冷却装置和投影仪的制作方法

文档序号:20076826发布日期:2020-03-10 09:50阅读:114来源:国知局
冷却装置和投影仪的制作方法

本发明涉及冷却装置和投影仪。



背景技术:

以往,作为电子装置等的冷却所使用的冷却装置,公知有利用封入内部的工作流体的相变化来输送热的环型热管(例如,参照专利文献1)。

专利文献1记载的环型热管具有蒸发部、冷凝部、蒸气管和液管。蒸发部从发热体受热,使液相的工作流体蒸发而相变化为气相的工作流体。蒸气管使通过蒸发部变化为气相的工作流体在冷凝部流通。冷凝部使气相的工作流体通过散热而被冷凝,相变化为液相的工作流体。液管使通过冷凝部变化为液相的工作流体向蒸发部流通。

这样,工作流体在环型热管内循环,发热体的热从蒸发部输送到冷凝部并被冷凝部释放,由此,发热体被冷却。

另外,在专利文献1记载的环型热管中,蒸发部具有平板型的芯部、配置在芯部的下侧而形成蒸气流路的凹槽、收纳芯部和凹槽的壳体,发热体与壳体连接。

芯部由多孔质的材料形成,液相的工作流体利用毛细管现象从壳体内的贮液部浸入芯部中。浸入芯部中的液相的工作流体通过从发热体传递的热而蒸发,变化为气相的工作流体,气相的工作流体在凹槽的蒸气流路内流通,流通到蒸气管内。

专利文献1:日本特开2012-83082号公报



技术实现要素:

发明要解决的课题

在环型热管中,为了提高冷却对象的冷却效率,要求蒸发部中的液相的工作流体的蒸发性能较高。

针对这种要求,可考虑由导热率较高的金属构成芯部,通过从凹槽传递的热使液相的工作流体在芯部内蒸发。但是,在这种结构中,容易产生传递到芯部的热传递到储液器内的液相的工作流体的所谓热泄漏(heatleak)的现象。当产生热泄漏时,液相的工作流体的温度上升,从而蒸发部内的压力上升,不容易产生从液相到气相的工作流体的相变化,冷却对象的冷却效率降低。

针对这种热泄漏的产生,可考虑通过增大芯部的厚度来抑制朝向储液器侧的热传递。但是,当芯部的厚度增大时,芯部内变化为气相的工作流体的排出阻力增大,压力损耗增大。该情况下,液相的工作流体的温度也上升,与上述同样,冷却对象的冷却效率降低。

因此,期望可提高液相的工作流体的蒸发性能的蒸发部的结构。

用于解决课题的手段

本发明的第1方式的冷却装置的特征在于,所述冷却装置具有:蒸发部,其利用从冷却对象传递的热使液相的工作流体蒸发而变化为气相的所述工作流体;冷凝部,其使气相的所述工作流体冷凝而变化为液相的所述工作流体;蒸气管,其使通过所述蒸发部变化为气相的所述工作流体向所述冷凝部流通;以及液管,其使通过所述冷凝部变化为液相的所述工作流体向所述蒸发部流通,所述蒸发部具有:壳体,其与所述液管连接,液相的所述工作流体流入该壳体的内部;储液器,其设置在所述壳体内,贮留流入的液相的所述工作流体;芯部,其设置在所述壳体内,液相的所述工作流体浸入该芯部,该芯部保持液相的所述工作流体;以及凹槽,其具有供从液相变化为气相的所述工作流体流通的多个流路,与所述芯部连接,所述芯部具有分别设置在所述凹槽与所述储液器之间、且从所述凹槽朝向所述储液器依次设置的第1层、第2层和第3层,所述第1层具有沿着所述多个流路设置的多个第1开口,具有比所述第2层的导热性和所述第3层的导热性高的导热性,所述第3层将所述储液器中贮留的液相的所述工作流体输送到所述第2层,所述第2层具有与所述多个第1开口对应地设置且开口面积比所述多个第1开口大的多个第2开口,将从所述第3层输送的液相的所述工作流体输送到所述第1层。

在上述第1方式中,优选所述第2层具有弹性。

在上述第1方式中,优选所述第2层的空隙率比所述第1层的空隙率小。

在上述第1方式中,优选所述第1层的导热率比所述第2层的导热率和所述第3层的导热率高,由此,所述第1层具有比所述第2层的导热性和所述第3层的导热性高的导热性。

在上述第1方式中,优选所述第1层的导热率比所述第2层的导热率高,所述第1层的热阻比所述第3层的热阻小,由此,所述第1层具有比所述第2层的导热性和所述第3层的导热性高的导热性。

本发明的第2方式的冷却装置的特征在于,所述冷却装置具有:蒸发部,其利用从冷却对象传递的热使液相的工作流体蒸发而变化为气相的所述工作流体;冷凝部,其使气相的所述工作流体冷凝而变化为液相的所述工作流体;蒸气管,其使通过所述蒸发部变化为气相的所述工作流体向所述冷凝部流通;以及液管,其使通过所述冷凝部变化为液相的所述工作流体向所述蒸发部流通,所述蒸发部具有:壳体,其与所述液管连接,液相的所述工作流体流入该壳体的内部;贮留部,其设置在所述壳体内,贮留流入所述壳体内的液相的所述工作流体;以及蒸气生成部,其使从所述贮留部供给的液相的所述工作流体蒸发,所述蒸气生成部具有朝向所述贮留部依次设置的流路形成层、连接层、中间层和流体输送层,所述流路形成层具有供从液相变化为气相的所述工作流体流通、且与所述蒸气管连通的多个流路,所述连接层具有沿着所述多个流路设置的多个第1开口,具有比所述中间层的导热性和所述流体输送层的导热性高的导热性,与所述流路形成层连接,所述流体输送层将所述贮留部中贮留的液相的所述工作流体输送到所述中间层,所述中间层具有与所述多个第1开口对应地设置且开口面积比所述多个第1开口大的多个第2开口,将从所述流体输送层输送的液相的所述工作流体输送到所述连接层。

在上述第1和第2方式中,优选所述冷凝部具有:蒸气流通部,其供来自所述蒸气管的气相的所述工作流体流通;多个微细流路,它们与所述蒸气流通部连接,流路截面积比所述蒸气流通部小;以及液体流通部,其与所述多个微细流路连接,将从所述多个微细流路流入的变化为液相的所述工作流体引导至所述液管。

在上述第1和第2方式中,优选所述液体流通部具有:所述液体流通部具有:第1延伸部,其与所述多个微细流路连接,供液相的所述工作流体向与所述蒸气流通部中的气相的所述工作流体的流通方向相反的方向流通;折返部,其设置在所述第1延伸部中的靠所述工作流体的流通方向下游侧的端部,使液相的所述工作流体的流通方向反转;以及第2延伸部,其与所述折返部连接,供在所述第1延伸部中流通后的液相的所述工作流体经由所述折返部流通。

本发明的第3方式的投影仪的特征在于,所述投影仪具有:光源装置,其具有出射光的光源;光调制装置,其对从所述光源装置出射的光进行调制;投射光学装置,其投射由所述光调制装置调制后的光;以及上述冷却装置。

在上述第3方式中,优选所述冷却对象是所述光源。

附图说明

图1是示出本发明的一个实施方式的投影仪的外观的立体图。

图2是示出上述实施方式中的投影仪的内部结构的示意图。

图3是示出上述实施方式中的光源装置的结构的示意图。

图4是示出上述实施方式中的冷凝部的内部构造的剖视图。

图5是示出上述实施方式中的蒸发部的内部构造的剖视图。

图6是示出上述实施方式中的蒸气生成部的分解立体图。

图7是示出上述实施方式中的蒸气生成部的剖视图。

图8是示出上述实施方式中的第1开口与凹槽的流路的位置关系的图。

图9是示出上述实施方式中的第2开口与第1开口的位置关系的图。

图10是放大示出上述实施方式中的蒸气生成部的一部分的剖视图。

标号说明

1:投影仪;343(343b、343g、343r):光调制装置;36:投射光学装置;4:光源装置;411:光源(冷却对象);5:冷却装置;51:环型热管;52:蒸气管;53:液管;6:蒸发部;61:壳体;62:贮留部(储液器);63:蒸气生成部;64:凹槽(流路形成层);641:流路;64a:端面;65:芯部;66:第1层(连接层);661:第1开口;66a、66b:端面;67:第2层(中间层);671:第2开口;67a、67b:端面;68:第3层(流体输送层);68b:端面;7:冷凝部;72:蒸气流通部;73:微细流路;731:第1微细流路;732:第2微细流路;74:液体流通部;741:第1流通部;742:第2流通部;7411、7421:第1延伸部;7412、7422:第2延伸部;7413、7423:折返部。

具体实施方式

下面,根据附图对本发明的一个实施方式进行说明。

[投影仪的结构]

图1是示出本实施方式的投影仪1的外观的立体图。

本实施方式的投影仪1是如下的图像显示装置:对从后述光源装置4出射的光进行调制,形成与图像信息对应的图像,将所形成的图像放大投射到屏幕等被投射面上。如图1所示,投影仪1具有构成外装的外装壳体2。

[外装壳体的结构]

外装壳体2具有顶面部21、底面部22、正面部23、背面部24、左侧面部25和右侧面部26,形成为大致长方体形状。

底面部22具有与载置投影仪1的设置面接触的多个脚部221。

正面部23在外装壳体2中位于图像的投射侧。正面部23具有使后述投射光学装置36的一部分露出的开口部231,由投射光学装置36投射的图像通过开口部231。此外,正面部23具有将对投影仪1内的冷却对象进行冷却后的冷却气体排出到外装壳体2的外部的排气口232。

右侧面部26具有将外装壳体2外的空气等气体作为冷却气体导入到内部的导入口261。

[投影仪的内部结构]

图2是示出投影仪1的内部结构的示意图。

如图2所示,投影仪1还具有分别收容在外装壳体2内的图像投射装置3和冷却装置5。除此以外,省略图示,但是,投影仪1具有对投影仪1的动作进行控制的控制装置和向投影仪1的电子部件供给电力的电源装置。

[图像投射装置的结构]

图像投射装置3形成并投射与从控制装置输入的图像信息对应的图像。图像投射装置3具有光源装置4、均匀化装置31、色分离装置32、中继装置33、图像形成装置34、光学部件用壳体35和投射光学装置36。

光源装置4出射照明光。光源装置4的结构在后面详细叙述。

均匀化装置31对从光源装置4出射的照明光进行均匀化。该均匀化的照明光经由色分离装置32和中继装置33对图像形成装置34的后述光调制装置343的调制区域进行照明。均匀化装置31具有2个透镜阵列311、312、偏振转换元件313和重叠透镜314。

色分离装置32将从均匀化装置31入射的光分离成红、绿和蓝的各色光。色分离装置32具有2个分色镜321、322、以及使由分色镜321分离后的蓝色光反射的反射镜323。

中继装置33设置在比其他色光的光路长的红色光的光路上,抑制红色光的损耗。中继装置33具有入射侧透镜331、中继透镜333、反射镜332、334。另外,在本实施方式中,在红色光的光路上设置中继装置33。但是,不限于此,例如也可以构成为设光路比其他色光长的色光为蓝色光,在蓝色光的光路上设置中继装置33。

图像形成装置34对所入射的红、绿和蓝的各色光进行调制,对调制后的各色光进行合成,形成图像。图像形成装置34具有根据分别入射的色光设置的3个场透镜341、3个入射侧偏振板342、3个光调制装置343、3个视野角补偿板344和3个出射侧偏振板345、1个色合成装置346。

光调制装置343根据图像信息对从光源装置4出射的光进行调制。光调制装置343包含红色光用的光调制装置343r、绿色光用的光调制装置343g和蓝色光用的光调制装置343b。在本实施方式中,光调制装置343由透过型的液晶面板构成,通过入射侧偏振板342、光调制装置343和出射侧偏振板345构成液晶光阀。

色合成装置346对由光调制装置343b、343g、343r调制后的各色光进行合成,形成图像。在本实施方式中,色合成装置346由十字分色棱镜构成,但不限于此,例如还能够由多个分色镜构成。

光学部件用壳体35在内部收容上述各装置31~34。另外,在图像投射装置3中设定了设计上的光轴即照明光轴ax,光学部件用壳体35在照明光轴ax中的规定位置保持各装置31~34。另外,光源装置4和投射光学装置36配置在照明光轴ax中的规定位置。

投射光学装置36将从图像形成装置34入射的图像放大投射到被投射面上。即,投射光学装置36投射由光调制装置343b、343g、343r调制后的光。投射光学装置36例如构成为在筒状的镜筒内收纳有多个透镜的组透镜。

[光源装置的结构]

图3是示出光源装置4的结构的示意图。

光源装置4向均匀化装置31出射照明光。如图3所示,光源装置4具有光源用壳体ca、分别收容在光源用壳体ca内的光源部41、远焦光学元件42、均束器光学元件43、偏振分离元件44、第1会聚元件45、波长转换元件46、第1相位差元件47、第2会聚元件48、扩散反射装置49和第2相位差元件rp。

光源用壳体ca构成为尘埃等不容易侵入内部的密闭壳体。

光源部41、远焦光学元件42、均束器光学元件43、偏振分离元件44、第1相位差元件47、第2会聚元件48和扩散反射装置49配置在照明光轴ax1上,该照明光轴ax1设定在光源装置4中。

波长转换元件46、第1会聚元件45、偏振分离元件44和第2相位差元件rp配置在照明光轴ax2上,该照明光轴ax2设定在光源装置4中,并且与照明光轴ax1正交。

[光源部的结构]

光源部41具有出射光的光源411和准直透镜415。

光源411具有多个第1半导体激光器412和多个第2半导体激光器413、支承部件414。

第1半导体激光器412出射激励光即s偏振的蓝色光l1s。蓝色光l1s例如是峰值波长为440nm的激光。从第1半导体激光器412出射的蓝色光l1s入射到波长转换元件46。

第2半导体激光器413出射p偏振的蓝色光l2p。蓝色光l2p例如是峰值波长为460nm的激光。从第2半导体激光器413出射的蓝色光l2p入射到扩散反射装置49。

支承部件414支承与照明光轴ax1正交的平面中分别呈阵列状配置的多个第1半导体激光器412和多个第2半导体激光器413。支承部件414是具有导热性的金属制部件,与后述蒸发部6连接。由此,作为热源的各半导体激光器412、413的热即光源411的热传递到蒸发部6。

从第1半导体激光器412出射的蓝色光l1s和从第2半导体激光器413出射的蓝色光l2p通过准直透镜415转换为平行光束,入射到远焦光学元件42。

另外,在本实施方式中,光源411构成为出射s偏振的蓝色光l1s和p偏振的蓝色光l2p。但是,不限于此,光源411也可以构成为出射偏振方向相同的直线偏振光即蓝色光。该情况下,将相位差元件配置在光源部41与偏振分离元件44之间即可,该相位差元件将入射的1种直线偏振光作为包含s偏振光和p偏振光的光。

[远焦光学元件和均束器光学元件的结构]

远焦光学元件42对从光源部41入射的蓝色光l1s、l2p的光束直径进行调整,使其入射到均束器光学元件43。远焦光学元件42由对所入射的光进行会聚的透镜421、对由透镜421会聚后的光束进行平行化的透镜422构成。

均束器光学元件43对蓝色光l1s、l2p的照度分布进行均匀化。均束器光学元件43由一对多透镜阵列431、432构成。

[偏振分离元件的结构]

通过均束器光学元件43后的蓝色光l1s、l2p入射到偏振分离元件44。

偏振分离元件44是棱镜型的偏振分束器,对所入射的光中包含的s偏振成分和p偏振成分进行分离。具体而言,偏振分离元件44使s偏振成分反射,使p偏振成分透过。此外,偏振分离元件44具有不管是s偏振成分和p偏振成分中的哪个偏振成分、都使规定波长以上的光透过的色分离特性。因此,s偏振的蓝色光l1s被偏振分离元件44反射,入射到第1会聚元件45。另一方面,p偏振的蓝色光l2p透过偏振分离元件44,入射到第1相位差元件47。

[第1会聚元件的结构]

第1会聚元件45将被偏振分离元件44反射的蓝色光l1s会聚在波长转换元件46。此外,第1会聚元件45对从波长转换元件46入射的荧光yl进行平行化。在图3的例子中,第1会聚元件45由2个透镜451、452构成,但是,构成第1会聚元件45的透镜的数量是任意的。

[波长转换元件的结构]

波长转换元件46被所入射的光激励,生成波长比所入射的光长的荧光yl,向第1会聚元件45出射荧光yl。换言之,波长转换元件46对所入射的光的波长进行转换,出射被转换后的光。由波长转换元件46生成的荧光yl例如是峰值波长为500~700nm的光。波长转换元件46具有波长转换部461和散热部462。

省略图示,但是,波长转换部461具有波长转换层和反射层。波长转换层包含荧光体,该荧光体扩散出射对所入射的蓝色光l1s进行波长转换后的非偏振光即荧光yl。反射层使从波长转换层入射的荧光yl向第1会聚元件45侧反射。

散热部462设置在波长转换部461中的与光入射侧相反的一侧的面上,释放由波长转换部461产生的热。

从波长转换元件46出射的荧光yl沿着照明光轴ax2通过第1会聚元件45后,入射到具有上述色分离特性的偏振分离元件44。然后,荧光yl沿着照明光轴ax2通过偏振分离元件44,入射到第2相位差元件rp。

另外,波长转换元件46也可以构成为通过电机等旋转装置而以与照明光轴ax2平行的旋转轴为中心旋转。

[第1相位差元件和第2会聚元件的结构]

第1相位差元件47配置在偏振分离元件44与第2会聚元件48之间。第1相位差元件47将通过偏振分离元件44后的蓝色光l2p转换为圆偏振的蓝色光l2c。蓝色光l2c入射到第2会聚元件48。

第2会聚元件48将从第1相位差元件47入射的蓝色光l2c会聚在扩散反射装置49。此外,第2会聚元件48对从扩散反射装置49入射的蓝色光l2c进行平行化。另外,构成第2会聚元件48的透镜的数量能够适当变更。

[扩散反射装置的结构]

扩散反射装置49使所入射的蓝色光l2c以与由波长转换元件46生成并出射的荧光yl相同的扩散角进行扩散反射。作为扩散反射装置49的结构,能够例示具有使所入射的蓝色光l2c进行朗伯反射的反射板、以及使反射板以与照明光轴ax1平行的旋转轴为中心旋转的旋转装置的结构。

在扩散反射装置49扩散反射的蓝色光l2c通过第2会聚元件48后,入射到第1相位差元件47。蓝色光l2c在扩散反射装置49反射时,被转换为旋转方向为相反方向的圆偏振光。因此,经由第2会聚元件48入射到第1相位差元件47的蓝色光l2c不是从偏振分离元件44入射到第1相位差元件47时的p偏振的蓝色光l2p,而被转换为s偏振的蓝色光l2s。然后,蓝色光l2s被偏振分离元件44反射,入射到第2相位差元件rp。即,从偏振分离元件44入射到第2相位差元件rp的光是蓝色光l2s和荧光yl混合后的白色光。

[第2相位差元件的结构]

第2相位差元件rp将从偏振分离元件44入射的白色光转换为s偏振光和p偏振光混合后的光。这样转换后的白色的照明光wl入射到上述均匀化装置31。

[冷却装置的结构]

冷却装置5对构成投影仪1的冷却对象进行冷却。在本实施方式中,冷却对象为光源装置4的光源411。如图2所示,冷却装置5具有环型热管51和冷却风扇54。

冷却风扇54在外装壳体2内的空间中设置在排气口232与环型热管51的后述冷凝部7之间。冷却风扇54在抽吸外装壳体2内的冷却气体并从排气口232排出的过程中,使冷却气体流通到冷凝部7,由此,对冷凝部7进行冷却。另外,冷却风扇54例如也可以构成为,在外装壳体2内的空间中设置在导入口261与后述冷凝部7之间,抽吸外装壳体2外的冷却气体并向冷凝部7送出冷却气体。

环型热管51具有供以减压状态封入从而相状态以较低温度变化的工作流体进行循环的循环流路。详细地讲,环型热管51通过从冷却对象传递的热,使以减压状态在内部封入的工作流体的相状态从液相相变化为气相,在工作流体从液相相变化为气相的部位以外的部位从气相的工作流体夺走热,使工作流体从气相变化为液相,并且,释放夺走的热,由此,对冷却对象进行冷却。另外,作为工作流体,能够例示水。

这种环型热管51具有蒸发部6、蒸气管52、冷凝部7和液管53。另外,蒸发部6的结构在后面详细叙述。

[蒸气管和液管的结构]

蒸气管52是在工作流体的循环流路中以气相的工作流体能够流通的方式连接蒸发部6和冷凝部7的管状部件。蒸气管52使蒸发部6中变化为气相且从蒸发部6流入蒸气管52的气相的工作流体流通到冷凝部7。

液管53是在工作流体的循环流路中以液相的工作流体能够流通的方式连接冷凝部7和蒸发部6的管状部件。液管53使冷凝部7中变化为液相的工作流体流通到蒸发部6。

[冷凝部的结构]

图4是示出冷凝部7的内部构造的剖视图。

冷凝部7使工作流体从气相相变化为液相。即,冷凝部7使气相的工作流体冷凝,变化为液相的工作流体。如图4所示,冷凝部7具有连接有蒸气管52和液管53的主体部71、以及与主体部71连接的未图示的散热部。气相的工作流体在主体部71内的流路中流通的过程中,被主体部71接收热而被冷却,由此变化为液相的工作流体。然后,变化为液相的工作流体进一步在流路内流通,被主体部71接收热而被冷却后,向液管53流出。下面,对冷凝部7的结构进行详细说明。

散热部是释放传递到主体部71的工作流体的热的部件,是所谓的散热器。通过冷却风扇54的驱动而使外装壳体2内的冷却气体在散热部流通,由此,冷凝部7被冷却。

主体部71从气相的工作流体夺走热,使工作流体从气相变化为液相,使液相的工作流体向液管53流出,其中,该气相的工作流体经由蒸气管52从蒸发部6流入。主体部71在内部具有分别能够供工作流体流通的蒸气流通部72、多个微细流路73和液体流通部74。

蒸气流通部72是供来自蒸气管52的气相的工作流体流通的流通部,呈直线状向来自蒸气管52的气相的工作流体的流入方向即+d1方向延伸。蒸气流通部72连接有向与+d1方向正交的方向分别延伸的多个微细流路73。因此,流入蒸气流通部72内的气相的工作流体被分流到各微细流路73进行流通。

多个微细流路73分别是流路截面积比蒸气流通部72和液体流通部74小的微细流路。多个微细流路73从蒸气流通部72向作为与+d1方向正交的一个方向的+d2方向以及作为与+d2方向相反的方向的-d2方向延伸。

具体而言,多个微细流路73包含多个第1微细流路731和多个第2微细流路732。多个第1微细流路731从蒸气流通部72中的+d2方向侧的端部向+d2方向延伸,多个第2微细流路732从蒸气流通部72中的-d2方向侧的端部向-d2方向延伸。而且,各第1微细流路731以及各第2微细流路732与液体流通部74连通。即,通过多个微细流路73,蒸气流通部72和液体流通部74以工作流体能够流通的方式连接。

流入蒸气流通部72的蒸气即气相的工作流体在多个第1微细流路731或多个第2微细流路732内流通的过程中向主体部71传递热,由此,气相的工作流体变化为液相的工作流体。变化为液相的工作流体通过各微细流路73的毛管力流通到液体流通部74。

液体流通部74是以液相的工作流体能够流通的方式连接多个微细流路73和液管53、并且从在内部流通的液相的工作流体夺走热的流通部。即,液体流通部74与多个微细流路73连接,将从多个微细流路73流入的液相的工作流体引导至液管53。液体流通部74具有与多个第1微细流路731连接的第1流通部741、与多个第2微细流路732连接的第2流通部742、以及供在第1流通部741和第2流通部742中流通后的液相的工作流体进行合流的合流部743。合流部743将液管53与第1流通部741以及第2流通部742连接起来。

第1流通部741和第2流通部742分别形成为大致u字状。详细地讲,第1流通部741具有第1延伸部7411、第2延伸部7412和折返部7413。

第1延伸部7411与+d1方向平行地延伸,分别与多个第1微细流路731连接。并且,在多个第1微细流路731中流通而变化为液相的工作流体在第1延伸部7411内向与蒸气流通部72中的气相的工作流体的流通方向即+d1方向相反的方向即-d1方向流通。

第2延伸部7412与第1延伸部7411大致平行地延伸,构成为液相的工作流体能够在内部流通。第2延伸部7412与后述折返部7413连接,在第1延伸部7411中流通后的液相的工作流体经由折返部7413在内部流通。

折返部7413设置在第1延伸部7411中的工作流体的流通方向下游侧即-d1方向侧的端部,与第2延伸部7412中的工作流体的流通方向上游侧即-d1方向侧的端部连接。折返部7413使从第1延伸部7411流入的液相的工作流体流通到第2延伸部7412。通过经由折返部7413,在第2延伸部7412中流通的液相的工作流体的流通方向相对于第1延伸部7411内的液相的工作流体的流通方向反转。即,折返部7413使液相的工作流体的流通方向反转。另外,第2延伸部7412中的+d1方向的端部与合流部743连接。

第2流通部742也与第1流通部741同样,具有向+d1方向延伸的第1延伸部7421、与第1延伸部7421大致平行地延伸的第2延伸部7422、以及连接第1延伸部7421和第2延伸部7422中的-d1方向的端部之间的折返部7423。

合流部743是将第2延伸部7412、7422与液管53连接起来的部位,形成为大致y字状。

另外,在本实施方式中,第1流通部741的内径和第2流通部742的内径比蒸气流通部72的内径小。换言之,与第1流通部741延伸的方向正交的截面的面积以及与第2流通部742延伸的方向正交的截面的面积比与蒸气流通部72延伸的方向正交的截面的面积小。这是考虑了如下情况:在液体流通部74中流通的液相的工作流体的体积比在蒸气流通部72中流通的气相的工作流体的体积小,因此,抑制伴随于工作流体体积减少的压力损耗的产生。

在这种冷凝部7中,从蒸气管52流入蒸气流通部72内的气相的工作流体的一部分流入多个第1微细流路731,另一部分流入多个第2微细流路732。

在多个第1微细流路731中流通而变化为液相的工作流体从第1微细流路731流入第1流通部741的第1延伸部7411。

流入多个第2微细流路732的气相的工作流体也同样变化为液相的工作流体,从第2微细流路732流入第2流通部742的第1延伸部7421。

流入各第1延伸部7411、7421的液相的工作流体向-d1方向流通,经由折返部7413、7423在各第2延伸部7412、7422中向+d1方向流通。这样,液相的工作流体在第1流通部741和第2流通部742中流通,由此,液相的工作流体的热传递到主体部71,液相的工作流体进一步被冷却。另外,供液相的工作流体在内部流通的第1流通部741和第2流通部742为大致u字状,由此,能够延长冷凝部7内的液相的工作流体的流路,能够高效地使热从液相的工作流体传递到主体部71。

在各第2延伸部7412、7422中流通后的液相的工作流体在合流部743处合流,流入液管53内。

这样,气相的工作流体在冷凝部7内冷凝而产生的液相的工作流体向液管53流出,然后流入蒸发部6。

以上说明了本实施方式中的冷凝部7的基本构造。这种冷凝部7也可以还具有以下特征。

例如,微细流路73也可以在蒸气流通部72中较密地配置在上游侧即-d1方向侧的部位,较疏地配置在下游侧即+d1方向侧的部位。即,多个微细流路73也可以设置成与蒸气流通部72中的上游侧的部位连接的微细流路73的每单位面积的数量比与下游侧的部位连接的微细流路73的每单位面积的数量多。此时,也可以减小与蒸气流通部72的上游侧的部位连接的微细流路73的内径或截面积,增大与下游侧的部位连接的微细流路73的内径或截面积。在这样设置微细流路73的情况下,能够使流入蒸气流通部72的上游侧的部位的温度较高的气相的工作流体流通到较密配置的多个微细流路中,因此,能够促进来自气相的工作流体的受热,能够高效地进行从气相到液相的工作流体的相变化。

此外,例如,也可以使蒸气流通部72中的上游侧的部位变粗,使下游侧的部位变细。即,蒸气流通部72也可以构成为随着朝向下游侧而使内径或截面积减小。此时,蒸气流通部72的内径或截面积可以随着朝向下游侧而连续地减小,也可以阶段地减小。另外,当考虑蒸气流通部72内的压力损耗的产生时,与阶段地减小相比,优选蒸气流通部72的内径连续地减小。

同样,多个微细流路73中的至少1个微细流路73也可以采用随着朝向下游侧而使内径或截面积减小的微细流路。例如,多个第1微细流路731中的至少1个也可以采用随着朝向+d1方向而使内径或截面积减小的第1微细流路。该情况下,微细流路73的内径或截面积可以随着朝向下游侧而连续地减小,也可以阶段地减小。

此外,例如,与蒸气流通部72延伸的方向正交的截面的形状、与微细流路73延伸的方向正交的截面的形状以及与液体流通部74延伸的方向正交的截面的形状不限于圆形,也可以是椭圆形或多边形。另外,当截面形状存在角部时,容易在角部产生压力损耗。因此,供工作流体流通的部件的截面形状优选为圆形或椭圆形。

另外,冷凝部7具有与蒸气流通部72连接的多个第1微细流路731、与多个第1微细流路731连接的第1流通部741、同样与蒸气流通部72连接的多个第2微细流路732、以及与多个第2微细流路732连接的第2流通部742。但是,不限于此,也可以不具有第1微细流路731以及第1流通部741、和第2微细流路732以及第2流通部742中的任意一方。

[蒸发部的结构]

图5是示出蒸发部6的内部构造的剖视图。

如图2所示,蒸发部6是如下的蒸发器:与作为冷却对象的光源411连接,通过从光源411传递的热使液相的工作流体蒸发,变化为气相的工作流体。具体而言,蒸发部6与光源411的支承部件414连接,通过经由支承部件414传递的半导体激光器412、413的热使液相的工作流体蒸发,由此对半导体激光器412、413进行冷却。

如图5所示,蒸发部6具有壳体61、贮留部62和蒸气生成部63。

[壳体和贮留部的结构]

壳体61是金属制的壳体,具有连接有蒸气管52的蒸气管连接部611、位于与蒸气管连接部611相反的一侧且连接有液管53的液管连接部612、以及与环型热管51的冷却对象即光源411的支承部件414连接且将半导体激光器412、413中产生的热传递到蒸气生成部63的后述凹槽64的受热部件613。除此之外,壳体61在内部具有空间614,该空间614经由蒸气管连接部611与蒸气管52连通,此外,经由液管连接部612与液管53连通。即,壳体61连接有液管53,液相的工作流体从液管53流入内部的空间614。

贮留部62是如下的储液器:设置在壳体61内的空间614内,贮留经由液管53流入空间614的液相的工作流体wf。换言之,贮留部62是如下部位:在空间614中,贮留未被引入构成蒸气生成部63的芯部65中的液相的工作流体wf。

[蒸气生成部的结构]

图6是示出蒸气生成部63的分解立体图,图7是示出蒸气生成部63的剖视图。

蒸气生成部63是如下部位:设置在壳体61内的空间614中,通过从冷却对象传递的热使从贮留部62供给的液相的工作流体wf变化为气相的工作流体。换言之,蒸气生成部63是如下部位:通过冷却对象的热使工作流体从液相变化为气相,生成气相的工作流体即蒸气。如图5~图7所示,蒸气生成部63具有凹槽64和芯部65。

另外,在以下的说明中,设从凹槽64朝向芯部65的方向为+e1方向。此外,设与+e1方向正交、且相互正交的两个方向为+e2方向和+e3方向。进而,省略图示,但是,设+e1方向以及+e2方向各自的相反方向为-e1方向和-e2方向。

[凹槽的结构]

凹槽64由具有导热性的金属构成。凹槽64设置在壳体61内的空间614中,与芯部65连接。凹槽64在壳体61内的空间614中设置于隔着芯部65与贮留部62相反的一侧的位置。凹槽64通过经由受热部件613从冷却对象传递的热、即经由支承部件414和受热部件613从光源411传导的热,使由芯部65输送的液相的工作流体蒸发。凹槽64具有供从液相变化为气相的工作流体流通的多个流路641。

多个流路641是与蒸气管52连通的凹部,从凹槽64中的+e1方向的端面64a朝-e1方向凹陷,并且分别向+e2方向延伸。

然后,通过蒸气生成部63从液相变化为气相的工作流体经过多个流路641向蒸气管52流出。这样,凹槽64是在蒸气生成部63中形成有多个流路641的流路形成层。

另外,在从冷却对象传递的热量较小的情况下,凹槽64有时通过从冷却对象传递的热使从芯部65向端面64a输送的液相的工作流体变化为气相的工作流体。

[芯部的结构]

芯部65是与凹槽64一起设置在壳体61内的空间614中、整体为平板状的多孔质体。芯部65浸入有从贮留部62供给的液相的工作流体,保持液相的工作流体。芯部65通过毛管力引入贮留部62中贮留的液相的工作流体wf,将其输送到凹槽64侧。芯部65具有从凹槽64朝向贮留部62依次设置且根据功能进行分类的第1层66、第2层67和第3层68的三层构造。即,第1层66、第2层67和第3层68分别设置在凹槽64与贮留部62之间。

另外,在本实施方式中,芯部65在第1层66、第2层67和第3层68重合的状态下通过烧结而一体化。

[第3层的结构]

这里,首先,对芯部65中位于贮留部62侧的第3层68进行说明。

第3层68是浸入有液相的工作流体的平板状的多孔质体。第3层68是如下的流体输送层:通过毛管力引入贮留部62中贮留的液相的工作流体wf并进行保持,将其输送到第1层66侧。第3层68由空隙率较大的多孔质体构成,以高效地从贮留部62经由第2层67向第1层66输送液相的工作流体。

这里,当热从第3层68输送到贮留部62后,产生热泄漏的可能性较高。热泄漏是如下现象:贮留部62中贮留的液相的工作流体wf的温度上升,蒸发部6内的压力上升,很难产生从液相到气相的工作流体的相变化。当产生这种热泄漏时,冷却对象的冷却效率降低。由于这种问题,第3层68要求相对较低的导热性,以抑制热泄漏的产生。

与此相对,第3层68由具有比第1层66的导热性低的导热性的材料形成,或者形成为热阻比第1层66大。另外,在第3层68由具有与第1层66的导热性相同的导热性的材料形成的情况下,通过使第3层68的+e1方向上的尺寸比第1层66的+e1方向上的尺寸大,也能够使第3层68的热阻比第1层66的热阻大。

由此,热不易传递到贮留部62中贮留的液相的工作流体wf,抑制上述热泄漏的产生。

[第1层的结构]

第1层66是浸入有液相的工作流体的平板状的多孔质体。第1层66是与凹槽64的端面64a连接的连接层,经由第2层67从第3层68输送液相的工作流体。在本实施方式中,连接层即第1层66与凹槽64的端面64a接触。

第1层66由铜或不锈钢等导热率相对较高的金属形成,从凹槽64传递热。因此,第1层66能够在内部使从第3层68输送的液相的工作流体相变化为气相的工作流体。

第1层66具有第2层67侧即+e1方向侧的端面66a、凹槽64侧即-e1方向侧的端面66b、以及沿着多个流路641设置且在+e1方向上贯通第1层66的多个第1开口661。

端面66a与第2层67接触,端面66b与凹槽64的端面64a接触。

多个第1开口661与多个流路641对应地形成,与多个流路641同样向+e2方向延伸。详细而言,如图6所示,从+e1方向观察,多个第1开口661形成为具有沿着+e2方向的长边的大致长方形。此外,如图7所示,从-e2方向观察,与+e1方向平行的第1开口661的中心线、即穿过第1开口661的短边的中央的中心线与穿过对应的流路641的槽宽的中央的中心线cl一致。另外,第1开口661的形状不限于大致长方形,能够适当变更。

图8是示出第1开口661与流路641的位置关系的图。换言之,图8是从+e1方向观察与凹槽64重叠的第1层66的俯视图。另外,在图8中,利用单点划线示出流路641。

如图8所示,第1开口661的开口宽度即+e3方向上的尺寸比对应的流路641的槽宽即+e3方向上的尺寸小。

因此,从+e1方向观察,形成第1开口661、且在+e3方向上相互对置的2个端缘662位于流路641的内侧。换言之,跟形成与第1开口661对应的流路641、且在+e3方向上相互对置的2个端缘642相比,形成第1开口661的2个端缘662分别位于内侧。

[第2层的结构]

第2层67是浸入有液相的工作流体的平板状的多孔质体。如图6和图7所示,第2层67是位于第1层66与第3层68之间的中间层。第2层67将从第3层68输送的液相的工作流体输送到第1层66。第2层67由能够与第1层66以及第3层68紧密贴合的具有弹性的多孔质体构成,以高效地将从第3层68输送的液相的工作流体输送到第1层66。

此外,第2层67具有遮蔽传递到第1层66的热以不使其传递到第3层68的功能。即,第2层67具有比第1层66的导热性低的导热性。

除此以外,为了抑制由第1层66产生的蒸气向第3层68侧流通,第2层67的空隙率比第1层66的空隙率小。

第2层67具有第3层68侧即+e1方向侧的端面67a、第1层66侧即-e1方向侧的端面67b、以及在+e1方向上贯通第2层67的多个第2开口671。

端面67a与第3层68中的-e1方向侧的端面68b接触,端面67b与第1层66的端面66a接触。

如上所述,在蒸气生成部63中朝向储液器即贮留部62依次设置有流路形成层即凹槽64、连接层即第1层66、中间层即第2层67、以及流体输送层即第3层68。此外,第1层66的导热性比第2层67的导热性和第3层68的导热性高。

图9是示出第2开口671与第1开口661的位置关系的图。换言之,图9是从+e1方向观察与第1层66重叠的第2层67的俯视图。另外,在图9中,利用单点划线示出流路641。

如图9所示,从+e1方向观察,第2开口671在与多个第1开口661对应的位置形成为开口面积比对应的第1开口661大。详细而言,+e2方向上的第2开口671的尺寸与第1开口661的尺寸相同,但是,+e3方向上的第2开口671的尺寸比第1开口661的尺寸大。但是,+e2方向上的第2开口671的尺寸不限于与+e2方向上的第1开口661的尺寸相同,例如,也可以比第1开口661的尺寸大。

而且,如图7所示,从-e2方向观察,与+e1方向平行的第2开口671的中心线、即穿过第2开口671的短边的中央的中心线与上述中心线cl一致。

因此,从+e1方向观察,第2开口671形成为第1开口661的2个端缘662位于第2开口671的内侧。

另一方面,如图7和图9所示,形成第2开口671、且在+e3方向上相互对置的2个端缘672位于对应的第1开口661的外侧。这是为了确保第2开口671内露出的第1层66的端面66a的面积。另一方面,从+e1方向观察,端缘672不是必须位于对应的流路641的外侧。

这种第2开口671在后面详细叙述,但是,与第1开口661一起形成用于供在第1层66的端面66a变化为气相的工作流体在流路641中流通的流路。

另外,第2层67也可以构成为根据第1开口661进行设置,并且,代替第2开口671而具有朝向第1层66开口的凹状的开口。该情况下,能够使在端面66a变化为气相的工作流体从凹状的开口经由第1开口661在对应的流路641中流通。

[蒸气生成部的作用]

图10是放大示出蒸气生成部63的一部分的剖视图,是说明在蒸气生成部63中变化为气相的工作流体在流路641中流通的状况的图。

下面,说明蒸气生成部63进行的蒸气的生成过程和排出过程。

如图10中箭头al所示,贮留部62中贮留的液相的工作流体从第3层68经由第2层67输送到第1层66。另一方面,凹槽64和第1层66通过经由受热部件613从冷却对象传递的热使所输送的液相的工作流体变化为气相的工作流体。可认为产生这种工作流体的相变化的部位根据朝向凹槽64和第1层66的热的传递状态而变化。

在本实施方式中,在经由芯部65向凹槽64的流路641的表面输送液相的工作流体的情况下,在流路641的表面产生朝向气相的工作流体的相变化。该情况下,所产生的气相的工作流体通过流路641流入蒸气管52内,通过蒸气管52在冷凝部7中流通。

另一方面,在从冷却对象传递到受热部件613的热量相对较大、从凹槽64传递到第1层66的热量相对较大的情况下,在第1层66内产生朝向气相的工作流体的相变化。该情况下,液相的工作流体未到达到流路641的表面,因此,可认为流路641的表面未产生相变化。

该情况下,如图10中箭头a1所示,在第1层66中的第1开口661附近的-e1方向侧的部位、即第1层66中的-e1方向的端面66b中露出到流路641内的部位变化为气相的工作流体流入流路641。

此外,如图10中箭头a2所示,在第1层66中的第1开口661附近的+e1方向侧的部位、即第1层66中的+e1方向的端面66a中露出到第2开口671内的部位变化为气相的工作流体从第2开口671通过第1开口661流入流路641。

然后,与上述同样,流入流路641内的气相的工作流体流入蒸气管52内,通过蒸气管52在冷凝部7中流通。

根据具有这种蒸气生成部63的蒸发部6,能够容易地使在凹槽64或第1层66中从液相变化为气相的工作流体在位于凹槽64中的多个流路641中流通。由此,能够提高朝向蒸气管52的蒸气的排出效率,能够使蒸气在冷凝部7中迅速地流通。因此,通过蒸气生成部63迅速地夺走光源411的热,能够使用工作流体将光源411的热迅速地输送到冷凝部7进行散热,因此,能够有效地对冷却对象即光源411进行冷却。

[实施方式的效果]

以上说明的本实施方式的投影仪1发挥以下效果。

冷却装置5具有环型热管51。环型热管51具有:蒸发部6,其通过从冷却对象即光源411传递的热使液相的工作流体蒸发,变化为气相的工作流体;冷凝部7,其使气相的工作流体冷凝,变化为液相的工作流体;蒸气管52,其使蒸发部6中变化为气相的工作流体向冷凝部7流通;以及液管53,其使冷凝部7中变化为液相的工作流体向蒸发部6流通。蒸发部6具有:壳体61,其与液管53连接,液相的工作流体流入该壳体61的内部;储液器即贮留部62,其设置在壳体61内,贮留所流入的液相的工作流体;芯部65,其设置在壳体61内,浸入液相的工作流体,保持液相的工作流体;以及凹槽64,其具有供从液相变化为气相的工作流体流通的多个流路641,与芯部65连接。芯部65具有分别设置在凹槽64与贮留部62之间、且从凹槽64朝向贮留部62依次设置的第1层66、第2层67和第3层68。第1层66具有沿着多个流路641设置的多个第1开口661,具有比第2层67的导热性和第3层68的导热性高的导热性。第3层68将贮留部62中贮留的液相的工作流体输送到第2层67。第2层67具有与多个第1开口661对应设置且开口面积比第1开口661大的多个第2开口671,将从第3层68输送的液相的工作流体输送到第1层66。

根据这种结构,构成芯部65的第2层67和第3层68具有比同样构成芯部65的第1层66的导热性低的导热性,因此,能够使热不易从凹槽64经由芯部65传递到贮留部62。因此,能够抑制产生上述热泄漏,能够抑制冷却对象即光源411的冷却效率降低。

此外,在第1层66中的第1开口661附近的部位从液相变化为气相的工作流体除了直接在凹槽64的流路641中流通以外,还经由第2开口671和第1开口661在流路641中流通。由此,能够使在与凹槽64接触的第1层66变化为气相的工作流体在流路641中迅速地流通,能够提高气相的工作流体朝向蒸气管52的排出效率。因此,能够抑制蒸发部6内的压力损耗的产生,而且,能够迅速地将光源411的热输送到冷凝部7进行散热,因此,能够提高冷却对象即光源411的冷却效率。

与第1层66以及第3层68接触的第2层67具有弹性。由此,能够容易地维持与第1层66以及第3层68接触的状态,能够高效地经由第2层67从第3层68向第1层66输送液相的工作流体。因此,能够通过工作流体迅速地将冷却对象的热输送到冷凝部7,能够提高冷却对象即光源411的冷却效率。

第2层67的空隙率比第1层66的空隙率小。

由此,能够抑制在第1层66变化为气相的工作流体即蒸气在第3层68中流通。因此,在这方面,也能够抑制上述热泄漏的产生。

如上所述,第1层66具有比第2层67的导热性和第3层68的导热性高的导热性。构成第1层66的材料的导热率比构成第2层67的材料的导热率和构成第3层68的材料的导热率高,由此实现这种第1层66的较高的导热性。或者,第1层66的导热率比第2层67的导热率高,第1层66的热阻比第3层68的热阻小,由此实现第1层66的较高的导热性。另外,在第1层66的导热率和第3层68的导热率相同的情况下,使第3层68中的+e1方向的尺寸比第1层66中的+e1方向的尺寸大,由此实现第1层66的热阻比第3层68的热阻小。

由此,能够不易从第3层68向贮留部62传导热,因此,能够抑制上述热泄漏的产生,另一方面,能够容易地向第1层66传导热,因此,能够容易地在第1层66使工作流体从液相相变化为气相。因此,能够进一步提高冷却对象的冷却效率。

冷却装置5具有环型热管51,环型热管51分别具有上述蒸发部6、冷凝部7、蒸气管52和液管53。蒸发部6具有:壳体61,其与液管53连接,液相的工作流体流入该壳体61的内部;贮留部62,其设置在壳体61内,贮留流入壳体61内的液相的工作流体;以及蒸气生成部63,其使从贮留部62供给的液相的工作流体蒸发。蒸气生成部63具有朝向贮留部62依次设置的流路形成层即凹槽64、连接层即第1层66、中间层即第2层67和流体输送层即第3层68。凹槽64具有供从液相变化为气相的工作流体流通、且与蒸气管52连通的多个流路641。连接层即第1层66具有沿着多个流路641设置的多个第1开口661,具有比第2层67的导热性和第3层68的导热性高的导热性,与流路形成层即凹槽64连接。第3层68将贮留部62中贮留的液相的工作流体输送到第2层67。第2层67具有与多个第1开口661对应设置且开口面积比第1开口661大的多个第2开口671,将从第3层68输送的液相的工作流体输送到第1层66。

根据这种结构,如上所述,不仅能够抑制产生热泄漏,还能够迅速地将在连接层即第1层66中变化为气相的工作流体排出到蒸气管52。因此,能够迅速地将光源411的热输送到冷凝部7进行散热,能够提高冷却对象即光源411的冷却效率。

冷凝部7具有蒸气流通部72,其供气相的工作流体从蒸气管52流通;多个微细流路73,它们与蒸气流通部72连接,流路截面积比蒸气流通部72小;以及液体流通部74,其与多个微细流路73连接,将从多个微细流路73流入的变化为液相的工作流体引导至液管53。

由此,能够通过多个微细流路73扩大冷凝部7与气相的工作流体的接触面积,因此,能够使气相的工作流体在多个微细流路73中流通,由此,能够迅速且连续地使热从气相的工作流体传递到冷凝部7。因此,能够高效地进行从气相到液相的工作流体的相变化。

液体流通部74具有第1流通部741和第2流通部742。第1流通部741具有:第1延伸部7411,其与多个微细流路73中包含的多个第1微细流路731连接,供液相的工作流体向与蒸气流通部72中的气相的工作流体的流通方向相反的方向即-d1方向流通;折返部7413,其设置在第1延伸部7411中的工作流体的流通方向下游侧的端部,使液相的工作流体的流通方向反转;以及第2延伸部7412,其与折返部7413连接,供第1延伸部7411中流通后的液相的工作流体经由折返部7413流通。第2流通部742也同样。

由此,蒸气流通部72中的气相的工作流体的流通方向和第1延伸部7411中的液相的工作流体的流通方向为相反方向,因此,能够使冷凝部7整体的温度大致均匀。由此,能够抑制在冷凝部7中产生局部的高温部位,而且,能够提高基于通过冷却风扇54流通的冷却气体的冷凝部7的冷却效率。因此,能够提高冷凝部7对工作流体的冷却效率。

除此以外,第1流通部741和第2流通部742具有第1延伸部7411、7421、第2延伸部7412、7422和折返部7413、7423,因此,能够延长液相的工作流体的流路,扩大与液相的工作流体之间的接触面积,并且能够使冷凝部7小型化。

投影仪1具有:光源装置4,其具有出射光的光源411;光调制装置343,其对从光源装置4出射的光进行调制;以及投射光学装置36,其投射由光调制装置343调制后的光,而且,还具有上述冷却装置5。而且,冷却装置5的冷却对象是光源411。

由此,能够发挥冷却装置5的效果。除此之外,能够提高光源411的冷却效率,因此,能够稳定地驱动光源装置4,进而能够稳定地实施图像投射。

[实施方式的变形]

本发明不限于上述实施方式,能够实现本发明目的的范围内的变形、改良等包含在本发明中。

在上述实施方式中,芯部65构成为具有第1层66、第2层67和第3层68。这些第1层66、第2层67和第3层68中的至少1个层也可以不是由单一材料形成的层、或具有单一构造的层,也可以是由分别不同的材料、或具有分别不同的构造的多个层构成的层。

在上述实施方式中,蒸气生成部63具有流路形成层即凹槽64、以及位于凹槽64与储液器即贮留部62之间的芯部65,芯部65具有连接层即第1层66、中间层即第2层67和流体输送层即第3层68。蒸气生成部具有这些层即可,哪个部件具有哪个层是任意的。例如,凹槽64、第1层66、第2层67和第3层68也可以通过烧结等而一体化,此外,例如,也可以是凹槽64和第1层66一体化,第2层67和第3层68一体化。

在上述实施方式中,在从+e2方向观察流路形成层即凹槽64的流路641、连接层即第1层66的第1开口661和中间层即第2层67的第2开口671的情况下,与+e1方向平行且穿过+e3方向上的中央的各个中心线一致。但是,不限于此,只要在第1层66中的+e1方向的端面66a变化为气相的工作流体能够经由第2开口671和第1开口661在流路641中流通,则分别对应的流路641、第1开口661和第2开口671的中心也可以在+e2方向和+e3方向中的至少任意一个方向上偏移。

在上述实施方式中,第2层67由具有弹性的多孔质体构成,以提高与第1层66以及第3层68的紧密贴合度。但是,不限于此,向凹槽64按压芯部65等,只要能够使第2层67与第1层66以及第3层68紧密贴合,则第2层67也可以不具有弹性。

此外,第2层67的空隙率比第1层66的空隙率小。但是,不限于此,各层66~68的空隙率能够适当设定。

在上述实施方式中,第1层66具有比第2层67的导热性和第3层68的导热性高的导热性。为了对第1层66赋予这种较高的导热性,使第1层66的导热率比第2层67的导热率和第3层68的导热率高。或者,为了对第1层66赋予较高的导热性,使第1层66的导热率比第2层67的导热率高,使第1层66的热阻比第3层68的热阻小。而且,在第1层66和第3层68由具有相同导热率的材料形成的情况下,为了使第1层66的热阻比第3层68的热阻小,使第3层68中的+e1方向的尺寸比第1层66中的+e1方向的尺寸大。但是,不限于此,只要能够对第1层66赋予比第2层67的导热性和第3层68的导热性高的导热性即可,其方法是任意的。

在上述实施方式中,冷凝部7构成为具有主体部71,该主体部71具有蒸气流通部72、多个微细流路73和液体流通部74。但是,不限于此,只要能够使从蒸气管52流入的气相的工作流体冷凝而变化为液相的工作流体并向液管53排出即可,冷凝部7的结构是任意的。例如,冷凝部也可以具有使供工作流体在内部流通的流通路至少折返一次的结构。

在上述实施方式中,在冷却对象即光源411的支承部件414与凹槽64之间配置用于容易地使光源411中产生的热传递到凹槽64的受热部件613。但是,不限于此,支承部件414和凹槽64也可以以能够进行热传递的方式连接而不经由受热部件613。

在上述实施方式中,光源装置4的光源411具有半导体激光器412、413。但是,不限于此,光源装置也可以具有超高压汞灯等光源灯、led(lightemittingdiode)等其他固体光源作为光源。该情况下,环型热管51的冷却对象也可以是光源灯、其他固体光源。

在上述实施方式中,投影仪1具有3个光调制装置343(343b、343g、343r)。但是,不限于此,在具有2个以下或4个以上的光调制装置的投影仪中也能够应用本发明。

在上述实施方式中,光调制装置343是光入射面和光出射面不同的透过型的液晶面板。但是,不限于此,作为光调制装置,也可以使用光入射面和光出射面相同的反射型的液晶面板。此外,只要是能够对入射光束进行调制并形成基于图像信息的图像的光调制装置即可,也可以使用利用微镜的器件、例如利用dmd(digitalmicromirrordevice)等的装置等液晶以外的光调制装置。

在上述实施方式中,举出将具有环型热管51的冷却装置5应用于投影仪的例子。但是,不限于此,本发明的冷却装置除了能够应用于投影仪以外的装置和设备以外,还能够以单体形式进行利用。即,本发明的冷却装置的用途不限于对投影仪的结构部件进行冷却。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1