驱动晶体管的栅和源之间的电压;存储晶体管通过接通和关断在转换和驱动晶体管的栅极和漏极之间提供导电性或非导电性。
本发明的一种半导体器件的特征在于转换和驱动晶体管具有与驱动晶体管相同的极性。
本发明的一种半导体器件的特征在于转换和驱动晶体管以及驱动晶体管被串联布置在从电源到负载的电流馈电路径中,并且它们的栅极电连接。
本发明的一种半导体器件的特征在于信号电流路径经过至少第一装置;和用于在负载工作时从电源给负载供电的电流路径经过至少第一装置和第四装置。
本发明的一种半导体器件的特征在于信号电流路径经过至少转换和驱动晶体管的源和漏;以及用于在驱动负载时从电源给负载供电的电流路径经过至少转换和驱动晶体管的源和漏,以及驱动晶体管的源和漏。
本发明的一种半导体器件的特征在于由Idata表示的信号电流和由IEL表示的从电源提供给负载的电流之间的关系为,Idata≥IEL。
本发明的一种半导体器件的特征在于负载是包括电致发光元件的发光元件。


附图中图1A和1B为示出本发明的实施例模式的视图;图2A-2E为用于解释图1A和1B中示出的象素的信号写入和光发射期间操作和电流路径的视图;图3A-3C为示出本发明的实施例模式的模拟图像信号输入半导体器件的实例的视图;图4A和4B为示出本发明的实施例模式的数字图像信号输入半导体器件的实例的视图;图5为示出普通半导体器件中象素的结构的视图;
图6为示出典型的电流写入半导体器件中象素结构的视图;图7A-7E为示出图6所示象素的信号写入和光发射期间操作和电流路径的视图;图8为示出图3A-3C所示的半导体器件中源信号线驱动电路的结构的一个实例的视图;图9为示出图4A和4B所示的半导体器件中源信号线驱动电路的结构的一个实例的视图;图10为示出图3A-3C所示的半导体器件中取样电路和电流转换电路的结构的一个实例的视图;图11为示出图4A和4B所示的半导体器件中固定电流电路的结构的一个实例的视图;图12为示出图4A和4B所示的半导体器件中源信号线驱动电路结构的一个实例的视图;图13为示出相应于3比特数字灰度等级的电流置位电路的结构的一个实例的视图;图14A-14D为示出具有不同于实施例模式1的结构的象素的视图、其操作和电流路径;图15A-15C分别为半导体器件的外部视图和横截面视图;图16A-16H为示出能够应用本发明的电子设备实例视图;图17为示出典型电流写入半导体器件的象素结构视图;图18A-18E为示出图17所示象素的信号写入和光发射期间的操作和电流路径的视图;图19为示出典型电流写入半导体器件的象素结构视图;图20A-20E为示出图19所示象素的信号写入和光发射期间的操作和电流路径的视图;图21A-21C为解释半导体器件制造工艺的视图;图22A-22C为解释半导体器件制造工艺的视图;图23A和23B为解释半导体器件制造工艺的视图;图24A和24B为示出具有其中由于相邻TFT之间的分散引起的显示不规则性被平均的结构实例视图;图25为用于简要解释驱动图24A和24B中所示象素的方法的视图;
图26A和26B为示出具有其中由于相邻TFT之间的分散引起的显示不规则性被平均的结构实例视图;图27A和27B为示出具有其中由于相邻TFT之间的分散引起的显示不规则性被平均的结构实例视图;图28A和28B为示出本发明另一实施例模式的视图;图29A-29E为用于解释图28A和28B中所示的象素的信号写入和光发射期间的操作和电流路径的视图;图30A-30D为示出在具有不同于实施例模式2的结构的象素的信号写入和光发射期间的操作和电流路径的视图;图31A-31D为示出在具有不同于实施例模式2的结构的象素的信号写入和光发射期间的操作和电流路径的视图;图32A-32D为示出在具有不同于实施例模式2的结构的象素的信号写入和光发射期间的操作和电流路径的视图;图33A-33D为示出在具有不同于实施例模式2的结构的象素的信号写入和光发射期间的操作和电流路径的视图;图34A和34B为分别示出一实例元件的布局的视图及其等效电路的视图;图35为示出具有其中由于相邻TFT之间的分散引起的显示不规则性被平均的结构实例视图;图36A-36C为图1A和1B中所示象素结构的一部分被改变的情况的视图;图37A-37C为图28A和28B中所示象素结构的一部分被改变的情况的视图;图38A-38C为图14A-14D中所示象素结构和电流路径的一部分被改变的情况的视图;图39A和39B为示出图33A-33D中所示的象素的电流路径的视图;以及图40A-40C为示出其中图28A和28B中所示的象素结构的一部分被改变的实例视图。
具体实施例方式
实施例模式1图1A示出本发明的一种结构。图1A的象素具有源信号线101、第一和第二栅信号线102和103、电流馈电线104、第一开关元件105、第二开关元件106、驱动TFT107、转换和驱动TFT108、存储电容器109、EL元件110和用于输入信号电流的电流源111。
注意,存储电容器109可被形成为借助使用导线、有源层、栅材料等的、并具有位于中间的绝缘层的电容性元件,该存储电容器也可通过使用晶体管栅电容器替代而被消除。即,假若具有存储转换和驱动TFT108的栅和源之间的电压的能力,则任何结构可被使用。
第一开关元件105由第一栅信号线102控制。第一开关元件105的第一电极被连接到源信号线101,第一开关元件105的第二电极被连接到驱动TFT107的第一电极和转换和驱动TFT108的第一电极。第二开关元件106由第二栅信号线103控制。第二开关元件106的第一电极被连接到驱动TFT107的栅极和转换和驱动TFT108的栅极,而第二开关元件106的第二电极被连接到源信号线101。驱动TFT107的第二电极被连接到EL元件110的阳极,而转换和驱动TFT108的第二电极被连接到电流馈电线104。存储电容器109被连接在转换和驱动TFT108的栅极和第二电极之间,并存储转换和驱动TFT108的栅和源之间的电压。预定的电位被输入到电流馈电线104和EL元件110的阴极,这于是具有相互的电位差。
注意,优选存储电容器109连接在转换和驱动TFT108的栅和源之间。
用具有与其它TFT的结构相似结构的TFT可形成第一和第二开关元件。图1B示出,第一开关元件105和第二开关元件106分别由开关TFT155和存储TFT156形成的一个实例。开关TFT155和存储TFT156只用作用于通过接通和关断选择导电性或非导电性的开关,因此对它们的极性没有限制。
在对实施例模式1没有限制的情况下,当使用TFT作为开关元件时对TFT的极性不存在限制。此外,虽然在此使用晶体管特别是TFT,也可使用形成在单晶硅或SOI上的晶体管。
用图2A-2E解释从信号电流写入到光发射的操作。表示附图中各个部分的参考数字基于图1A和1B。图2A-2C分别示出信号输入、信号输入的完成和光发射期间示意性的电流流动。图2D示出在信号电流的写入期间流入各个路径的电流之间的关系,而图2E示出在信号电流的同一写入期间在存储电容器中积聚的电压,即TFT108的栅和源之间的电压。
首先,脉冲被输入到第一栅信号线102和第二栅信号线103,开关TFT155和存储TFT156接通。此时在源信号线中流动的电流被看作Idata。
电流Idata流入源信号线,因此如图2A所示象素内的电流路径被分为I1和I2。二者之间的关系如图2D所示。注意Idata=I1+I2。此外,此时由于开关TFT155和存储TFT156都是接通的,驱动TFT107栅极的电位变为与驱动TFT107的输入电极的电位相等。即,栅和源之间的电压为零,因此驱动TFT107本身关断。如果假设驱动TFT107在该状态下接通,则电流流入EL元件111,并且电流Idata不可能被准确设置。
在开关TFT155接通的时刻电荷尚未存储在存储电容器109中,因此转换和驱动TFT108是关断的。所以I2=0并且Idata=I1。即,在该周期期间,电流只因为电荷向存储电容器109中的积聚而流动。
随后电荷逐渐积聚在存储电容器109中,并且在两个电极之间的电位差开始变大(见图2D)。当两个电极之间的电位差超过Vth(图2E中点A)并且I2变大时,转换和驱动TFT108接通。如上讨论的Idata=I1+I2,由此I1逐渐减小。电流仍在流动,而且,电荷在存储电容器中积聚。
电荷继续积聚在存储电容器109中直到存储电容器109中两个电极之间的电位差即转换和驱动TFT108的栅和源之间的电压VGS变为所希望的电压,即变为这样的电压(VGS),在该电压转换和驱动TFT108使电流Idata尽可能多地流动。当电荷的积聚完成时(图2E中点B),电流I1停止流动,而且此时相应于VGS的电流流入转换和驱动TFT108,Idata=I2(见图2B)。第二栅信号线103的选择随后完成,并且存储TFT156关断,信号写入操作完成。
下面讨论光发射操作。当第一栅信号线102的选择完成时开关TFT155关断。从电流馈电线到开关TFT105和到电流源的电流路线于是切断,因此为了使电流Idata流入转换和驱动TFT108到该点,存储在存储电容器109中的电荷的一部分被传送到驱动TFT107的栅极。驱动TFT107于是自动地接通。因此,如图2C所示,从电流馈电线到转换和驱动TFT108到驱动TFT107和到EL元件110的电流路径变大,并且使电流IEL流动。EL元件110于是发光。
转换和驱动TFT108的栅极和驱动TFT107的栅极被连接,因此转换和驱动TFT108和驱动TFT107用作一个多栅TFT。通常如果TFT中栅长度L变长,漏极电流变小。在这种情况下,在信号写入操作期间电流为Idata最终只流入转换和驱动TFT108,而在光发射期间电流为IEL流入转换和驱动TFT108和驱动TFT107中。因此在光发射期间栅极的数目变大,结果栅长度L变长,电流之间的关系变为Idata>IEL。
注意,驱动TFT107的沟道宽度W和转换和驱动TFT108的沟道宽度可具有相同的大小,也可以不同。栅长度L之间的关系也类似。
按照上述的过程进行信号写入到光发射。按照本发明,写入可用电流Idata进行,在EL元件以低灰度等级发射光的情况下的写入期间,该电流Idata大于流入EL元件的电流IEL。诸如嵌入信号电流的噪声的干扰因此可被避免,并且快速写入操作成为可能。
此外,驱动TFT107和转换和驱动TFT108在光发射期间作为多栅TFT工作,因此希望这些TFT具有相同的极性。此外,希望在电流以图2A-2E的方向相流动的情况下极性为p沟道。
注意,在电流流入EL元件110的方向与图2A-2E的方向相反的情况下,结构易于被改变。该结构在图36A-36C中示出。转换和驱动TFT以及驱动TFT的极性与图2A至2E所用的极性相反。信号电流写入和光发射期间的电流路径如图36B和36C所示。
此外,在信号写入期间和光发射期间使用转换和驱动TFT108。即,通过在信号写入和光发射期间使用一部分公用TFT,TFT特性中的分散对信号写入操作和光发射的影响可变得较小。
此外,在从图2B的状态运动到图2C的状态时在光发射操作开始的时刻,积聚在存储电容器109中的电荷的一部分被传送到驱动TFT107的栅极。因此存储在存储电容器108中的TFT108的栅和源之间的电压在光发射期间变得稍小于写入期间的所希望的值。因此,TFT栅和源之间的电压非常轻微地变动,其方向使电流更难于流动,对于在TFT107和108的特性中存在分散的情况下,在黑显示期间由于TFT关断漏泄电流引起的元件的光发射也可被阻止。
注意,在实施例模式1中,开关TFT155和存储TFT156分别由第一栅信号线102和第二栅信号线103控制以接通和断开。在完成信号写入后EL元件立刻发射光的情况下,接通和断开控制可同时进行。对于开关TFT155和存储TFT156具有相同极性的情况,通过将开关TFT155和存储TFT156的栅极连接到同一栅信号线并进行控制,栅信号线的数目可因此被减少。
注意,虽然在假设EL元件110被用做由驱动TFT107和转换和驱动TFT108驱动的负载,并且这是应用于发光器件的象素的情况下,在此提出解释,但本发明不限于此用途。即,也可能驱动诸如二极管、晶体管、电容器、电阻器的负载或其中组合这些负载的电路。这与其它实施例模式和实施例相似。
实施例模式2图28A示出本发明的实施例模式2。图28A的象素具有源信号线2801、第一和第二栅信号线2802和2803、电流馈电线2804、第一开关元件2805、第二开关元件2806、驱动TFT2807、转换和驱动TFT2808、存储电容器2809以及EL元件2810。每个源信号线具有用于输入信号电流的电流源2811。
注意,借助使用导线、有源层、栅材料等存储电容器2809可被形成为具有位于中间的绝缘层的电容性元件,该存储电容器可通过使用晶体管栅电容器替代而被删去。即,假若在所希望的时间周期内具有存储转换和驱动TFT2808的栅和源之间的电压的能力,则任何结构可被使用。
第一开关元件2805由第一栅信号线2802控制。第一开关元件2805的第一电极被连接到源信号线2801,第一开关元件2805的第二电极被连接到转换和驱动TFT2808的第一电极和驱动TFT2807的第一电极。第二开关元件2806由第二栅信号线2803控制。第二开关元件2806的第一电极被连接到源信号线2801,而第二开关元件2806的第二电极被连接到转换和驱动TFT2807的栅极和驱动TFT2807的栅极。驱动TFT2807的第二电极被连接到电流馈电线2804,而转换和驱动TFT2808的第二电极被连接到EL元件2810的一个电极。存储电容器2809被连接在转换和驱动TFT2808的栅极和第二电极之间,并存储转换和驱动TFT2808的栅和源之间的电压。预定的电位被输入到电流馈电线2804和EL元件2810的另一电极,这于是具有相互的电位差。
注意,优选存储电容器2809被连接在转换和驱动TFT2808的栅和源之间。
用具有与其它TFT的结构相似结构的TFT可形成第一和第二开关元件。图28B示出,第一开关元件2805和第二开关元件2806分别由开关TFT2855和存储TFT2856形成的一个实例。开关TFT2855和存储TFT2856只用作用于通过接通和关断选择导电性或非导电性的开关,因此对它们的极性没有限制。
用图29A-29E解释从信号电流写入到光发射的操作。表示附图中各个部分的参考数字基于图28A和28B。图29A-29C分别示出信号输入、信号输入的完成和光发射期间示意性的电流流动。图29D示出在信号电流的写入期间流入各个路径的电流之间的关系,而图29E示出在信号电流的同一写入期间在存储电容器中积聚的电压,即TFT2808的栅和源之间的电压。
首先,脉冲被输入到第一栅信号线2802和第二栅信号线2803,开关TFT2855和存储TFT2856接通。此时输入源信号线2801的信号电流被看作Idata。
电流Idata流入源信号线2801。如图29A所示象素内存在电流路径,并且Idata流过该路径,分为I1和I2。注意Idata=I1+I2。此外,由于开关TFT2855和存储TFT2856都是接通的,此时驱动TFT2807栅极的电位变为与驱动TFT2807的第二电极的电位相等。即,栅和源之间的电压为零,因此驱动TFT2807本身关断。如果假设驱动TFT2807在该状态下接通,则电流流入EL元件2810,并且电流Idata不可能被准确设置。
在开关TFT2855接通的时刻电荷尚未积聚在存储电容器2809中,因此转换和驱动TFT2808关断。所以I2=0并且Idata=I1。即,在此电荷在电容器2809中积聚,并产生相应的电流。
随后电荷逐渐积聚在存储电容器2809中,并且在两个电极之间的电位差开始变大。当两个电极之间的电位差达到Vth,即转换和驱动TFT2808的阈值(图29E中点A),并且I2变大时,转换和驱动TFT2808接通。如上讨论的Idata=I1+I2,由此I1逐渐减小,但没有达到零,直到电荷在存储电容器2809中的积聚完成,并且使电流还在流动。
电荷继续积聚在存储电容器2809中直到存储电容器2809的两个电极之间的电位差即转换和驱动TFT2808的栅和源之间的电压变为所希望的电压,即变为这样的电压(VGS),在该电压转换和驱动TFT2808使电流Idata尽可能多地流动。当电荷的积聚完成时(图29E中点B),电流I1停止流动,而且此时相应于VGS的电流流入转换和驱动TFT2808,Idata=I2(见图29B)。第二栅信号线2803的选择随后完成,并且存储TFT2856关断。于是第一栅信号线2802的选择完成,开关TFT2855关断,并且信号写入操作完成。
下面讨论光发射操作。当第一栅信号线2802的选择完成时开关TFT2855关断。从源信号线2801到开关TFT2855到转换和驱动TFT2808并到EL元件2810的电流路线于是切断,因此为了使电流Idata流入转换和驱动TFT2808,存储在存储电容器2809中的电荷的一部分被传送到驱动TFT2807的栅极。驱动TFT2807于是自动地接通。因此,如图29C所示,从电流馈电线2804到驱动TFT2807到转换和驱动TFT2808和到EL元件2810的电流路径变大,并且使发光电流IEL流动。EL元件110于是发光。
驱动TFT2807的栅极和转换和驱动TFT2808的栅极被连接,因此两个TFT此时用做一个多栅TFT。通常,如果TFT中栅长度L变长,漏极电流变小。在这种情况下,在信号电流写入操作期间信号电流最终只流入转换和驱动TFT2808,而在光发射期间发光电流流入驱动TFT2807中和转换和驱动TFT2808中。因此在光发射期间栅极的数目变大,结果栅长度L变长,电流之间的关系变为Idata>IEL。
注意,驱动TFT2807的沟道宽度W和转换和驱动TFT2808的沟道宽度W可具有相同的大小,也可以不同。栅长度L之间的关系也类似。
按照上述的过程进行从信号电流写入到光发射。按照本发明,写入也可用电流Idata进行,在EL元件以低灰度等级发射光的情况下的写入期间,该电流Idata大于发光电流IEL。此外通过以足够大的电流进行写入,缩短写入时间的量成为可能,即使EL元件成为一个负载。
此外,驱动TFT2807和转换和驱动TFT2808在光发射期间作为多栅TFT工作,因此希望这些TFT具有相同的极性。此外,希望在电流以图29A-29E的方向相流动的情况下要求极性为n沟道。
此外,与对实施例模式1进行的解释相似,在电流流入EL元件的方向变为相反的情况下,结构易于被改变。该结构在图37A中示出。转换和驱动TFT和驱动TFT的极性与图29A至29E所用的极性相反。信号电流写入和光发射期间的电流路径如图37B和37B所示。对于本说明书中的随后的实施例也可能有类似的改变,因此省略以后的解释。
此外,在信号写入期间和光发射期间使用转换和驱动TFT2808。即,通过在信号写入和光发射期间使用一部分公用TFT,可使TFT特性中的分散对信号写入操作和光发射的影响变得较小。
此外,当从图29B的状态运动到图29C的状态时,在光发射操作开始的时刻,积聚在存储电容器2809中的电荷的一部分被传送到驱动TFT2807的栅极。存储在存储电容器2809中的TFT2808的栅和源之间的电压,因此在光发射期间变得稍小于写入期间的所希望的值。因此,TFT栅和源之间的电压非常轻微地变动,其方向使电流更难于流动,对于在TFT2807和2808的特性中存在分散的情况下,在黑显示期间由于TFT关断漏泄电流引起的元件的光发射也可被阻止。
注意,在实施例模式2中,开关TFT2855和存储TFT2856分别由第一栅信号线2802和第二栅信号线2803控制以接通和断开。在完成信号写入后EL元件立刻发射光的情况下,接通和断开控制可同时进行。对于开关TFT2855和存储TFT2856具有相同极性的情况,通过将开关TFT2855和存储TFT2856的栅极连接到同一栅信号线并进行控制,栅信号线的数目可因此被减少。
实施例模式1的结构和已加入到表1的本发明实施例模式2的结构的比较在表2中示出。
此外,本发明的要点在于接收信号电流输入,在任意的时间执行电流的存储,并使用在输出取样和保持操作期间变为电流路径的TFT作为多栅TFT。在本说明书中可典型地给出使用EL元件的发光器件的象素的实施例模式,但本发明不限于这些特定的使用,也可有效地将本发明应用于诸如幅度转换电路的模拟电路。
实施例下面讨论本发明的实施例。
实施例1
表2

实施例1中解释用于将模拟图像信号用作图像信号以执行显示的半导体器件的结构。图3A示出半导体器件结构的实例。在衬底301上有象素部分302,其中多个象素排列在矩阵形状中。源信号线驱动电路303、第一和第二栅信号线驱动电路304和305是在象素部分302的周围。虽然在图3A中使用两个栅信号线驱动电路,在不需要为象素驱动选择多个信号线的情况下,只需要其中的一个驱动电路,如实施例模式中所解释的。此外,也可以使用栅信号线驱动电路对称地排列在栅信号线的两端且栅信号线从两端驱动的结构。
输入到源信号线驱动电路303、第一栅信号线驱动电路304和第二栅信号线驱动电路305的信号,从外侧经柔性印刷电路(FPC)306提供。
图3B中示出源信号线驱动电路的结构的一个实例。源信号线驱动电路用于执行使用模拟图像信号作为图像信号的显示,并具有移位寄存器311、缓冲器312、取样电路313和电流转换电路314。也可在需要时添加未在图中特别示出的电平移动器等。
下面解释源信号线驱动电路的操作。将参照图8示出的详细结构。
移位寄存器801由多级触发器电路(FF)等形成,并输入时钟信号(S-CLK)、时钟反信号(S-CLKb)和起始脉冲(S-SP)。按照这些信号的定时,取样脉冲被一个接一个地输出。
从移位寄存器801输出的取样脉冲在通过将缓冲器802等放大后被输入到取样电路。取样电路803用多级取样开关(SW)形成,并按照输入的取样脉冲的定时执行某一列的图像信号的取样。具体地,当取样脉冲被输入到取样开关时取样开关接通,此时图像信号的电位经取样开关被输入到电流转换电路804。
电流转换电路804用多级电流置位电路810形成,并按照取样的图像信号输出预定的电流到源信号线(Si,这里1≤i≤n)。下面用图10解释电流置位电路810的操作。
图10是示出取样电路和电流转换电路结构的视图。上面讨论了取样电路1001的操作。虽然在此取样电路1002使用一个TFT,也可使用以n沟道TFT和p沟道TFT来构成的模拟开关等。
电流转换电路1003具有电流输出电路1004和复位电路1005,并转换取样的电压信号为电流信号。图像信号被输入到电流输出电路1004,而预定的信号电流(Idata)按照输入图像信号的电位被输出。图10中电流输出电路用运算放大器(op-amp)和TFT构造,但对该结构没有特别的限制。也可使用其它的结构,假若它们能够按照输入信号的电位输出预定的信号电流。
从电流输出电路1004输出的信号电流被输入到复位电路1005。复位电路1005具有模拟开关1006和1007、反相器1008和电源1009。
模拟开关1006和1007都通过使用复位信号(Res.)和由反相器1008反向的复位信号进行控制,并工作使得一个开时另一个关。
在正常写入期间复位信号不被输入,因此模拟开关1006接通,而模拟开关1007断开。此时从电流输出电路1004输出的信号电流被输出到源信号线。另一方面,如果复位信号被输入,则模拟开关1006被关断,而模拟开关1007被接通。由电源1009给予的电位被作为源信号线的电位施加,并且源信号线被复位。注意,复位操作在水平返回周期等中进行。还要注意,优选从电源1009给予的电位几乎等于象素部分中电流馈电线的电位。即,优选流入源信号线的电流量能够在源信号线被复位时被设置为零。
图3C示出栅信号线驱动电路的结构的实例。栅信号线驱动电路具有移位寄存器321和缓冲器322。电路操作类似于源信号线驱动电路的操作,移位寄存器321按照时钟信号和起始脉冲一个接一个地输出脉冲。这些脉冲在由缓冲器322放大后被输入到栅信号线,并且一次一行被置于选中的状态。信号电流从源信号线依次写入到由选中的栅信号线控制的象素列。
注意,虽然在图中示出具有多个触发器的移位寄存器作为移位寄存器的实例,也可使用可能用解码器等选择信号线的结构。
实施例2实施例2中解释用于将数字图像信号用作图像信号以执行显示的半导体器件的结构。图4A示出半导体器件结构的实例。在衬底401上有象素部分402,其中多个象素布置在矩阵形状中。源信号线驱动电路403、第一和第二栅信号线驱动电路404和405是在象素部分402的周围。虽然在图4A中使用两个栅信号线驱动电路,在不需要为象素驱动选择多个信号线的情况下,只需要其中的一个驱动电路,如实施例模式中所解释的。此外,也可以使用栅信号线驱动电路对称地排列在栅信号线的两端且栅信号线从两端驱动的结构。
输入到源信号线驱动电路403、第一栅信号线驱动电路404和第二栅信号线驱动电路405的信号,从外侧经柔性印刷电路(FPC)406提供。
图4B中示出源信号线驱动电路的结构的一个实例。源信号线驱动电路用于执行使用数字图像信号作为图像信号的显示,并具有移位寄存器411、第一闩锁电路412、第二闩锁电路413和固定电流电路414。也可在需要时添加未在图中特别示出的电平移动器等。
栅信号线驱动电路404和405可与实施例1中指出的电路类似,因此这里没有在图中示出它们,并省略对它们的解释。
下面解释源信号线驱动电路的操作。将参照图9示出详细的结构。
移位寄存器901由多级触发器电路(FF)等形成,并输入时钟信号(S-CLK)、时钟反信号(S-CLKb)和起始脉冲(S-SP)。按照这些信号的定时,取样脉冲一个接一个地输出。
从移位寄存器901输出的取样脉冲被输入到第一闩锁电路902。数字图像信号被输入到第一闩锁电路902,并按照取样脉冲输入的定时被存储在各级中。
当数字图像信号在第一闩锁电路902中的存储完成到最后一级时,在水平返回周期期间闩锁脉冲被输入到第二闩锁电路903,存储在第一闩锁电路902中的数字图像信号被立刻全部传送到第二闩锁电路903。存储在第二闩锁电路903中的数字图像信号的一个行的部分随后被输入到固定电流电路904。
取样脉冲被再次输出到移位寄存器901,同时存储在第二闩锁电路903中的数字图像信号被输入到固定电流电路904。通过重复这些操作可以进行图像信号的一个帧部分的处理。
图11是示出固定电流电路结构的视图。固定电流电路具有多级电流置位电路1101。形成在各级中的电流置位电路1101,按照从第二闩锁电路输入的数字图像信号中的1或0信息,输出预定的信号电流(Idata)到源信号线。
电流置位电路1101具有用于提供信号电流的固定电流源1102、模拟开关1103-1106、反相器1107和1108以及电源1109。图11中固定电流源1102由运算放大器(op-amp)和TFT构造,但对该结构没有特别的限制。
模拟开关1103-1106通过从第二闩锁电路903输出的数字图像信号控制以接通和关断。模拟开关1103和1104以相互排他的方式工作使得一个开时另一个关。同样,模拟开关1105和1106也以相互排他的方式工作。
当存储在第二闩锁电路903中的数字图像信号为1时,即当它为H电平时,模拟开关1103和1105接通,而模拟开关1104和1106关断。预定的信号电流因此实现从固定电流源1102流动,并被经模拟开关1103和1105输出到源信号线。
另一方面,如果存储在第二闩锁电路903中的数字图像信号为0,即当它为L电平时,模拟开关1104和1106接通,而模拟开关1103和1105关断。从固定电流源1102输出的信号电流不被输出到源信号线,而是经过模拟开关1104落到地电平。但电源1109的电位经模拟开关1106分给源信号线。注意,优选电源1109的电位几乎等于象素部分中电流馈电线的电位。即,优选当数字图像信号为L电平时流入源信号线的电流可被设置为零。
前述操作在具有一个水平周期的所有级上相似地执行。输出到所有源信号线的信号电流的值于是被确定。
注意,虽然模拟开关被用作电流置位电路中的开关,也可使用其它类型的开关,诸如传输门。此外,如实施例1中讨论的,通过使用解码器等能够选择信号线的另一结构作为移位寄存器的替代物。
实施例3在使用实施例2示出的数字图像信号的半导体器件中,显示成为两个灰度等级,白和黑。实施例3中描述用于类似地显示使用数字图像信号的多重灰度等级的驱动电路。
图12示出用于执行3比特数字灰度等级显示的源信号线驱动电路结构的实例。源信号线驱动电路的操作类似于在实施例2中示出的1比特源信号线驱动电路,并且它具有移位寄存器1201、第一闩锁电路1202、第二闩锁电路1203和固定电流电路1204。与实施例2类似,固定电流电路1204使用多个电流置位电路1210。
3比特数字图像信号是一比特一比特地(数字数据1-3)输入的。第一闩锁电路1202和第二闩锁电路1203与3个比特并联布置,并且按照从移位寄存器输出的取样脉冲同时进行数字图像信号的3个比特部分的存储操作。存储在第二闩锁电路1203中的3比特数字图像信号被输入到固定电流电路1204。
图13示出构造实施例3的固定电流电路的电流置位电路结构的实例。电流置位电路1300具有TFT1301-1303、模拟开关1304和1305、反相器1306和1307、NOR电路1308和电源1309和1310。
数字图像信号的3比特被分别输入到TFT1301-1303的栅极,并输入到NOR电路1308。TFT各自具有不同的沟道宽度W,并且它们的接通电流被设置为具有比例4∶2∶1。
当输入到TFT1301-1303的栅极的数字图像信号为1时,即当它为H电平时,TFT接通并且预定的电流被提供给源信号线。提供给源信号线的电流是经TFT1301-1303提供的电流的总和,并且如上所述各TFT的接通电流的比例为4∶2∶1,因此电流的大小可被控制为23级,即8级。
如果输入到TFT1301-1303的栅极的数字图像信号都为零时,即当它为L电平时,则TFT1301-1303全部关断。另一方面,H电平从NOR输出,模拟开关1305接通,电源1310的电源电位被分给源信号线。
此外,如果复位信号(Res.)在水平返回周期内被输入,则模拟开关1304接通,电源1309的电源电位被分给源信号线。
优选电源1309和1310的电位分别被设置为类似与象素部分的电流馈电线的电位,使得当电源电位被分给源信号线时流入源信号线的电流量可被设置为零。
于是可进行灰度等级显示。注意,虽然在实施例3中给出3比特数字灰度等级情况的实例,对灰度等级的数目没有特定的限制,对于显示更高灰度等级数目的情况,用类似的方法可能实现实施例3。
实施例4在图1A和1B所示的结构中,存储TFT156的第二电极被连接到源信号线101。如图14A所示,存储TFT156也可被连接到开关TFT1401的输出电极和驱动TFT1403的输入电极。
图14B-14D示出信号写入和光发射操作,但除了电流路径I2与图1A和1B稍有不同外,操作是相同的,因此这里省略解释。
此外,如实施例4中所示借助使用到存储TFT1402的连接,由使用数字图像信号的时间灰度等级方法驱动的半导体器件可将存储TFT1402用作复位TFT。驱动TFT1403的栅和源之间的电压可被设置为零,通过在完成光发射周期后将存储TFT1402接通,将驱动TFT1403关断。结果从EL元件的光发射停止。
注意,虽然在此省略有关时间灰度等级方法的详细解释,但可以参考在JP2001-5426B和JP2000-86968A中公开的方法。
图34A和34B中示出该结构应用于有源矩阵显示器件的实例。图34B是实际元件和布线布局的实例,而图34A是反映各个元件之间位置关系的等效电路图。图中的参考数字基于图14A-14D。
注意,相似的操作也可以使用不同于图14A-14D的结构。简而言之,当信号电流被输入时可以建立与图38A相似的路径。在光发射期间可以建立与图38B相似的路径。开关元件等因此可被如此排列,使得它们的位置不与前述的路径不一致,并也可能为诸如图38C的连接。
实施例5在该实施例中,描述半导体器件的制造方法。典型地,描述组成驱动电路的n沟道TFT和p沟道TFT以及提供在象素部分中的TFT。对于组成象素的部分TFT没有具体说明,它可以按照本实施例形成。
首先,如图21A所示,由诸如氧化硅膜、氮化硅膜或氮氧化硅膜的绝缘膜形成的基底膜5002形成在由玻璃形成的衬底5001上,该玻璃为诸如由Coning公司的由#7059玻璃和#1737玻璃表示的硼硅酸钡玻璃或硼硅酸铝玻璃。例如,由SiH4、NH3和N2O用等离子体CVD方法形成且厚度为10-200nm的氮氧化硅膜5002a被形成。类似地,其上层叠由SiH4和N2O形成且厚度为10-200nm(优选50-100nm)的氢化的(hydrogenerated)氮氧化硅膜。在该实施例中,基底膜5002具有两层的结构,但也可形成为上述绝缘膜之一的单层膜,或具有多于上述绝缘膜两层的叠层膜。
小岛状半导体层5003-5006由结晶半导体膜形成,该结晶半导体膜通过在具有非晶结构的半导体膜上进行激光结晶方法或已知的热结晶方法获得。这些小岛状半导体层5003-5006厚度分别为25-80nm(优选30-60nm)。对结晶半导体膜的材料没有限制,但结晶半导体膜优选由硅、硅锗(SiGe)合金等制成。
当结晶半导体膜用激光晶化方法制造时,使用脉冲振荡型或连续发光型的准分子激光器、YAG激光器和YVO4激光器。当使用这些激光器时,优选使用从激光振荡器发射的激光束由光学系统会聚为线形然后照射到半导体膜上的方法。结晶条件适于由操作员选择。当使用准分子激光器时,脉冲振荡频率被设定为300Hz,激光的能量密度设定为100-400mJ/cm2(通常为200-300mJ/cm2)。当使用YAG激光器时,脉冲振荡频率通过使用其二次谐波被优选设定为30-300kHz,激光的能量密度优选设定为300-600mJ/cm2(通常为350-500mJ/cm2)。会聚为线形并且宽度为100-1000μm,例如400μm的激光束被照射到整个衬底表面。此时,线性激光束的重叠率被设定为50-90%。
注意,可以使用连续振荡型或脉冲振荡型的气体激光器或固态激光器。诸如准分子激光器、Ar激光器、Kr激光器的气体激光器,和诸如YAG激光器、YVO4激光器、YLF激光器、YAlO3激光器、玻璃激光器、红宝石激光器、变石激光器和Ti蓝宝石激光器的固态激光器可用作激光束。同样,诸如其中掺杂Cr、Nd、Er、Ho、Ce、Co、Ti或Tm的YAG激光器、YVO4激光器、YLF激光器、YAlO3激光器的晶体可用作固态激光器。激光器的基波取决于掺杂的材料而不同,由此获得基波约为1μm的激光束。借助使用非线性光学元件可获得相应于基波的谐波。
当进行非晶半导体膜的结晶时,优选通过使用能够连续振荡的固态激光器施加二次谐波到四次谐波以便获得大晶粒尺寸的晶体。通常优选施加NdYVO4激光器(基波为1064nm)的二次谐波(厚度为532nm)或三次谐波(厚度为355nm)。特别地,从连续振荡型YVO4激光器发射的具有10W输出的激光束由非线性光学元件转换为谐波。同样,可使用应用YVO4晶体和非线性光学元件成为谐振器而发射谐波的方法。随后,更优选地,激光束通过光学系统被形成以便具有矩形形状或椭圆形状,由此照射待处理的物质。此时,需要能量密度近似为0.01-100MW/cm2(优选01.-10MW/cm2)。半导体膜以近似10-2000cm/s速率相应于激光束相对运动以便照射半导体膜。
接着,形成覆盖小岛状半导体层5003-5006的栅绝缘膜5007。栅绝缘膜5007借助等离子体CVD方法或溅射方法由含有硅且厚度为40-150nm的绝缘膜形成。在该实施例中,栅绝缘膜5007由厚度为120nm的氮氧化硅膜形成。但是栅绝缘膜不限于这种氮氧化硅膜,而可以是含有其它硅并具有单层或叠层结构的绝缘膜。例如,当使用氧化硅膜时,用等离子体CVD方法将四乙基原硅酸盐与O2混合,反应压力被设定为40Pa,衬底温度被设定为300-400℃,高频(13.56MHz)功率密度被设定为0.5-0.8W/cm2用于放电。于是氧化硅膜可通过放电形成。以这种方法制造的氧化硅膜可通过400-500℃的热退火获得优选的特性作为栅绝缘膜。
用于形成栅极的第一导电膜5008和第二导电膜5009被形成在栅绝缘膜5007上。在该实施例中,厚度为50-100nm的第一导电膜5008由Ta形成,厚度为100-300nm的第二导电膜5009由W形成。
用溅射方法形成Ta膜,Ta靶用Ar溅射。在这种情况下,当适量的Xe和Kr被添加到Ar时,Ta膜的内应力被释放,该膜的振离(pealingoff)可被防止。α相Ta膜的电阻率约20μΩcm,该Ta膜可用作栅极。但是β目Ta膜的电阻率约180μΩcm,它不适于用作栅极。当具有近似于α相Ta的晶体结构且厚度约10-50nm的氮化钽作为用于形成α相Ta膜的Ta膜的基底被事先形成时,α相Ta膜可容易地获得。
用W作为靶用溅射方法形成W膜。此外,也可用六氟化钨(WF6)借助热CVD方法形成W膜。在任一情况下,需要降低电阻以将该膜用作栅极。希望将W膜的电阻率设定为等于或小于20μΩcm。当W膜的晶粒尺寸增加时,W膜的电阻率可被降低。然而,当在W膜中存在很多诸如氧等杂质时,结晶化被阻止同时电阻率增加。因此,在溅射方法的情况下,使用纯度为99.9999%或99.99%的W靶,并且需要足够的小心在待形成膜时从气相到W膜不混入杂质以形成W膜。于是,可实现9-20μΩcm的电阻率。
在该实施例中,第一导电膜5008由Ta形成,而第二导电膜5009由W形成。但是,本发明不限于这种情况。这些导电膜中的每一种膜也可由选自Ta、W、Ti、Mo、Al和Cu的元素形成,或由这些元素作为主要成分的合金材料或化合物材料形成。此外,也可用以掺杂诸如磷的杂质元素的多晶硅为代表的半导体膜形成。除本实施例中所示以外的组合的实例包括第一导电膜5008由氮化钽(TaN)形成,而第二导电膜5009由W形成的组合;第一导电膜5008由氮化钽(TaN)形成,而第二导电膜5009由Al形成的组合;以及第一导电膜5008由氮化钽(TaN)形成,而第二导电膜5009由Cu形成的组合。
接着,掩模5010由光致抗蚀剂形成,并进行用于形成电极和布线的第一刻蚀处理。在该实施例中,使用ICP(感应耦合等离子体)刻蚀方法,CF4和Cl2与气体混合用于腐蚀。在1Pa的压力下,500W的RF(13.56MHz)功率施加到线圈型电极上产生等离子体。100W的RF(13.56MHz)功率也施加到衬底侧(样品台),并施加基本上负的自偏压。当CF4和Cl2混合时,W膜和Ta膜被腐蚀到相同的程度。
在上述刻蚀条件下,通过将由光致抗蚀剂形成的掩模形成为适当的形状,借助施加到衬底侧的偏压的作用,第一导电层和第二导电层的端部被形成为楔形。楔形部分的角度被设定为15°-45°。优选,增加约10-20%比例的腐蚀时间,以便进行在栅绝缘膜上不留下剩余物的腐蚀。由于氮氧化硅膜与W膜的选择比例范围为2-4(通常为3),氮氧化硅膜露出的面用过腐蚀处理腐蚀约20-50nm。于是,通过第一刻蚀处理形成由第一和第二导电层形成的第一形状(第一导电层5011a-5016a和第二导电层5011b-5016b)的导电层5011-5016。栅绝缘膜5007中没有覆有第一形状的导电层5011-5016的区域被腐蚀约20-50nm,使得形成减薄的区域(图21B)。
随后,通过进行第一掺杂处理添加用于给出n型导电性的杂质元素。掺杂方法可以或者是离子掺杂方法或者是离子注入方法。离子掺杂方法在剂量被设为1×1013-5×1014原子/cm2,加速电压被设为60-100keV的条件下进行。属于15族的元素,通常为磷(P)或砷(As)被用作给出n型导电性的杂质元素。但在此用磷(P)。在这种情况下,导电层5011-5014用作相对于给出n型导电性的杂质元素的掩模,并且第一杂质区域5017-5024以自对准方式形成。用于给出n型导电性的杂质元素以1×1020-1×1021原子/cm3的浓度添加到第一杂质区域5017-5024(图21B)。
随后如图21C所示,在不去除光致抗蚀剂掩模的情况下进行第二腐蚀处理。用CF4、Cl2和O2作为腐蚀气体对W膜进行选择性腐蚀。通过第二腐蚀处理形成第二形状(第一导电层5026a-5031a和第二导电层5026b-5031b)的导电层5026-5031。栅绝缘膜5007中没有覆有第二形状的导电层5026-5031的区域被进一步腐蚀约20-50nm,使得形成减薄的区域。
用CF4和Cl2的混合气体腐蚀W膜或Ta膜的腐蚀反应可从产生的原子团或离子种类和反应产物的蒸汽压力进行推算。比较W和Ta的氟化物和氯化物的蒸汽压力时,作为W的氟化物的WF6的蒸汽压力非常高,而其它WCl5、TaF5和TaCl5的蒸汽压力相互近似相等。因此,用CF4和Cl2的混合气体腐蚀W膜和Ta膜二者。然而,当适量的O2被加入该混合气体时,CF4和O2反应并生成CO和F,使得产生大量的F-原子团或F-离子。结果,其氟化物具有高蒸汽压的W膜的腐蚀速度增加。与此相反,当F增加时,Ta膜的腐蚀速度的增加相对较小。因为Ta与W相比易于氧化,通过添加O2,Ta膜的表面被氧化。由于Ta的氧化物不与氟化物或氯化物反应,则Ta膜的腐蚀速度进一步降低。因此,可使W膜和Ta膜之间的腐蚀速度产生不同,使得W膜的腐蚀速度可被设为高于Ta膜的腐蚀速度。
如图22A所示,随后进行第二掺杂处理。在这种情况下,通过降低剂量低于第一掺杂处理的剂量,用于给出n型导电性的杂质元素以小于第一掺杂处理的剂量和高加速电压被掺杂。例如,加速电压被设为70-120keV,剂量被设为1×1013原子/cm2。于是,在形成在图21B中的小岛状半导体层中的第一杂质区的内部形成新的杂质区。掺杂中,第二形状的导电层5026-5029用作对于杂质元素的掩模,进行掺杂使得杂质元素同样被添加到第一导电层5026a-5029a下方的区域。于是形成第三杂质区域5032-5035。第三杂质区域5032-5035包含具有缓和的浓度梯度的磷(P),该浓度梯度与第一导电层5026a-5029a的楔形部分中的厚度梯度一致。在重叠第一导电层5026a-5029a的楔形部分的半导体层中,杂质浓度在中心周围稍低于第一导电层5026a-5029a的楔形部分的边缘。但是,差别非常小,并且几乎相同的杂质浓度保持在整个半导体层中。
随后如图22B所示进行第三腐蚀处理。CHF6用作腐蚀气体,并采用反应离子刻蚀(RIE)。在第三腐蚀处理过程中,第一导电层5026a-5029a的楔形部分被部分地腐蚀以减少第一导电层与半导体层重叠的区域。由此形成的是第三形状的导电层5037-5042(第一导电层5037a-5042a和第二导电层5037b-5042b)。此时,不覆盖有第三形状的导电层5037-5042的栅绝缘膜5007的区域被进一步腐蚀并减薄约20-50nm。
经第三腐蚀处理形成第三杂质区5032-5035。第一导电层5037a-5040a分别与第三杂质区5032a-5035a重叠,第二杂质区5032b-5036b分别形成在第一杂质区和第三杂质区之间。
如图22C所示,具有与第一导电类型相反的导电类型的第四杂质区5043-5054被形成在小岛状半导体层5004和5006中用于形成p沟道型TFT。第三形状导电层5038b和5040b用作对杂质元素的掩模并且杂质区以自对准方式形成。此时,用于形成n沟道型TFT和布线部分5041和5042的小岛状半导体层5003和5005全部覆以光致抗蚀剂掩模5200。杂质区5043-5054已用磷以不同的浓度掺杂。杂质区5043-5054借助离子掺杂用乙硼烷(B2H6)掺杂,并且其杂质浓度在相应的杂质区被设为2×1020-2×1021原子/cm3。
通过上述步骤,杂质区被形成在相应的小岛状半导体层中。重叠小岛状半导体层的第三形状的导电层5037-5040用作栅极。参考数字5042用作小岛状第一扫描线。参考数字5041用作连接小岛状第三扫描线和第三形状导电层5040的布线。
去除光致抗蚀剂掩模5200后,对添加到小岛状半导体层的杂质元素进行激活的步骤以控制导电类型。该工艺借助使用炉子进行炉子退火的热退火方法。此外,可以应用激光退火方法或快速热退火方法(RTA方法)。在热退火方法中,在400-700℃,通常为500-600℃的温度下,在其中氧的浓度等于或小于1ppm并优选等于或小于0.1ppm的氮气氛中进行该工艺。在本实施例中,热处理在500℃的温度进行四小时。当用在第三形状导电层5037-5042中的布线材料的抗热性弱时,优选在形成层间绝缘膜(有硅作为主要成分)之后进行激活以保护布线等。当采用激光退火方法时,可使用在结晶化中使用的激光。当进行激活时,移动速度设为与结晶化处理一样,需要的能量密度为约0.01-100MW/cm2(优选0.01-10MW/cm2)。
此外,在300-450℃的温度下,在包含3-100%的氢的气氛中进行热处理1-12小时,使得小岛状半导体层被氢化。该步骤通过被热激发的氢而终止了半导体层的悬挂键。也可进行等离子体氢化(使用被等离子体激发的氢)作为氢化的另一种方法。
接着,如图23A所示,第一层间绝缘膜5055由厚度为100-200nm的氮氧化硅膜形成。有机绝缘材料的第二层间绝缘膜5056形成在第一层间绝缘膜上。其后,形成穿过第一层间绝缘膜5055、第二层间绝缘膜5056和栅绝缘膜5007的接触孔。布线5057、电流馈电线5058和连接线5059被图形化并被形成。其后,与连接线5062接触的象素电极5064被图形化和形成。
以有机树脂作为材料的膜被用作第二层间绝缘膜5056。聚酰亚胺、聚酰胺、丙烯酸类(acrylic)、BCB(苯并环丁烯)等可用作该有机树脂。特别地,由于第二层间绝缘膜5056主要提供用于平面化,优选矫平薄膜性良好的丙烯酸类。在该实施例中,形成其厚度可足以使由TFT引起水平面的差矫平的丙烯酸类膜。其膜厚优选被设为1-5μm(进一步优选设为2-4μm)。
在形成接触孔的过程中,形成到达n型杂质区5017、5018、5021和5022或p型杂质区5043、5048、5049和5054的接触孔,到达布线5042的接触孔(未示出),到达电流馈电线的接触孔(未示出)和到达栅极的接触孔(未示出)。
此外,三层结构的叠层膜被以所希望的形状图形化并用作布线(包括连接布线和信号线)5057-5062。在该三层结构中,厚度为100nm的Ti膜、厚度为300nm的含Ti铝膜和厚度为150nm的Ti膜用溅射方法连续形成。当然也可采用另一导电膜。
在该实施例中,110nm厚的ITO膜被形成为象素电极5064,并被图形化。通过将象素电极5064布置为使得该象素电极5064与连接电极5062相接触并与用连接布线5062覆盖实现接触。此外,也可使用通过将2-20%的氧化锌(ZnO)与氧化铟混合得到的透明导电膜。该象素电极5064成为发光元件的阳极(图23A)。
如图23B所示,接着形成包含硅且厚度为500nm的绝缘膜(在本实施例中为氧化硅膜)。形成用作堤坝的第三层间绝缘膜5065,其中在对应于象素电极5064的位置形成开口。当开口形成时,开口的侧壁易于用湿刻的方法形成斜度。当开口的侧壁不是足够的缓和时,由水平差引起的有机发光层的恶化成为显著的问题。
接着,利用真空蒸发的方法连续形成有机发光层5066和阴极(MgAg电极)5067而不暴露在大气中。有机发光层5066的厚度为80-200nm(通常为100-120nm),而阴极5067的厚度为180-300nm(通常为200-250nm)。
在该工艺中,对于相应于红的象素、相应于绿的象素和相应于蓝的象素顺序形成有机发光层。在这种情况下,由于有机发光层对于溶液不具有足够的抗溶能力,则对于每种颜色必须单独地形成有机发光层,而不是使用光刻技术。因此,优选用金属掩模覆盖除所希望的象素以外的部分,以便只在所需的部分中选择性地形成有机发光层。
即,用于覆盖除相应于红的象素的之外的所有部分的掩模被首先设定,并使用该掩模选择性地形成用于发射红光的有机发光层。接着,用于覆盖除相应于绿的象素的之外的所有部分的掩模被设定,并使用该掩模选择性地形成用于发射绿光的有机发光层。接着,用于覆盖除相应于蓝的象素的之外的所有部分的掩模被类似地设定,并使用该掩模选择性地形成用于发射蓝光的有机发光层。这里,使用不同的掩模,但替代地可以重复地使用相同的单个掩模。
这里,使用用于形成对应于RGB的三种发光元件的系统。但是,可使用用于发白光的发光元件和滤色器被组合其中的系统;用于发蓝光或蓝绿光的发光元件与荧光物质(荧光色转换介质CCM)组合其中的系统;用于通过使用透明电极将分别相应于R、G和B的发光元件与阴极(反电极)重叠的系统等。
已知的材料可用作有机发光层5066。考虑到驱动电压有机材料优选用作已知材料。例如,由空穴注入层、空穴输运层、发光层和电子注入层组成的四层结构优选用于有机发光层。
接着通过使用金属掩模形成阴极5067。该实施例使用MgAg用于阴极5067,但并不限于此。其它已知的材料可用于阴极5067。
最后,形成由氮化硅膜形成的厚度为300nm的钝化膜5068。借助形成钝化膜5068,钝化膜5068起保护有机发光层5066以防水分等的作用。于是发光元件的可靠性可进一步改善。
因此,完成具有图23B示出的结构的发光器件。
通将最佳结构的TFT布置在除象素部分外的驱动电路中,本实施例中的发光器件具有非常高的可靠性和改进的工作特性。此外,在结晶化工艺中,通过添加诸如Ni的金属催化剂,结晶度也可得到改善。于是,信号线驱动电路的驱动频率可被设为10MHz或更高。
首先,具有用于降低热载流子注入以便尽可能多地不降低工作速度的结构的TFT被用作形成驱动电路部分的CMOS电路的n沟道型TFT。这里,驱动电路包括移位寄存器、缓冲器、电平移动器、按线顺序驱动的锁存器和按点顺序驱动的传输门电路。
在本实施例的情况下,n沟道型TFT的有源层包括源区(源)、漏区(漏)、经栅绝缘膜与栅极重叠的重叠LDD区(LOV区),未经栅绝缘膜与栅极重叠的偏移LDD区(LOFF区)以及沟道形成区。
由CMOS电路的p沟道型TFT中的热载流子注入引起的性能恶化几乎可以忽略。因此,不需要在该p沟道型TFT中特别地形成LDD区。但是,与n沟道型TFT类似,LDD区可被形成在p沟道型TFT中作为热载流子的对抗。
此外,当在驱动电路中使用电流双向流过沟道形成区的CMOS电路即其中源和漏区的角色交换的CMOS电路时,优选构成COMS电路的n沟道型TFT形成LDD区使得沟道形成区被夹在LDD区之间。这种情况的一个实例是,给出用在点顺序驱动的传输门电路。当被要求尽可能多的降低关态电流值的CMOS电路被用在驱动电路中时,形成COMS电路的n沟道型TFT优选具有一LOV区。用在点顺序驱动中的传输门电路也可作为这样的实例。
实际上,到达图23B的状态的器件是用一种高气密的、并几乎不允许气体透过的保护膜(诸如叠层膜和可UV固化树脂膜)或用一种光透射密封材料包装(密封)的,以便进一步避免暴露在外部大气中。密封内部的空间可被设为惰性气氛或可将吸湿物质(例如氧化钡)放置在那里以改善发光元件的可靠性。
在通过包装或其他过程保障气密性之后,附加连接器(柔性印刷电路FPC)用于将外部信号端子与从形成在衬底上的元件或电路引出的端子连接。处于可被装运状态的器件在本说明书中被称为显示器件。
此外,按照本实施例中所示工艺,光掩模的数量可被减少,这对于制作发光器件是需要的。结果,工艺过程可被减少,这对减少制造成本和提高生产能力有贡献。
实施例6参照图15A-15C,本实施例处理按照本发明的发光器件的制造。
图15A是发光元件的顶视图,该发光元件通过用密封材料密封其上形成薄膜晶体管的元件衬底制造。图15B是沿图15A中线A-A’的截面图。图15C是沿图15A中线B-B’的截面图。
密封件4009这样提供,以便包围形成在衬底4001上的象素单元4002、信号线驱动电路4003,以及第一和第二扫描线驱动电路4004a、4004b。此外,密封件4008提供在象素单元4002上,信号线驱动电路4003上以及第一和第二扫描线驱动电路4004a、4004b上。因此,象素单元4002、信号线驱动电路4003,以及第一和第二扫描线驱动电路4004a、4004b用由衬底4001、密封件4009和密封件4008包围的填充材料4210密封。
形成在衬底4001上的象素单元4002、信号线驱动电路4003,以及第一和栅信号线驱动电路4004a、4004b拥有多于一个的TFT。图15B代表性地说明形成在基底膜4010上的、并包括在源信号线驱动电路4003中的驱动TFT(这里,为n沟道型TFT和p沟道型TFT)4201,和包括在象素单元4002中的TFT4202。
层间绝缘膜(整平膜)4301形成在TFT4201和4202上,并且其上形成电连接到TFT4202的象素电极(阳极)4203。作为象素电极4203,使用具有大的功函数的透明导电膜。作为透明导电膜,可使用氧化铟和氧化锡的化合物,氧化铟和氧化锌的化合物,氧化锌,氧化锡或氧化铟。也可允许将镓加入透明导电膜。
绝缘膜4302形成在象素电极4203上。一开口形成在象素电极4203上的绝缘膜4302中。有机发光层4204形成在象素电极4203的开口中。有机发光层4204可由已知的有机发光材料或无机发光材料制成。此外,有机发光材料可或者为低分子(单体的)材料或高分子(聚合的)材料。
有机发光层4204可用已知的淀积技术或涂敷技术形成。此外有机发光层可具有空穴注入层、空穴输运层、发光层和电子输运层或电子注入层的叠层结构,或可具有单层结构。
在有机发光层4204上形成包括具有光屏蔽性能的导电膜(通常为主要包括铝、铜或银的导电膜或具有其它导电膜的其叠层膜)的阴极4205。希望从阴极4205和有机发光层4204之间的界面尽可能多地去除水和氧。因此需要制成这样的装置它的有机发光层4204在氮或稀有气体气氛中形成,而在远离氧和水的情况下形成阴极。在本实施例中,如上所述借助使用多工作室型(组合工具型cluster tool type)的成膜装置形成膜。预定的电压被给到阴极4205。
存在由此形成的包括象素电极(阳极)4203、发光层4204和阴极4205的发光元件4303。保护膜4209被形成在绝缘膜4302上以便覆盖发光层4303。保护膜4209对于防止氧和水进入发光元件4303是有效的。
参考数字4005是连接到电源布线的迂回布线,并被电连接到TFT4202的输入电极。迂回布线4005a穿过密封件4009和衬底4001之间并经各向异性的导电膜4300被电连接到由FPC4006所具有的FPC布线4301。
作为密封件4008,可使用玻璃件、金属件(代表地,不锈钢件)、陶瓷件或塑料件(包括塑料膜)。作为塑料件,可使用FRP(玻璃纤维增强塑料)板、PVF(聚氟乙烯)膜、聚酯薄膜、聚酯膜或丙烯酸树脂膜。也可允许使用其中铝箔被夹在PVF膜或聚酯薄膜中间的结构的片。
然而,当从发光元件发出的光指向覆盖件时,该覆盖件必需是透明的。在这种情况下,使用由诸如玻璃板、塑料板、聚酯膜或丙烯酸膜的透明材料制成。
作为填充材料4210,除诸如氮或氩的惰性气体外可使用紫外线固化的树脂或热固性树脂。即,可使用PVC(聚氯乙烯)、丙烯酸树脂、聚酰亚胺、环氧树脂、硅氧烷树脂、PVB(聚乙烯醇缩丁醛)或EVA(乙烯乙酸乙烯酯)。在本实施例中,氮用作填充材料。
为了使填充材料4210暴露于吸湿材料(优选,氧化钡)或能够吸氧的材料,进一步凹口部分4007形成在衬底4001侧上的密封件4008中,并且吸湿材料或能够吸氧的材料4207被布置其中。吸湿材料或能够吸氧的材料4207由凹进部分覆盖件4208保持在凹进部分4007中,使得吸湿材料或能够吸氧的材料4207不分散。凹进部分覆盖件4208由允许空气或水穿过但不允许吸湿材料或能够吸氧的材料4207通过的细网组成。吸湿材料或能够吸氧的材料4207的防护抑制了发光元件4303的性能恶化。
参考图15C,形成象素电极4203的同时形成导电膜4203a以接触到迂回布线4005a。
各向异性膜4300具有导电填充物4300a。当将衬底4001和FPC4006热粘附在一起时,衬底4001上的导电膜4203a和FPC4006上用于FPC的布线4301通过导电填充物4003a电连接在一起。
实施例7在图28B所示结构中,存储TFT2856的第一电极被连接到源信号线2801。存储TFT2856连接变化的实例在图30A中示出。存储TFT3006的第一电极被连接到开关TFT3005的第二电极和驱动TFT3007的第一电极。
图30B-30D示出信号电流写入和光发射操作,但除了电流路径I1稍有不同,操作与图28B-28D类似,因此解释省略。
另外,存储TFT3006可用作由数字图像信号由时间灰度等级驱动的发光器件中的复位TFT,数字图象信号连接到存储TFT3006,与实施例7相同。通过在完成光发射周期后接通存储TFT3006,驱动TFT3007的栅和源之间的电压变为零,而驱动TFT3007关断。结果到EL元件3010的电流路径被切断。另外,已积聚在存储电容器3009中的电荷通过从存储电容器3009到存储TFT3006的路径释放到转换和驱动TFT3008。结果,光发射周期结束。
注意,虽然在此省略关于时间灰度等级方法的详细解释,可参考在JP2001-5426A和JP2000-86968中公开的方法。
注意,使用与图30A-30D不同的结构的类似操作也是可能的。简而言之,当信号电流被输入时可建立如同图39A的路径,而在光发射期间可建立如同图39B的路径。因此开关元件等可如此放置,使得它们的位置不与上述路径一致。
实施例8首先,考虑由实施例模式2公开的象素。当信号电流被写入时,开关TFT2855和存储TFT2856被接通,并因此驱动TFT2807的栅极和第二电极具有相同的电位。即,栅和源之间的电压变为零,TFT关断。
但是,由于工艺缺陷,存在即使TFT的栅和源之间的电压为零漏极电流也流动(常通)的情况。于是在这种情况下在信号电流的写入期间驱动TFT2807是接通的。
即使对于假设它们常通的情况,通过改变栅信号线的电位,开关TFT2855和存储TFT2856正常工作是可能的。但是,驱动TFT2807的源和漏之间的电压部分地取决于存储电容器2856的接通或关断状态,即使信号线的电位被改变,通常接通的问题不能被解决。该问题可通过将发光TFT3112排列在电流馈电线3105和驱动TFT3108之间而解决,如图31A所示。
注意,虽然发光TFT3112与驱动TFT3108串联连接,它也可被插入其它位置,只要该位置可使得从驱动TFT3108泄露的电流被切断。此外,发光TFT3112使用简单的开关元件,并因此可具有任何极性。
图31B-31D示出操作。发光TFT3112在信号电流的写入期间被关断,而在光发射期间被接通。其它操作与在实施例模式中所示的相似。
此外,开关TFT3106和存储TFT3107均可由相同的栅信号线控制,如上所述。栅信号线的数目由此可被减少。孔径比可被提高。
此外,如实施例7所讨论的,开关TFT3106和存储TFT3107的连接也可改变。相应于实施例模式1和实施例4的类似改变也是可能的。
实施例9在图28A和28B所示结构的情况下,在信号电流写入期间驱动TFT2807的栅和源之间的电压为零,因此驱动TFT2807关断。当由于已积聚在存储电容器2809中的电荷的一部分被传送到驱动TFT2807的栅极使开关TFT2855关断时,则驱动TFT2807接通,光被发射。
对于考虑这里驱动TFT2807的栅极的寄生电容的情况,在信号电流的写入期间电荷不积聚在驱动TFT2807的栅极中,在光发射期间电荷运动到驱动TFT2807的栅极。电荷的供应源是存储电容器2809,由于电荷的运动,必须原始由存储电容器2809存储的电压(VGS)变为减少由驱动TFT2807的寄生电容导致的量。
为解决这个问题驱动TFT2807可被提前接通。执行这种类型操作的情况的结构在实施例9中示出。
该结构在图32A中示出。除图28A和28B所示结构外,已添加第三栅信号线3204、发光TFT3210和补偿TFT3211。与开关TFT3206类似,发光TFT3210由第三栅信号线3204控制,补偿TFT3211由第一栅信号线3202控制。发光TFT3210被排列在开关TFT3206的第二电极和驱动TFT3208的第一电极之间,而补偿TFT3211被排列在驱动TFT3208的第一电极和EL元件3213的一个电极之间。注意,这里简单的开关元件被用于添加的TFT,因此它们可具有任何极性。
首先解释信号电流的写入。第一栅信号线3202和第二栅信号线3203被选择,开关TFT3206、存储TFT3207和补偿TFT3211接通,信号电流从源信号线3201输入。
这里信号电流Idata被分为I1和I2。在写入开始后即刻电荷尚未积聚在存储电容器3212中,因此驱动TFT3208以及转换和驱动TFT3209都关断。所以此时I2=0。因此Idata=I1,在该周期内,电流只借助电荷在存储电容器中的积聚出现的电荷的运动而变大。
随后电荷逐渐积聚在存储电容器3212中,并且在存储电容器3212两个电极之间的电位差开始变大。当两个电极之间的电位差达到转换和驱动TFT3209的阈值,并且I2变大时,转换和驱动TFT3209接通。如上讨论的Idata=I1+I2,由此I2逐渐减小但不达到零,直到电荷在存储电容器3212中积聚完成,并且电流还在变大。
另一方面,在实施例模式中虽然在信号电流的写入期间驱动TFT3208的栅和源之间的电压变为零,发光TFT3210被布置在实施例9中并被关断,并因此在驱动TFT3208的栅和源之间电位差变大,它接通。此外,补偿TFT3211接通,因此,从电流馈电线3205到驱动TFT3208到补偿TFT3211到EL元件3213的电流路径变大,并且如图32B所示电流I3变大。注意,I3是独立的电流,不受Idata、I1或I2的影响。
电荷积聚在存储电容器3212中直到存储电容器3212中两个电极之间的电位差即转换和驱动TFT3209的栅和源之间的电压VGS变为所希望的电压,即变为这样的电压(VGS),在该电压转换和驱动TFT3209使电流Idata尽可能多地流动。当电荷的积聚完成时,电流I1停止流动,而且在该点相应于VGS的电流流入转换和驱动TFT3209,Idata=I2(见图32B)。第二栅信号线3203的选择随后完成,并且存储TFT3207关断,信号写入操作完成。
下面讨论光发射操作。第一栅信号线3202的选择完成,开关TFT3206和补偿TFT3211关断。另一方面,第三栅信号线3204被选择,发光TFT3210接通。此时转换和驱动TFT3209的栅和源之间的电压被存储在存储电容器中,驱动TFT3208的栅极处于这样的状态,其中电荷已经流入,因此从电流馈电线到驱动TFT3208到发光TFT3210到转换和驱动TFT3209并到EL元件的电流路径变大。发光电流IEL变大。EL元3213于是发光。
驱动TFT3208的栅极和转换和驱动TFT3209的栅极被连接,因此此时两个TFT用做一个多栅TFT。通常如果TFT中栅长度L变长,漏极电流变小。在这种情况下,在信号写入操作期间信号电流最终只流入转换和驱动TFT3209,而在光发射期间信号电流流入转换和驱动TFT3209和驱动TFT3208中。因此在光发射期间栅极的数目变大,结果栅长度L变长,电流之间的关系变为Idata>IEL。
根据实施例9,在信号电流的写入期间驱动TFT3208也是接通的,因此电荷流入驱动TFT3208的栅极,在光发射期间电荷不从存储电容器3212运动。驱动TFT3208的栅的寄生电容由此不影响灰度等级。
此外,开关TFT3206和存储TFT3207均可由同一栅信号线控制,如上所述。栅信号线的数目可由此被减少,孔径比可增加。
此外,到开关TFT3206和存储TFT3207的连接也可如实施例7中讨论的被改变。也可进行对应于实施例模式1和实施例4的改变。
实施例10与实施例模式1的结构不同,在实施例10中解释将p型TFT用于转换和驱动TFT和驱动TFT的结构。注意,除转换和驱动TFT以及驱动TFT以外,简单的开关元件被用于所有的TFT,因此其它TFT可具有任何极性。
结构在图33A中示出。图33A的象素具有源信号线3301、第一到第三栅信号线3302-3304、电流馈电线3305、开关TFT3306、存储TFT3307、驱动TFT3308、转换和驱动TFT3309、发光TFT3310、控制TFT3311、存储电容器3312和EL元件3313。
开关TFT3306的栅极被连接到第一栅信号线3302,开关TFT3306的第一电极被连接到源信号线3301,而开关TFT3306的第二电极被连接到转换和驱动TFT3309的第一电极和发光TFT3310的第一电极。转换和驱动TFT3309的第二电极被连接到驱动TFT3308的第一电极,转换和驱动TFT3309和驱动TFT3308的栅极彼此连接。驱动TFT3308的第二电极被连接到EL元件3313的一个电极。存储TFT3307的栅极被连接到第二栅信号线3303,而存储TFT3307的第一电极被连接到转换和驱动TFT3309的栅极和驱动TFT3308的栅极,存储TFT3307的第二电极被连接到转换和驱动TFT3309的第二电极和驱动TFT3308的第一电极。发光TFT3310的栅极被连接到电流馈电线3305。控制TFT3311的栅极被连接到第一栅信号线3302,控制TFT3311的第一电极被连接到转换和驱动TFT3309的第二电极、驱动TFT3308的第一电极和存储TFT3307的第二电极。预定的电位被输入到电流馈电线3305和EL元件3313的第二电极,由此它们具有相互的电位差。此外,某一恒定电位被输入到控制TFT3311的第二电极。只要它常常小于源信号线3301的电位,对于该电位的值没有特殊的限制。此外,虽然存储TFT3307的第二电极被连接到驱动TFT3308的第一电极以及转换和驱动TFT3309的第二电极,它也可被连接到控制TFT3311的第二电极,即,连接到某一恒定电位。
用图33B至33D解释从信号电流的写入到光发射的操作。第一和第二栅信号线首先被选择,开关TFT3306、控制TFT3311和存储TFT3307接通,信号电流从源信号线3301输入(见图33B)。
这里,信号电流Idata分为I1和I2。在写入开始后即刻,电荷尚未积聚在存储电容器3312中,因此驱动TFT3308和转换和驱动TFT3309均为关断,并且此时I2=0。因为存储TFT3307接通,驱动TFT3308的栅和源之间的电压变为零,因此驱动TFT3308本身关断。由此Idata=I1,由于伴随电荷在存储电容器中积聚的电荷的运动,电流只在该周期期间变大。
电荷逐渐构建在存储电容器3312中,并且在存储电容器3312的两个电极之间电位差开始变大。当两个电极之间的电位差达到转换和驱动TFT3309的阈值时,转换和驱动TFT3309接通,I2变大。如上所述,Idata=I1+I2,因此,I1逐渐减小但不达到零,直到电荷在存储电容器3312中的积聚完成。于是电流仍变大。
此外,由于存储TFT3307接通,驱动TFT3308的栅和源之间的电压变为零,因此驱动TFT3308关断。信号电流Idata由此流过控制TFT3311,并且不流入EL元件3313。
电荷积聚在存储电容器3312中直到存储电容器3312中两个电极之间的电位,即转换和驱动TFT3309的栅和源之间的电压,变为所需要的电压,即变为这样的电压(VGS),在该电压转换和驱动TFT3309使电流Idata尽可能多地流动。当电荷的积聚完成时,电流I1停止流动,而且此时相应于VGS的电流流入转换和驱动TFT3309,Idata=I2(见图33C)。第二栅信号线3303的选择随后完成,并且存储TFT3307关断。第一栅信号线3302的选择随后完成,开关TFT3306和控制TFT3311关断,并且信号写入操作完成。
下面讨论光发射操作。当信号电流写入操作完成时,从源信号线3301到开关TFT3306到转换和驱动TFT3309到控制TFT3311并到电源的电流路径于是切断。已积聚在存储电容器3312中的电荷的一部分由于电流Idata流入转换和驱动TFT3309,随后移动到驱动TFT3308的栅极。驱动TFT3308于是自动地接通。如果第三栅信号线被选择且发光TFT3310接通,如图33D所示,从电流馈电线3305到发光TFT3310到转换和驱动TFT3309到驱动TFT3308和到EL元件3313的电流路径变大,并且发光电流IEL进行流动。EL元件3313于是发光。
驱动TFT3308的栅极和转换和驱动TFT3309的栅极被连接,并因此两个TFT用作一多栅TFT。通常,如果TFT中的栅长度L变长,则漏极电流变小。在这种情况下,在信号写入操作期间,信号电流最终仅流入转换和驱动TFT3309,而在光发射期间信号电流流入转换和驱动TFT3309并流入驱动TFT3308。栅极的数目因此在光发射期间变大,结果栅长度L变长,电流之间的关系变为Idata>IEL。
注意,在信号电流的输入期间可形成与图39A同样的一种路径,而在光发射期间可形成与图39B同样的路径。开关元件等可因此被布置以便不干扰该路径。
按照实施例10,在信号电流的写入期间信号电流Idata不流入EL元件3313。因此,不存在因为EL元件3313用作负载产生的影响,因此信号电流的写入可以非常高的速度进行。
此外,如上所述开关TFT3306和存储TFT3307可由同一栅信号线控制。栅信号线的数目于是可被减少,孔径比可增加。
此外,借助应用实施例10,转换和驱动TFT和驱动TFT也可具有实施例模式和其它实施例中的p沟道结构。
使用其中转换和驱动TFT和驱动TFT是图28A和28B示出结构的p沟道结构也是可能的。这种情况的结构的一个实例在图37A中示出。除转换和驱动TFT以及驱动TFT,用作开关元件的TFT可被布置在这样的位置,使得在信号电流输入期间建立如同图37B的路径,在光发射期间建立如同图37C的路径。
注意,在实施例10中,信号电流Idata不流入EL元件。如果假定信号电流Idata流入EL元件,则直到EL元件达到稳定态的时间量将被加到将电荷写入到存储电容器的时间上,即原始电流设置的时间量,结果需要加长信号写入周期。如图40A-40C的结构可用于希望用到此时如实施例给出的电路缩短信号写入的时间量,例如图28A和28B和30A和30B,其中信号电流Idata流入EL元件。
图40A是将前述过程应用到图28A和28B的电路的实例。未连接到EL元件的公共电极的端子经一TFT连接到具有某一电压(优选电源线等)的节点。在信号电流的写入期间该TFT接通,而在光发射期间关断。在信号电流写入和光发射期间的电流路径分别是在图40B和40C中示出的电流路径。
在信号电流写入期间,点A的电位很快地固定在点B的电位。由此可快速实现稳定态,信号电流写入可以短时间量完成。
点B的电位是任意的,但优选电位是这样的电位,使得EL元件不发光以便不对显示产生影响。此外,如果使点C的电位小于EL元件的一个电极的电位(图40A和40B的情况下的阴极),则有可能在信号电流的写入期间对EL元件施加一个反向偏置。
实施例11元件之间的分散是使用TFT的电路结构所面临的一个问题。通常,可使邻近布置的元件的特性中的分散变得相对较小,但对于考虑象素部分中元件特性分散的情况,例如如果在邻近象素之间的特性分散变大,则显示不规则性将能够被识别,即使该分散是轻微的。
其中使用中的TFT在时间的每一一定的周期被开关的方法被用作改善由邻近元件之间的分散引起的显示不规则性的方法。于是TFT特性中的分散可被平均在整个时间上,使显示不规则性较难于被识别。成为开关目的的TFT是那些能够对显示不规则性产生影响的TFT。即,特别是不需要改变用于用作简单开关元件的TFT的TFT。
如同图24A和24B的结构被提出作为实例。图24A是应用于图1A结构的实例。如果图1A中电路的转换和驱动TFT108的特性和驱动TFT107的特性是不同的,则存在显示不规则性变大的可能。驱动TFT107给出其中由图24A中参考数字2407表示的并联布置的多个TFT的结构(图中示出的实例为3个),电流流入每个TFT中。此外,导电性的控制和每个路径的切断由开关元件2413进行。注意,开关元件2413不限于图24A和24B的位置,只要其位置是能够为并联连接的TFT选择电流馈电路径,并执行控制。
驱动方法的基本部分与图1A和1B所示的情况相似,但在光发射期间至少开关元件2413中一个是接通的,电流通过路径提供给发光元件2410。
注意,在同一时间多个开关元件2413可被接通,电流可经过多个路径提供给发光元件2410。
例如,电流路径在每个单个帧周期或每个单个子帧周期由开关元件2413改变。即使在邻近TFT之间存在分散,在暂时拥有不同特性的TFT之间存在转换,因此显示不规则性可被平均在整个时间上。由此可获得难于识别显示不规则性的效果。
图24B是只有一个驱动TFT2407的实例,但多个转换和驱动TFT2408被并联布置(图中示出的实例为3个)。在电流路径之间的转换由开关元件2413执行。电路结构不同于图2 4A的结构,但通过在不同电流路径之间的转换显示不规则性可被平均在整个时间上的效果是相似的。这里开关元件2413在电流写入期间是全部导电的,而在光发射期间至少一个是导电的。
注意,在电流写入期间只要一部分开关元件2413可为导电的。然而,通过使所有开关元件2413导电的写入期间增加电流路径,在非常短的时间周期内执行写入操作是可能的,因此这是优选的。
注意,在光发射期间多个开关元件2413也可同时接通,由此将电流经过多个路径提供给发光元件2410。
用于在电流路径之间进行开关的开关元件2413由输入到电流选择栅信号线2412的脉冲的定时控制。脉冲由例如图25所示的写入栅信号线驱动电路产生,并且栅信号线选择脉冲被存储在锁存电路2501中。定时脉冲从外侧输入到电流信号线2502,并且一些开关元件在所希望的时间被导通。相反,也可通过同时在所有象素中的开关元件2413之间开关进行操作。
此外,这里形成的开关元件2413不控制提供给发光元件的电流值,而只用作从多个电流路径中选择一个电流路径的开关。这些开关元件2413因此可具有任何极性。
注意,这里提出的结构也可容易地应用在具有不同结构的象素中。图26A中示出的结构是实施例11提出的结构被应用于图5所示结构的结构。电流路径由开关元件2606选择,电流经并联布置的多个驱动TFT2605(图中所示实例为3个)中至少一个提供给发光元件2608。
图26B是实施例11应用于图6所示结构所提出的结构的视图。TFT608具有多个并联布置的转换TFT2617(图中所示实例为3个),和开关元件2618。电流路径由开关元件2618选择,电流经至少一个转换TFT2617提供给发光元件2621。
注意,用于写入操作的信号电流,通过在电流写入期间使多个开关元件2618导电并在光发射期间使非常少的开关元件导电而变得非常大。由此写入操作可在非常短的时间周期内执行。
图27A是将实施例11应用于图17所示的结构而提出的结构的视图。TFT1709具有多个并联布置的转换TFT2708(图中所示实例为3个),和开关元件2709。电流路径由开关元件2709选择,电流经转换TFT2708中至少一个提供给发光元件2712。
注意,用于写入操作的信号电流,通过在电流写入期间使多个开关元件2709导电并在光发射期间使非常少的开关元件导电而变得非常大。由此写入操作可在非常短的时间周期内执行。
图27B是将实施例11应用于图19所示的结构而提出的结构的视图。TFT1908具有多个并联布置的转换TFT2728(图中所示实例为3个),和开关元件2729。电流路径由开关元件2729选择,电流经至少一个转换TFT2728提供给发光元件2731。
注意,虽然开关被应用于图27B中的驱动TFT,也可应用于转换和驱动TFT。
图35是将实施例11应用于图30所示的结构而提出的结构的视图。TFT3007具有多个并联布置的驱动TFT3508(图中所示实例为3个),和第三开关元件3509。电流路径由第三开关元件3509选择,电流经至少一个驱动TFT3508提供给发光元件3511。
虽然在实施例11中只示出几个象素结构的实例,也能够容易地将使用并联布置的TFT,并且它们在整个时间之间开关的平均特性中的分散的方法应用于其它电路。
实施例12
在本实施例中,通过使用借助三重态激子的磷光可用于发光的有机发光材料,发光外量子效率被显著改善。结果,发光元件的功耗可被降低,发光元件的寿命可被延长,并且发光元件的重量可被减轻。
下面是一份报告,其中通过使用三重态激子发光外量子效率得到改善(T.Tsutsui,C.Adachi,S.Saito,有机分子系统中的光化学过程(Photochemical processes in Organized Molecular Systems)K.Honda主编(Elsevier Sci.Pub.东京1991),第437页)。
上述文章报道的有机发光材料(香豆素色素)的分子式如下所示。化学式1 (M.A.Baldo,D.F.O’Brien,Y.You,A.Shoustikov,S.Sibley,M.E.Thompson,S.R.Forrest,Nature 395(1998),第151页)上述文章报道的有机发光材料(Pt络合物)的分子式如下所示。化学式2 (M.A.Baldo,S.Lamansky,P.E.Burrows,M.E.Thompson,S.R.Forrest,Appl.Phys.Lett.,75(1999)第4页)(T.Tsutsui,M.-J.Yang,M.Yahiro,K.Nakamura,T.Watanabe,T.Tsuji,Y.Fukuda,T.Wakimoto,S.Mayaguchi,Jpn,Appl.Phys.,38(12B)(1999)L1502)上述文章报道的有机发光材料(Ir络合物)的分子式如下所示。化学式3 如上所述,如果三重态激子的磷光可投入实用,原则上可实现与使用单重态激子的荧光的情况相比发光外量子效率将是其3-4倍。按照该实施例的结构可自由的实现在第一到第十一实施例的任何结构的组合中。
实施例13半导体器件自发射型的,并与液晶显示器件相比展示对光位置中显示的图象的良好的识别性。此外,发光器件具有很宽的视角。因此,半导体器件可应用于各种不同的电子设备中的显示部分。
使用本发明的半导体器件的这种电子设备包括视频摄像机、数字照相机、风镜式显示器(头戴式显示器)、导航系统、声音再现装置(车载音频设备和组合音响)、笔记本大小的个人计算机、游戏机、便携式信息终端(移动计算机、便携式电话、便携式游戏机、电子书籍等)、包括记录媒质的图像再现装置(更具体地,可再现诸如数字化视频光盘(DVD)等的记录媒质,并包括用于显示再现图像的装置)等。特别地,在便携式信息终端的情况下,发光器件的使用是优选的,因为很可能从倾斜的方向观看的便携式信息终端常常需要宽的视角。图16分别示出这些电子设备的各种具体实例。
图16A示出了有机发光显示器件,它包括机箱3001、支座3002、显示部分3003、扬声器部分3004、视频输入端子3005等。本发明可应用于显示部分3003。有机发光器件是自发光类型的并因此不需要背光。因此,其显示部分可具有比液晶显示器件更薄的厚度。有机发光显示器件包括用来显示信息的整个显示器件,例如个人计算机、电视广播接收机、以及广告显示器。
图16B示出了数码静物相机,它包括主体3101、显示部分3102、图像接收部分3103、操作键3104、外部连接端口3105、快门3106等。根据本发明的发光器件能够被用作显示部分3102。
图16C示出了膝上计算机,它包括主体3201、机箱3202、显示部分3203、键盘3204、外部连接端口3205、定点鼠标3206等。根据本发明的发光器件能够被用作显示部分3203。
图16D示出了移动计算机,它包括主体3301、显示部分3302、开关3303、操作键3304、红外端口3305等。根据本发明的发光器件能够被用作显示部分3302。
图16E示出了包括记录媒质的图像再现装置(更具体地说是DVD重放装置),它包括主体3401、机箱3402、显示部分A3403、另一个显示部分B3404、记录媒质(DVD等)读出部分3405、操作键3406、扬声器部分3407等。显示部分A3403主要被用来显示图像信息,而显示部分B3404主要被用来显示字符信息。根据本发明的发光器件能够被用作这些显示部分A和B。包括记录媒质的图像再现装置还包括游戏机等。
图16F示出了风镜式显示器(头戴显示器),它包括主体3501、显示部分3502、镜臂部分3503。根据本发明的发光器件能够被用作显示部分3502。
图16G示出了视频摄象机,它包括主体3601、显示部分3602、机箱3603、外部连接端口3604、遥控接收部分3605、图像接收部分3606、电池3607、声音输入部分3608、操作键3609,目镜部分3610等。根据本发明的发光器件能够被用作显示部分3602。
图16H示出了移动电话,它包括主体3701、机箱3702、显示部分3703、声音输入部分3704、声音输出部分3705、操作键3706、外部连接端口3707、天线3708等。根据本发明的发光器件能够被用作显示部分3703。注意显示部分3703能够减少在黑色背景上显示白色字符的便携式电话的功耗。
当由有机发光材料发射的光的亮度在将来可用时,按照本发明的发光器件将可应用于前式或后式投影机,其中包括输出图像信息的光由被投影的透镜等放大。
上述电子设备更可能用于通过电信途径诸如互联网、CATV(电缆电视系统)分配的显示信息,特别可能显示移动图像信息。自发射型半导体器件适用于显示移动图像,因为有机发光材料可呈现高的响应速度。
自发射型半导体器件发光的部分消耗能量,所以希望以这种方式显示信息,使得其中的发光部分变得尽可能的小。因此,当半导体器件应用于主要显示字符信息的显示部分时,例如便携式信息终端的显示部分,并更为特别地,便携式电话或声音再现装置,希望驱动发光器件使得字符信息由发光部分形成而非发射部分对应于背景。
如上所述,本发明可广泛地应用于所有领域中宽范围的电子设备。本实施例中的电子设备可通过采用具有其中实施例1-12中的结构被自由组合的配置的半导体器件获得。
按照本发明,通过对即使低灰度等级采用大电流进行写入操作,可使写入时间变得更快。此外,在信号写入期间使用转换TFT,在光发射期间除驱动TFT还使用转换TFT用于将电流提供给发光元件,因此在写入期间和光发射期间TFT特性中的分散的影响可被减小。此外,需要或一个或两个栅信号线用于驱动一行象素,因此,与典型的常规电流写入象素相比可实现高孔径比。
权利要求
1.一种半导体器件,它包括第一装置,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;第二装置,用于存储转换后的电压;第三装置,用于选择存储或释放第二装置中的电压;以及第四装置,用于在输入信号电流的周期内阻挡将电流从电源提供到负载,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载。
2.一种半导体器件,它包括第一装置,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;第二装置,用于存储转换后的电压;第三装置,用于选择存储或释放第二装置中的电压;第四装置,用于在输入信号电流的周期内阻挡将电流从电源提供到负载,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载;以及第五装置,控制信号电流到第一装置的输入。
3.一种半导体器件,它包括第一装置,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;第二装置,用于存储转换后的电压;第三装置,用于选择存储或释放第二装置中的电压;并联连接的多个第四装置,用于在输入信号电流的周期内阻挡电流从电源到负载的提供,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载;第五装置,用于控制信号电流到第一装置的输入;以及多个第六装置,用于选择多个第四装置中的至少一个以形成从电源到负载的电流馈电路径。
4.一种半导体器件,它包括多个并联连接的第一装置,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;第二装置,用于存储转换后的电压;第三装置,用于选择存储或释放第二装置中的电压;第四装置,用于在输入信号电流的周期内阻挡将电流从电源提供到负载,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载;第五装置,用于控制信号电流到该多个第一装置的输入;以及多个第六装置,选择该多个第一装置中的至少一个以形成从电源到负载的电流馈电路径。
5.一种半导体器件,它包括转换和驱动晶体管,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;存储电容性装置,用于存储转换后的电压;存储电容性装置中的存储晶体管,用于选择是存储还是释放电压;以及驱动晶体管,用于在其间信号电流被输入的周期内阻挡将电流从电源提供到负载,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载。
6.一种半导体器件,它包括转换和驱动晶体管,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;存储电容性装置,用于存储转换后的电压;存储电容性装置中的存储晶体管,用于选择是存储还是释放电压;驱动晶体管,用于在其间信号电流被输入的周期内阻挡将电流从电源提供到负载,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载;以及开关晶体管,用于控制信号电流到转换和驱动晶体管的输入。
7.一种半导体器件,它包括转换和驱动晶体管,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;存储电容性装置,用于存储转换后的电压;存储电容性装置中的存储晶体管,用于选择是存储还是释放电压;并联连接的多个驱动晶体管,用于在其间信号电流被输入的周期内阻挡将电流从电源提供到负载,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载;开关晶体管,用于控制信号电流到转换和驱动晶体管的输入;多个电流选择晶体管,它们选择该多个驱动晶体管中的至少一个,并实现从电源到负载的电流馈电路径。
8.一种半导体器件,它包括并联连接的多个转换和驱动晶体管,用于将输入信号电流转换为电压,并将相应于转换后的电压的电流从电源提供到负载;存储电容性装置,用于存储转换后的电压;存储电容性装置中的存储晶体管,用于选择是存储还是释放电压;驱动晶体管,用于在其间信号电流被输入的周期内阻挡将电流从电源提供到负载,并在驱动负载的周期内将相应于转换后的电压的电流从电源提供到负载;开关晶体管,用于控制信号电流到该多个转换和驱动晶体管的输入;以及多个电流选择晶体管,它们选择该多个转换和驱动晶体管中的至少一个,并实现从电源到负载的电流馈电路径。
9.按照权利要求3的半导体器件,其中从电源到负载的多个电流馈电路径并联布置;并且使用多个电流馈电路径中的至少一个将电流提供给负载。
10.按照权利要求4的半导体器件,其中从电源到负载的多个电流馈电路径并联布置;并且使用多个电流馈电路径中的至少一个将电流提供给负载。
11.按照权利要求7的半导体器件,其中从电源到负载的多个电流馈电路径并联布置;并且使用多个电流馈电路径中的至少一个将电流提供给负载。
12.按照权利要求8的半导体器件,其中从电源到负载的多个电流馈电路径并联布置;并且使用多个电流馈电路径中的至少一个将电流提供给负载。
13.按照权利要求3的半导体器件,其中沿路径出现到发光元件的电流供电,这些路径按照在多个电流馈电路线之间按时间顺序开关的时间而不同。
14.按照权利要求4的半导体器件,其中沿路径出现到发光元件的电流供电,这些路径按照在多个电流馈电路线之间按时间顺序开关的时间而不同。
15.按照权利要求7的半导体器件,其中沿路径出现到发光元件的电流供电,这些路径按照在多个电流馈电路线之间按时间顺序开关的时间而不同。
16.按照权利要求8的半导体器件,其中沿路径出现到发光元件的电流供电,这些路径按照在多个电流馈电路线之间按时间顺序开关的时间而不同。
17.按照权利要求5的半导体器件,其中存储电容性装置存储转换和驱动晶体管的栅和源之间的电压;并且存储晶体管通过接通和关断在转换和驱动晶体管的栅极和漏极之间提供导电性或非导电性。
18.按照权利要求6的半导体器件,其中存储电容性装置存储转换和驱动晶体管的栅和源之间的电压;并且存储晶体管通过接通和关断在转换和驱动晶体管的栅极和漏极之间提供导电性或非导电性。
19.按照权利要求7的半导体器件,其中存储电容性装置存储转换和驱动晶体管的栅和源之间的电压;并且存储晶体管通过接通和关断在转换和驱动晶体管的栅极和漏极之间提供导电性或非导电性。
20.按照权利要求8的半导体器件,其中存储电容性装置存储转换和驱动晶体管的栅和源之间的电压;并且存储晶体管通过接通和关断在转换和驱动晶体管的栅极和漏极之间提供导电性或非导电性。
21.按照权利要求5的半导体器件,其中转换和驱动晶体管具有与驱动晶体管相同的极性。
22.按照权利要求6的半导体器件,其中转换和驱动晶体管具有与驱动晶体管相同的极性。
23.按照权利要求7的半导体器件,其中转换和驱动晶体管具有与驱动晶体管相同的极性。
24.按照权利要求8的半导体器件,其中转换和驱动晶体管具有与驱动晶体管相同的极性。
25.按照权利要求5的半导体器件,其中转换和驱动晶体管以及驱动晶体管被串联布置在从电源到负载的电流馈电路径中,并且它们的栅极是电连接的。
26.按照权利要求6的半导体器件,其中转换和驱动晶体管以及驱动晶体管被串联布置在从电源到负载的电流馈电路径中,并且它们的栅极是电连接的。
27.按照权利要求7的半导体器件,其中转换和驱动晶体管以及驱动晶体管被串联布置在从电源到负载的电流馈电路径中,并且它们的栅极是电连接的。
28.按照权利要求8的半导体器件,其中转换和驱动晶体管以及驱动晶体管被串联布置在从电源到负载的电流馈电路径中,并且它们的栅极是电连接的。
29.按照权利要求1的半导体器件,其中信号电流路径经过至少第一装置;并且用于在负载工作时从电源给负载供电的电流路径经过至少第一装置和第四装置。
30.按照权利要求2的半导体器件,其中信号电流路径经过至少第一装置;并且用于在负载工作时从电源给负载供电的电流路径经过至少第一装置和第四装置。
31.按照权利要求3的半导体器件,其中信号电流路径经过至少第一装置;并且用于在负载工作时从电源给负载供电的电流路径经过至少第一装置和第四装置。
32.按照权利要求4的半导体器件,其中信号电流路径经过至少第一装置;并且用于在负载工作时从电源给负载供电的电流路径经过至少第一装置和第四装置。
33.按照权利要求5的半导体器件,其中信号电流路径经过至少转换和驱动晶体管的源和漏;并且用于在驱动负载时从电源给负载供电的电流路径经过至少转换和驱动晶体管的源和漏,以及驱动晶体管的源和漏。
34.按照权利要求6的半导体器件,其中信号电流路径经过至少转换和驱动晶体管的源和漏;并且用于在驱动负载时从电源给负载供电的电流路径经过至少转换和驱动晶体管的源和漏,以及驱动晶体管的源和漏。
35.按照权利要求7的半导体器件,其中信号电流路径经过至少转换和驱动晶体管的源和漏;并且用于在驱动负载时从电源给负载供电的电流路径经过至少转换和驱动晶体管的源和漏,以及驱动晶体管的源和漏。
36.按照权利要求8的半导体器件,其中信号电流路径经过至少转换和驱动晶体管的源和漏;并且用于在驱动负载时从电源给负载供电的电流路径经过至少转换和驱动晶体管的源和漏,以及驱动晶体管的源和漏。
37.按照权利要求1的半导体器件,其中由Idata表示的信号电流和由IEL表示的从电源提供给负载的电流之间的关系为,Idata≥IEL。
38.按照权利要求2的半导体器件,其中由Idata表示的信号电流和由IEL表示的从电源提供给负载的电流之间的关系为,Idata≥IEL。
39.按照权利要求3的半导体器件,其中由Idata表示的信号电流和由IEL表示的从电源提供给负载的电流之间的关系为,Idata≥IEL。
40.按照权利要求4的半导体器件,其中由Idata表示的信号电流和由IEL表示的从电源提供给负载的电流之间的关系为,Idata≥IEL。
41.按照权利要求5的半导体器件,其中由Idata表示的信号电流和由IEL表示的从电源提供给负载的电流之间的关系为,Idata≥IEL。
42.按照权利要求6的半导体器件,其中由Idata表示的信号电流和由IEL表示的从电源提供给负载的电流之间的关系为,Idata≥IEL。
43.按照权利要求7的半导体器件,其中由Idata表示的信号电流和由IEL表示的从电源提供给负载的电流之间的关系为,Idata≥IEL。
44.按照权利要求8的半导体器件,其中由Idata表示的信号电流和由IEL表示的从电源提供给负载的电流之间的关系为,Idata≥IEL。
45.按照权利要求1的半导体器件,其中负载是包括电致发光元件的发光元件。
46.按照权利要求2的半导体器件,其中负载是包括电致发光元件的发光元件。
47.按照权利要求3的半导体器件,其中负载是包括电致发光元件的发光元件。
48.按照权利要求4的半导体器件,其中负载是包括电致发光元件的发光元件。
49.按照权利要求5的半导体器件,其中负载是包括电致发光元件的发光元件。
50.按照权利要求6的半导体器件,其中负载是包括电致发光元件的发光元件。
51.按照权利要求7的半导体器件,其中负载是包括电致发光元件的发光元件。
52.按照权利要求8的半导体器件,其中负载是包括电致发光元件的发光元件。
53.按照权利要求1的半导体器件,其中该半导体器件被应用于电子设备中,该电子设备选自由有机发光显示器件、数字静物照相机、膝上型计算机、移动计算机、包括记录媒质的图像再现装置、风镜式显示器、视频摄像机和移动电话组成的组。
54.按照权利要求2的半导体器件,其中该半导体器件被应用于电子设备中,该电子设备选自由有机发光显示器件、数字静物照相机、膝上型计算机、移动计算机、包括记录媒质的图像再现装置、风镜式显示器、视频摄像机和移动电话组成的组。
55.按照权利要求3的半导体器件,其中该半导体器件被应用于电子设备中,该电子设备选自由有机发光显示器件、数字静物照相机、膝上型计算机、移动计算机、包括记录媒质的图像再现装置、风镜式显示器、视频摄像机和移动电话组成的组。
56.按照权利要求4的半导体器件,其中该半导体器件被应用于电子设备中,该电子设备选自由有机发光显示器件、数字静物照相机、膝上型计算机、移动计算机、包括记录媒质的图像再现装置、风镜式显示器、视频摄像机和移动电话组成的组。
57.按照权利要求5的半导体器件,其中该半导体器件被应用于电子设备中,该电子设备选自由有机发光显示器件、数字静物照相机、膝上型计算机、移动计算机、包括记录媒质的图像再现装置、风镜式显示器、视频摄像机和移动电话组成的组。
58.按照权利要求6的半导体器件,其中该半导体器件被应用于电子设备中,该电子设备选自由有机发光显示器件、数字静物照相机、膝上型计算机、移动计算机、包括记录媒质的图像再现装置、风镜式显示器、视频摄像机和移动电话组成的组。
59.按照权利要求7的半导体器件,其中该半导体器件被应用于电子设备中,该电子设备选自由有机发光显示器件、数字静物照相机、膝上型计算机、移动计算机、包括记录媒质的图像再现装置、风镜式显示器、视频摄像机和移动电话组成的组。
60.按照权利要求8的半导体器件,其中该半导体器件被应用于电子设备中,该电子设备选自由有机发光显示器件、数字静物照相机、膝上型计算机、移动计算机、包括记录媒质的图像再现装置、风镜式显示器、视频摄像机和移动电话组成的组。
全文摘要
提供一种发光器件,它能够以高速执行信号电流写入操作,而不存在构造象素的TFT特性中的分散对发光元件亮度的影响。在信号电流的写入期间电流在其中流动的晶体管的栅长度L被制成小于在光发射期间其中提供给EL元件的电流在其中流动的晶体管的栅长度L,并因此通过有比在常规EL元件中流动的电流大的电流流动进行高速写入。转换和驱动晶体管用于信号写入。通过在光发射期间将电流提供发光元件时使用转换和驱动晶体管以及驱动晶体管,与使用其中使用不同的晶体管进行写入操作和光发射操作的结构相比,可使晶体管特性中的分散对亮度产生较小的影响。
文档编号G09G3/30GK1409289SQ02142
公开日2003年4月9日 申请日期2002年9月23日 优先权日2001年9月21日
发明者木村肇 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1