双稳向列相液晶装置的制作方法

文档序号:2689864阅读:93来源:国知局
专利名称:双稳向列相液晶装置的制作方法
本申请是申请200410030468.1的分案申请。
本发明涉及双稳向列相液晶装置。
液晶装置一般包含一个夹在盒壁之间的液晶材料薄层。光学透明电极装在壁上使得一个电场被施加在层间并造成了液晶分子的重排。
有三种已知的液晶材料类型,向列相、胆甾醇型和近晶相,每一种都具有不同的分子排列。本发明为采用向列相材料的装置。
为了提供具有大量可寻址元素的显示器,通常把电极制造为置在一个壁上的一系列行电极和置在另一个盒壁上的一系列列电极。这些形成如可寻址元素或象素的x、y矩阵,并且对于扭曲向列型装置通常采用均方值寻址方法寻址。
液晶装置的扭曲向列相和位相变化型通过施加合适的电压被设置在ON状态,以及当施加的电压降到某一较低电压值以下时被设置在OFF状态,即这些装置是单稳态的。对于扭曲向列相型装置(如美国专利US 4,596,446中90°或270°扭曲),可被均方值寻址的元素数量通过装置透射率与电压曲线的陡度而被限制,对此Alt and Pleschko发表在IEEE Trans ED第ED21卷1974年146-155页有详细描述。改进象素数量的一种方法是将薄膜晶体管与每一相邻的象素结合;这种显示被称作为有源矩阵显示。向列相型装置的一个优点是相对低的电压要求。它们同样具有机械稳定性和具有宽的温度操作范围。这就容许制造小的并且可携带的以电池为能源的显示器。
大显示器寻址的另一种方法是使用双稳液晶装置。采用近晶相液晶材料和适当的盒壁表面准直处理,铁电液晶显示器可装在双稳装置中。这样的装置是由下述等人描述的表面稳定的铁电液晶装置(SSFELCDs)L J Yu,H Lee,C S Bak and M M Labes,Phys Rev Lett36,7,388(1976);R B Meyer,Mol Cryst Liq Cryst.40,33,(1977);NA Clark and S T Lagerwall,Appl Phys Lett,36,11,899(1980)。铁电装置的一个缺点是需要相对大的电压来切换材料。这种高电压使得小的可携带的,电池驱动的显示器价钱昂贵。同样这样的显示器还有其它的问题如缺乏抗振性、温度范围有限和同样由电引起的缺点,比如针。
如果采用向列相可完成双稳表面粘结则可制造具有上述技术优点而无上述问题的显示器。
Durand等已经表明向列相可通过使用手性离子或可变电耦合在两种准直状态之间切换A Charbi,R Barberi,G Durand and PMartinot-Largarde,专利申请号No WO 91/11747,(1991)“双稳手性控制液晶光装置”,G Durand,R Barbei,M Giocondo,P Martinot-Largarde,专利申请号No WO 92/00546(1991)“表面双稳性由可变电效果控制的向列相液晶显示器”。这些摘要如下在专利申请WO 91/11747中一种装置具有如下描述的特征1.采用具有合适厚度的SiO涂层和蒸发角的两个表面制造的液晶盒使得两种稳定状态存在于每一表面上。而且在一个表面上的两种状态被设计成水平角相差45°并且表面被取向为水平角相差45°以及表面被取向为两个所产生的域的每一个都是非扭曲的。
2.液晶盒(6μm厚)被填充掺有0.5%苯基奎宁溴化物和1.8%苯基乳酸的5CB。前者为具有左扭曲的正电的手性离子而后者具有右扭曲的负电的手性离子。浓度要保证最终混合具有很长的螺距以便于在薄的液晶盒中的状态是均匀的。
3.施加110V直流电的脉冲40μs使得在两种状态切换。对于较长的脉冲观测到较低的阈值,如对于300μs脉冲观测到80V阈值。
4.附加的适当定向偏振造成一种状态显示黑色而另一种显示白色,对比度大约为20。
5.还提到一种变形的装置,它在具有不同的顶点粘结能的单稳态表面造成短螺距的手性离子混合物。在4μm液晶盒中对于脉冲超过50V观测到180°扭曲状态和均匀状态之间的切换。
在专利申请WO 92/00546中一种装置具有如下描述的特征采用具有合适厚度的SiO涂层和蒸发角的两个表面制造液晶盒使得两种稳定状态存在于每一表面上。而且在一个表面上的两种状态被设计成方位角相差45°,并且表面被取向为两个所产生域的每一个都是非扭曲的。
表面同样以这样的方式被取向使得在一个表面上预倾角状态与无标号状态位于另一个表面的无标号状态对直,反之亦然。当填充5CB时,两种状态如图7B和7C所示。
沿1μm液晶盒施加14V直流电的脉冲100μs使得在状态之间切换。最终的状态依赖于由于与可变电偏振的耦合的脉冲的符号。在两种方向上的切换观测到同样的电压阈值。
被Durand使用得到双稳准直的表面是一个以精确倾斜角蒸发的SiO薄层。可是这种方法缺点为任何蒸发角、层厚的偏差或甚至任何沉积参数都趋于制造具有唯一单稳准直的表面。对于大面积显示器,这使得独特倾斜蒸发技术不稳定,或非常困难。
专利US 4,333,708描述一个多稳液晶装置,其中盒壁靠模加工后提供一个单一点的排列。这样的衬底构造提供了导向偶极子准直的多稳结构,因为旋错必须被移到在稳定结构切换。通过施加电场达到切换。
另一个双稳向列相装置在GB.2,286,467-A中被描述。它使用在至少一个盒壁上精确形成的双光栅。当适当的电信号被施加在液晶盒电极上如在专利申请NO.WO.92/00546中描述的直流与可变电偏振耦合,双光栅容许液晶分子采用两个不同角准直方向。因为在两个倾斜状态导向偶极子在层平面上非常接近,在导向偶极子和可变电分量之间的耦合可很小,这就在某些环境中阻碍了切换。
根据本发明,通过表面处理至少一个盒壁以容许向列相液晶分子采取在同一水平平面上两个预倾角的其中一个,上述缺点可被克服。液晶盒可在这两种状态之间电切换以使得信息显示可在掉电之后仍存在。
下面解释同一水平平面;使盒壁位于x,y平面,这意味着正交于盒壁的是z轴。在同一水平平面上的两个预倾角意味着在相同x,z平面上的两个不同的分子位置。
根据本发明双稳向列相液晶装置包括两个盒壁,包含一个液晶材料层;位于两个壁上的电极;两个盒壁的相对表面上的表面准直,为液晶分子提供准直;用于区分液晶材料切换状态的装置;具有如下特征一个表面准直光栅位于至少一个盒壁上,它容许液晶分子在相同的水平平面采取两种不同的预倾角;具有这样的排列,当适当的电信号被施加在电极后可存在两种稳定液晶分子结构。
光栅具有一个对称或不对称的沟槽外形。
光栅可具有一个不对称的沟槽外形,该沟槽外形将产生一个小于90°的预倾角,比如50°到90°。一个不对称的外形可被定义为不存在h值的表面ψx(h-x)=ψx(h+x)......(1)对于所有的x值,ψ是描述表面的函数。
光栅可被施加于两个盒壁上并且在每一个壁上形状可相同也可不同。另外光栅外形可在每一个象素区域内变化,和/或在电极之间的内象素间隙内变化。一个或者两个盒壁可涂覆表面活化剂如lethecin。
在一个或两个稳定分子结构中液晶材料可为非扭曲的。
盒壁可由相对厚的非柔性材料形成,如玻璃,或一个或两个盒壁可由柔性材料,如薄层玻璃,或塑料柔性材料,如聚烯烃或聚丙烯形成。塑料盒壁可被模压在其内表面上以提供一个光栅。此外,模压可提供小的墩(例如1-3μm高和5-50μm或以上宽)以协助盒壁间隔的正确分离和当液晶盒为柔性时还用于阻挡液晶材料流动。另外墩可通过准直层材料形成。
光栅可为光刻过程形成的光聚合物外廓层如M C Hutley,衍射光栅(Academic Press,London 1982)p95-125;和F Hom,PhysicsWorld,33(march 1993)。此外,双光栅可模压形成;M T Gale,J Kane andK Knop,J App.Photo Eng,4,2,41(1978),或刻线形成;E G Loewen andR S Wiley,Proc SPIE,88(1987),或通过载流子层传递形成。
电极可由一系列行电极和列电极排列以及可寻址元素或显示象素的一个x,y矩阵形成。典型的电极宽200μm,间距20μm。
另外,电极可以其它显示方式排列如r-θ矩阵或7或8条栅显示。
仅通过参考附图的例子,将描述本发明。


图1是矩阵多路寻址液晶显示器的平面视图;图2是图1显示器的截面部分;图3表示用于产生光栅面的掩模和暴露几何面的俯视图和侧视图。
图4是位于导致较高预倾角的光栅面上的液晶引导偶极子结构的截面部分。
图5是位于导致较低预倾角的光栅面上的液晶引导偶极子结构的截面部分。
图6是以沟槽深度与螺距比率(h/w)为函数的两个预倾角结构的能量。
图7表示在两个状态之间容许双稳切换的液晶盒结构的截面部分。
图8表示液晶盒的传输和以时间为函数的施加信号。
图9表示用于双稳装置的多路图示例。
图10表示用于双稳切换的替换液晶盒结构。
图11表示在非扭曲和扭曲状态之间用于双稳切换的液晶盒结构。
图1,2中的显示器包括由包含在玻璃壁3,4之间的向列相或长螺距胆甾醇型液晶材料的层2形成的液晶盒1。垫环5保持壁典型为1-6μm间距。此外,同样尺寸的大量压条分布在液晶内以保持精确的壁间距。类似带条的行电极6,如SnO2或ITO(氧化铟锡)制成,形成于壁3以及同样的列电极7形成于另一个壁4上。用m行和n列电极形成一个m×n的可寻址元素或象素的矩阵。每一象素通过行和列电极的交叉形成。
行驱动器8提供电压给每个行电极6。同样列驱动器9提供电压给每个列电极7。施加电压的控制是通过接收电源11的电能和时钟12的时序的控制逻辑回路10进行的。
液晶盒1的两边分别为偏振器13,13′,其偏振轴实际上分别彼此相交并实际上以45°与,如果有的话,位于后述的相邻壁3,4上的准直引导偶极子R相交。另外如伸展聚合物的光学补偿层17可加在盒壁和偏振器之间的液晶层2邻近处。
部分反射镜16可与光源15一起排列在液晶盒1的后面。这些使得显示器在反射光中可视并且光可从昏暗的背景中射出。对于传输装置,镜面16可被忽略。
在安装之前,至少有一个盒壁3,4用准直光栅处理以提供一个双稳的预倾角。其它表面可用平面(即预倾角与准直偶极子间为零或小角度)或垂直的单稳表面,或退化的平表面(即预倾角与非准直偶极子间为零或小角度)处理。
最后液晶盒被填充向列相材料,如E7,ZLI2293或TX2A(Merck)。
构造光栅表面方法的例子将参考图3描述。
例1一件涂覆有ITO的玻璃形成的盒壁3,4用丙酮和异丙醇清洗以及用光阻材料(Shipley 1805)在3000rmp下进行30秒螺旋涂覆,形成厚度0.55μm的涂层。然后在90℃下软烘干30分钟。
然后采用包含0.5μm的线21和0.5μm的间隔22(此处全部螺距为1μm)的铬掩模20在涂覆后的晶壁3,4上完成接触曝光,如图3所示。曝光采用非正射光完成,在这种情况下采用60°角。掩模20取向使得如图3所示的沟槽方向实际上垂直于入射平面。这种几何面的曝光导致一个非对称的光强分布和因此一个非对称的光栅外廓(见B.J.Lin,Opt.Soc.Am.,62,976(1972)中的例子)。涂覆盒壁3,4在水银灯(Osram Hg/100)下用光强0.8mW/cm2大约40到180秒时间曝光,如后面所述。
在曝光之后涂覆盒壁3,4从掩模20脱离并在Shipley MF319中显影10秒钟接着在消电离水中清洗。这使得盒壁表面形状具有形成理想光栅外廓的非对称表面模。在暴露于深UV辐射(254nm)接着在160℃下烘干45分钟的情况下,光阻材料变硬。这样做以保证液晶中的光阻材料的不溶性。最后光栅表面用表面活化剂卵磷酯溶液处理以便产生垂向的边界条件。
采用有限元分析以便预测在这类光栅表面上的向列相材料的自由层分子(更精确地为引导偶极子)构造。结果表示在图4,5和6中,图中短线代表整个层厚的液晶引导偶极子,底部的短线包络表示光栅外廓。在这种情况下,光栅表面用函数描述y(x)=h2sin(2πxw+Asin(2πxw))---(2)]]>此处h是沟槽深度,w是螺距以及A是非对称因子。在图4和5中,A=0.5和h/w=0.6。在图4中,有限元网格容许80°倾角的初始引导偶极子放宽。在这种情况下结构恢复到89.5°的预倾角。可是,如果初始引导偶极子倾角被设为30°则网格恢复到23.0°的预倾角,如图5所示。因此向列相液晶可采用依赖于起始条件的两个不同构造。
在实际中向列相液晶材料将恢复到这两种构型中具有最低的整体变形能量的一个。图6表示高预倾角(实心圆)和低预倾角(空心圆)状态的总体能量(任意单位)和沟槽深度与螺距的比率(h/w)的关系。对于低h/w,高预倾角状态具有最低的能量并且因此向列相将采用一个高的预倾角状态。与之相反对于高h/w,低预倾角状态具有最低的能量并且因此此状态被形成。可是当h/w=0.52,状态具有同样的能量并且因此两种都能存在而不恢复到另一种。因此如果一个表面按这种情况,或接近于这种情况被构造,则在预倾角中可观察到双稳性。参考上述构造细节,发现80秒的曝光时间可导致一个双稳表面。在这种情况下双稳性纯粹是表面函数并且不依赖于任何具体的液晶盒几何。这意味着与现有技术如US 4333708(1982)区分。
容许在双稳状态之间切换的一种适当的液晶盒结构如图7所示,它是装置的仿截面,其中具有正的介电各向异性的向列相液晶材料层2包含在双稳光栅表面25和单稳垂向表面26之间。后一表面26应当为,例如,一个涂覆有卵磷酯的平的光阻材料表面。在这个装置中液晶分子可存在于两种稳定状态。在状态(a)中两个表面25,26为垂直的,而在(b)中光栅表面25为导致倾斜结构的低预倾角状态。对于许多向列相材料,倾斜或弯曲变形将导致大的可变电的偏振,在图7中由矢量P表示。直流脉冲可耦合此偏振并且依赖其符号将有良好的或较差的结构(b)。
在状态(a)中借助装置,在垂向结构中正脉冲的施加将导致脉动尽管有正的介电各向异性。这些脉动可足够驱动系统超过分离两种准直状态的能量障碍。在脉冲结尾系统将降到状态(b),这是因为场的符号很好地耦合可变电的偏振。在状态(b)中借助系统,负符号的脉冲将再次破坏系统。但现在当其符号不有利于可变电偏振的形成时它将恢复到状态(a)。在其垂向状态,双稳表面以稍小于90°(如89.5°)的角度倾斜。这就足以控制当液晶盒切换到状态(a)时所得到的倾斜方向。
包含向列相ZL12293(Merck)的特殊的液晶盒被夹在双稳光栅表面和垂向的平的表面之间。液晶盒厚度为3μm。在室温(20℃)下施加直流脉冲测量通过液晶盒的透射率。位于液晶盒1的每一边的偏振器和分析器13,13′相互相交并以±45°指向光栅沟槽。在这个设立中,图7中的两种状态(a)和(b),当随之寻址时分别显示黑和白。
图8表示以时间为函数的施加电压脉冲(低轨迹)和光学响应(高轨迹)。每个脉冲具有55.0伏峰值和持续时间3.3ms。脉冲间隔为300ms。借助正脉冲的第一次施加,透射由暗变亮表明液晶盒由状态图7(a)切换到状态(b)。由于对正的介电各向异性的耦合的均方作用导致了整体材料到状态(a)的即刻切换所以第二个正脉冲导致透射瞬时变化。可是,在这种情况下,液晶盒不卡在表面上并且仍保持在状态(b)。下一个脉冲符号为负并且将液晶盒由状态(b)切换到状态(a)。最后第二个负脉冲使得液晶盒处于状态(a)。这个试验表明液晶盒在每一脉冲都不改变状态除非它有正确的符号。因此它证明了系统为双稳的以及最终状态可根据施加脉冲的符号被可靠选择。
切换在很宽的温度区间发生。当温度增加时,用于切换所需的电压下降。例如30℃时,需要44.8V电压用于双稳切换而当50℃时只需要28.8V电压。类似地,对于一个固定电压用于锁定所需的脉冲长度随温度下降。
在得到数据后,液晶盒被分解并且光栅面被AFM(原子力显微)赋予特征。由方程2拟合的非对称模形成1μm螺距,0.425μm沟槽深度(h/w=0.425)和A=0.5的非对称因子。比较图6的结果,此光栅具有h/w低值(0.425,与0.52相比)的双稳状况。可是由于实际表面具有的斜刻面角要求附加有较高谐波,方程2不精确拟合AFM数据。对于更精确的比较,其它因素如AFM顶部半径同样需要考虑。因此可得出结论即测得的表面模与用于双稳性的预测状况相似。
对于几个相邻象素的选择,单个象素的成功切换容许适当的多象素方法的设计。图9表示这种方法的一个特定的例子。如其所示,在一个列中的4个相连的行R1,R2,R3,R4中的象素拟被切换。两个可能的准直状态可任意定义为ON和OFF状态。行R1和R4拟被切换为ON状态,行R2和R3处于OFF状态。对每个行轮流施加三次时隙的+Vs选通脉冲接着三次时隙(ts)的-Vs。数据波形被施加到如示的列上并且对于ON象素包括1ts的-Vd伴以1ts的+Vd,以及对于OFF象素包括1ts的-Vd伴随以1ts的+Vd。
现在考虑位于A点的特定象素。合成波形包括大的正和负的破坏向列相取向的脉冲,并且提高其能量达到分离两个双稳表面状态的势垒。在这个场施加条件中,当为一般的单稳向列相装置中时液晶分子沿电场准直,如图7a所示。这些相反极性的大“复原”脉冲后紧跟着小脉冲,在取向的恢复期间该小脉冲仍然大到足以支配象素的最终选择状态。电的平衡通过极性与切换脉冲相反的小脉冲和随之的两个大脉冲而达到。另外,在相邻显示寻址时间中可使用极性转换。
上述双稳装置通过在一个状态中的可变电偏振的性能到达最终状态选择。因此这个结构必须包含斜面。在试验的例子中只有一个表面被容许切换但工作装置在两表面切换中可被完成。唯一存在的约束是每一表面上的低预倾角状态应当取不同值以便保持有限斜面。可是即使是低预倾角状态相等,如果其包含一个两频率的向列相材料,液晶盒仍然可被切换,即在低频率时不导电的各向异性为正而高频率时为负。此材料的一个例子为TX2A(Merck),它具有6kHz的交叉频率。图9表示本结构的截面。在状态(a)中借助液晶盒,施加高频率信号驱动向列相整体到一个低预倾角。表面随后形成并且液晶盒切换到状态(b)。相反,低频率信号将驱动向列相到一个高预倾角并且液晶盒将被切换到状态(a)。
例2下面描述双稳装置的第二个例子。一件由涂覆ITO的玻璃所形成的盒壁用丙酮和异丙醇清洗以及用光阻材料(Shipley 1813)在3000rpm下30秒螺旋涂覆形成厚度1.5μm的涂层。然后在90℃下软烘干30分钟。
然后采用包含0.5μm的线和0.5μm的间隔(此处全部螺距为1μm)的铬掩模完成接触曝光。在本例中曝光采用正射光完成。这种几何面的曝光导致一个对称的光强分布和因此一个对称的光栅外廓。样品在水银灯(Osram Hg/100)下用光强0.8mW/cm2曝光。
在曝光之后样品从掩模20脱离并在MF319中显影20秒钟接着在消电离水中清洗。这使得样品表面形状具有对称表面模。通过暴露于深UV辐射(254nm)接着在160℃下烘干45分钟的情况下光阻材料变硬。这样做以保证液晶中的光阻材料的不溶性。最后光栅表面用铬的络合物表面活化剂溶液处理以便产生垂向的边界条件。
采用上述360秒曝光时间的方法制造一个特定表面。在此光栅上的AFM分析表明其具有1μm螺距和1.2μm厚的对称外廓。这个表面被建立在相对于平的垂直面处以形成具有2.0μm厚度的液晶盒。在各向同性相中液晶盒填充有向列相材料E7(Merck)接着降到室温。显微观察揭示两个双稳状态的混合,在图7中(a)和(b)所示。
液晶盒在交叉偏振器间被定向以便沟槽方向与偏振器方向为45°。因此状态(a)为亮状态而状态(b)为暗状态。然后交替符号的单极脉冲被施加到液晶盒。脉冲长度设为5.4ms,脉冲间隔为1s。当施加的脉冲的峰值电压增加到20.3V时,在状态(a)和(b)发生完全切换。与图8中所示数据的同样方法,成对脉冲也被施加到液晶盒。再一次只有第一脉冲改变系统状态而第二脉冲只引起一个非锁定的瞬时响应。在这种情况中光学响应时间同样可被测量。用于从(a)切换到(b)的10%-90%响应时间为8.0ms而用于从(b)切换到(a)的响应时间为1.2ms。对此液晶盒的进一步分析揭示出双稳状态(a)和(b)分别在光栅面上导致预倾角90°和0°。因此本样品证明了在预倾角中最大可能变化。
当液晶盒厚度d如下给出时,图7和10所示结构中的光是最优的d=λ2Δnav---(3)]]>此处λ为操作波长以及Δnav为向列相二次折射的内平面分量(平行于液晶壁)的平均值。图10中结构所示的Δnav大于图7,此时液晶盒厚度变小因此光学切换速度将变大。可是两个频率向列相的使用限制了可得到材料的选择,同样导致更复杂寻址方案,但可容许低电压操作。
例3双稳光栅表面还可建在与平表面相对处。这样的液晶盒包括具有与例2所述相同外廓的光栅。它建在与一个采用P132聚酰亚胺(CibaGeigy)层形成的研磨聚合物面相对之处。聚酰亚胺表面上的研磨方向设为与光栅面上的光栅沟槽方向平行。液晶盒间隔设为2.5μm并且向列相E7被用于填充液晶盒。在填充之后冷却到室温产生如图11所示的两个状态。此图不同于图7之处在于位于双稳表面上的沟槽方向现在位于页面平面上(在x,y平面)。因此位于光栅的90°预倾角状态形成(a′)所示的混合结构而位于光栅上的0°预倾角状态形成(b′)所示的扭曲结构。为在状态间达到光学对比,液晶盒被放置在相交的偏振器13,13′取向之间以便光栅沟槽(和研磨方向)与一个偏振器平行,但是偏振器在两个切换状态之间可被旋转到最佳对比。因此状态(b′)为亮状态而状态(a′)为暗状态。采用5.3ms单极脉冲,在(a′)和(b′)之间的切换发生在56.7V的峰值电压。光学响应时间对于从(a′)切换到(b′)为110ms,而对于从(b′)切换到(a′)为1.4ms。
亮状态(b′)具有90°体扭曲。当采用通常的TN结构,当N为整数时得到最大透射(C.H.Gooch and H.A.Tarry,J.Phys.DAppl.Phys.,81575(1975))N=(Δnd/λ)2+0.25---(4)]]>此处Δn为向列相二次折射,d为液晶盒间隔以及λ为操作波长。因此具有530nm操作波长和N=1并采用E7(Δn=0.22)的双稳装置将有2.1μm的液晶盒间隔。
比较例2中描述的结构,它具有由方程3给出的最佳厚度。对于那个例子,Δnav为Δn/2因此方程3给出了一个1.2μm的厚度。因此不扭曲的双稳装置在薄的液晶盒间隔将总是具有最佳光学以及将因此以具有短的光学响应时间以低电压进行切换。
可加入胆甾醇型掺杂剂(如CB 15Merck的<1%)以阻止扭曲旋错。另外可通过排列沟槽方向不平行于研磨准直方向如大约45°调整以阻止这些旋错。
采用如上所列的一系列技术可制造对于这些装置的光栅表面。垂直处理可为任何具有与光栅表面有很好粘合的表面活化剂。这种处理应当导致去栓准直。即趋于特定向列相取向的准直不引起表面上向列相的刚性位置排列。
从上分析可见,为了取得双稳性对于一个给定的非对称,光栅模必须具有某一h/w。模的绝对尺度被其它因子限制。如果沟槽深度和螺距太大则衍射效果将变得明显并且导致装置通过量的损失。而且如果沟槽深度类似于液晶盒厚度,则相对平表面的沟槽峰向相对平表面的接近可阻止双稳切换。如果象图10所示的装置需要两个光栅,则与液晶盒厚度相比大的沟槽深度将不可避免地导致依赖于两个模相的切换。这将加重装置制造过程的复杂性。
如果沟槽深度和螺距太小,则问题仍然存在。对于常数h/w,当螺距变得较小则在表面上的整体变形的能量强度变得较大。最终这个能量类似于位于表面上向列相的局部附着能量。因此图4和5表示的结构(假定无限的附着能量)将不再被得到并且双稳性不可避免地被丢失。在大约0.1到10μm区间和0.05到5μm区间,h和w的典型值分别为大约0.5μm和1.0μm。
少量的二向色染料比如1-5%可掺进液晶材料。这可使用或不使用偏振器以提供色彩,改进对比,或作为宾主类型装置来运行,如E63(Merck)中的材料D124。装置(有或没有染料)的偏振器可旋转到装置的两个切换状态之间的最佳对比。
权利要求
1.一种双稳向列液晶装置,包括第一盒壁和第二盒壁,所述第一盒壁和所述第二盒壁包围了液晶材料层,其中所述第一盒壁具有被处理以便为液晶材料的分子提供双稳预倾角度的第一表面,所述第二盒壁具有被处理以便为液晶材料的分子提供单稳配向的第一表面,其中所述双稳向列液晶装置提供了两个稳定的且光学上可区别的液晶配置。
2.根据权利要求1的装置,其中对该第二盒壁的第一表面进行平面、简并平面和垂直表面处理中的一种处理。
3.根据权利要求1的装置,其中所述液晶材料层包括向列液晶材料。
4.根据权利要求1的装置,其中所述液晶材料层包括长螺距胆甾液晶材料。
5.根据权利要求1的装置,其中第一盒壁的第一表面包括多个柱。
6.根据权利要求5的装置,其中所述多个柱的每一个的高度在1-3μm的范围内。
7.根据权利要求5的装置,其中所述多个柱的每一个的宽度在5-50μm的范围内。
8.根据权利要求5的装置,其中所述多个柱的每一个的宽度大于50μm。
9.根据权利要求5的装置,还包括散布在所述液晶材料层中的多个珠。
10.一种用于双稳向列相液晶装置的盒壁,所述盒壁包括具有构图表面外廓的第一表面,以便为液晶材料的分子提供在相同的方位平面中两个不同的预倾角度,其中所述构图表面外廓包括至少一个柱。
11.根据权利要求10的装置,其中所述多个柱的每一个的高度在1-3μm的范围内。
12.根据权利要求10的装置,其中所述多个柱的每一个的宽度在5-50μm的范围内。
13.根据权利要求10的装置,其中所述多个柱的每一个的宽度大于50μm。
14.根据权利要求10的装置,其中所述柱被压印。
15.一种液晶装置,提供了两个稳定的且光学上可区别的液晶配置,所述装置包括盒,其中所述盒具有根据权利要求10的盒壁。
16.一种液晶装置,提供第一稳态液晶配置和第二稳态液晶配置,所述第一稳态液晶配置与所述第二稳态液晶配置是光学上可区别的,所述装置包括盒,所述盒具有至少一个盒壁,该盒壁具有第一表面以便为液晶材料的分子提供在相同的方位平面中两个不同的预倾角度,其中所述第一稳态液晶配置是扭曲分子配置。
17.根据权利要求16的装置,其中所述第二稳态液晶配置是非扭曲分子配置。
18.根据权利要求16的装置,其中所述液晶材料的分子具有正的介电各向异性。
19.根据权利要求16的装置,其中所述液晶材料的分子具有负的介电质各向异性。
全文摘要
一个双稳向列相液晶装置盒在至少一个盒壁上提供了一个表面准直光栅和在另一个盒壁上提供了表面处理。这样的处理可为垂向准直或具有或不具有准直方向的平面准直,以及零或非零预倾角。在单光栅上的表面外廓是不对称的,在其两个容许的准直排列中其沟槽的高宽比选择为在向列相材料中给出大致相等能量。单光栅可通过光刻过程或通过塑料材料模压而形成。通过直流脉冲与材料中可变电系数的耦合,或通过两个频率可寻址方案和一个适当的两个频率材料的使用,液晶盒被切换。液晶盒每边的偏振器在两个切换状态之间被分辨。盒壁可为刚性的或柔性的,并涂覆有电极结构,如以行和列形式给出在液晶盒上的可寻址象素的x,y矩阵。
文档编号G02F1/1337GK1928684SQ20061010017
公开日2007年3月14日 申请日期1996年10月9日 优先权日1995年10月16日
发明者G·P·布赖恩-布朗, C·V·布朗, J·C·乔内斯 申请人:Zbd显示器有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1